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Confined Poisson extensions

Séverin Benzoni, Emmanuel Roy, Thierry de la Rue

Abstract

This paper follows on from [3], where we introduced the notion of con-
fined extensions, and our purpose is to widen the context in which such ex-
tensions appear. We do so in the setup of Poisson suspensions: we take a
σ-finite measure-preserving dynamical system (X,µ, T ) and a compact ex-
tension (X ×G,µ⊗mG, Tϕ), then we consider the corresponding Poisson
extension ((X × G)∗, (µ ⊗ mG)

∗, (Tϕ)∗) −→ (X∗, µ∗, T∗). Our results
give two different conditions under which that extension is confined. Fi-
nally, to show that those conditions are not void, we give an example of a
system (X,µ, T ) and a cocycle ϕ so that the compact extension (X×G,µ⊗
mG, Tϕ) has an infinite ergodic index.
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1 Introduction
1.1 Motivations

This paper investigates the concept of extensions of measure-preserving dynam-
ical systems, specifically, extensions given by a factor map π : (Z, ρ,R) →
(X,µ, T ). We mean that Z := (Z, ρ,R) and X := (X,µ, T ) are measure pre-
serving dynamical systems such that X is a factor of Z via π, and conversely, we
also view Z as an extension of X.

This paper is a continuation of the work done in [3]. There, we introduced the
notion of confined extensions: they are extensions (Z, ρ,R)

π−→ (X,µ, T ) such
that the only self-joining λ of (Z, ρ,R) in which the law of π × π is the product
measure µ⊗ µ, is the product joining λ = ρ⊗ ρ (see Definition 1.1).

This notion was first of interest to us in the study of dynamical filtrations,
which are filtrations defined on some dynamical system (X,µ, T ) of the form
F := (Fn)n≤0 such that each Fn is T -invariant (see [3] for more details). But
we also noticed other interesting results on confined extensions. For example, we
listed properties P that are lifted through confined extensions, i.e. if (X,µ, T )
satisfies P and (Z, ρ,R)

π−→ (X,µ, T ) is confined, then (Z, ρ,R) satisfies P (see
[3, Section 3.3]).

Since we noticed that confined extensions had many interesting properties,
we look for examples in which that behavior arises. In [3], we considered ex-
tensions well known in the literature, namely, compact extensions and T, T−1-
transformations. In both cases, we gave necessary and sufficient conditions for
those extensions to be confined.

In this paper, we give confinement results for a new kind of extension, in the
setting of Poisson suspensions. Take (X,µ, T ) a measure preserving dynamical
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system where µ is a σ-finite measure, but assume that µ(X) = ∞. Consider
the probability space (X∗, µ∗) where X∗ is the set of locally finite measures of
the form

∑
i≥1 δxi , with (xi)i≥1 ∈ XN, and µ∗ the law of the Poisson process

of intensity µ. One can then define T∗ on (X∗, µ∗) by applying T to each point
of the point process. The resulting dynamical system (X∗, µ∗, T∗) is called the
Poisson suspension over (X,µ, T ). A factor map π : (Z, ρ,R) → (X,µ, T )
between infinite measure systems will then yield a factor map between the Poisson
suspensions: π∗ : (Z∗, ρ∗, R∗) → (X∗, µ∗, T∗). The resulting extension is what
we call a Poisson extension.

We will consider the case where Z := (X × G, µ ⊗mG, Tϕ) is the compact
extension given by a cocycle ϕ : X → G, with G a compact group. Our results
concern the following Poisson extension:

((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗), (1)

with π : (x, g) 7→ x.
In Section 2, we consider the case where ϕ(x) acts as the identity map, for

every x ∈ X . Using a splitting result from [7], we prove that in this case, if
(X,µ, T ) is of infinite ergodic index, the extension (1) is confined (see Theorem
2.2).

In Section 3, we deal with a more general cocycle ϕ. There, our argument
will rely on the assumption that the compact extension (X ×G, µ⊗mG, Tϕ) is of
infinite ergodic index. In that case, we make use of Lemma 1.3, which is a well
know result from Furstenberg. Through some intricate manipulations, we manage
to reduce our problem to a relative unique ergodicity problem for products of the
extension Z

π−→ X, so that we can use Furstenberg’s lemma (i.e. Lemma 1.3) to
prove that (1) is confined (see Theorem 3.1).

Since the argument developed in Section 3 requires a compact extension (X×
G, µ⊗mG, Tϕ) of infinite ergodic index, in Section 4, we give an example of such
an extension, showing that Theorem 3.1 is not void.

1.2 Basic notions and notation in ergodic theory

A dynamical system is a quadruple X := (X,A , µ, T ) such that (X,A ) is a
standard Borel space, µ is a Borel measure which is σ-finite, i.e. there exist mea-
surable sets (Xn)n≥1 such that µ(Xn) < ∞ and X =

⋃
n≥1Xn, and T is an

invertible measure-preserving transformation. Throughout the paper, we will of-
ten not specify the σ-algebra A , and will write our dynamical systems as a triple
of the form (X,µ, T ).
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If we have two systems X := (X,µ, T ) and Z := (Z, ρ,R), a factor map is a
measurable map π : Z −→ X such that π∗ρ = µ and π ◦ R = T ◦ π, ρ-almost
surely. If such a map exists, we say that X is a factor of Z. Conversely, we also
say that Z is an extension of X. Moreover, if there exist invariant sets X0 ⊂ X
and Z0 ⊂ Z of full measure such that π : Z0 −→ X0 is a bijection, then π is an
isomorphism and we write Z ∼= X.

The system (X,µ, T ) is ergodic if T−1A = A implies that µ(A) = 0 or
µ(Ac) = 0. It is conservative if there is no non-trivial set A such that the
{T nA}n∈Z are disjoint. Let (X,µ, T ) be a dynamical system with µ(X) = ∞.
The ergodic index of (X,µ, T ) is the largest integer k such that (X,µ, T )⊗k is con-
servative and ergodic. If (X,µ, T )⊗k is ergodic for every integer k, the ergodic
index is infinite.

Let (X,µ, T ) be a conservative system. For A ⊂ X measurable, we denote
the restriction of µ to A by µ A := µ(· ∩A). Since the system is conservative, the
return time NA(x) := inf{k ≥ 1 |T k ∈ A} is almost surely finite, allowing us to
define the induced transformation

T A : A −→ A
x 7−→ TNA(x)x

.

1.3 Joinings and confined extensions

Let X := (X,µ, T ) and Y := (Y, ν, S) be two σ-finite measure preserving dy-
namical systems. A joining of X and Y is a (T × S)-invariant measure λ on
X × Y whose marginals are µ and ν (therefore the marginals have to be σ-finite).
It yields the dynamical system

X×λ Y := (X × Y, λ, T × S).

On this system, the coordinate projections are factor maps that project onto X and
Y respectively. If it is not necessary to specify the measure, we will simply write
X×Y. For the product joining, we will use the notation X⊗Y := X×µ⊗ν Y.
For the n-fold product self-joining, we will write X⊗n.

We now give the definition of confined extensions, which concerns only prob-
ability measure preserving dynamical systems.

Definition 1.1. Let X := (X,µ, T ) and Y := (Y, ν, S) be probability measure
preserving dynamical systems, and π : X −→ Y be a factor map. The extension
X

π−→ Y is said to be confined if it satisfies one of the following equivalent
properties:
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(i) every 2-fold self-joining of X in which the two copies of π are independent
random variables is the product joining;

(ii) for every system Z, every joining of X and Z in which the copy of π and the
projection on Z are independent random variables is the product joining;

(iii) for every n ∈ N∗ ∪ {+∞}, every n-fold self-joining of X in which the n
copies of π are mutually independent random variables is the n-fold product
joining.

It was shown in [3, Proposition 3.3] that the definitions (i), (ii), and (iii) are
equivalent. In this paper, we mainly use the definition (i). As we mentioned,
this concerns only the case for probability measures. An adaptation to the infinite
measure case would be more intricate, mainly because if we assume that a measure
λ on X ×X projects onto ν ⊗ ν on Y × Y and that ν is an infinite measure, then
λ cannot be a joining of µ. That is because, in that case, both projections of λ on
X would not be σ-finite.

1.4 Compact extensions and relative unique ergodicity

Definition 1.2. Let (Z, ρ,R)
π−→ (X,µ, T ) be an extension. It is relatively

uniquely ergodic if the only R-invariant measure λ on Z such that π∗λ = µ is
λ = ρ.

Let X := (X,µ, T ) be a measure preserving dynamical system, G a compact
group and ϕ : X −→ G a cocycle. Let mG denote the Haar probability measure
onG. The compact extension of X given by ϕ is the system Z on (X×G, µ⊗mG)
given by the skew product

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

.

This is the most well known family of extensions. The only result we will need,
is the following, due to Furstenberg:

Lemma 1.3 (Furstenberg [5]). Let X := (X,µ, T ) be an ergodic measure pre-
serving dynamical system where µ is a finite or σ-finite measure. Assume that
the compact extension Z = (X × G, µ ⊗mG, Tϕ) is ergodic. Let λ be a σ-finite
Tϕ-invariant measure on X ×G such that λ(· ×G) = µ. Then

λ = µ⊗mG.

5



This lemma is usually stated with µ a probability measure, but the infinite
measure case is proven in the exact same way.

Furstenberg’s lemma can be summarized by saying that an ergodic compact
extension is relatively uniquely ergodic.

1.5 Poisson suspensions, splittings and extensions

Let X := (X,µ, T ) be a σ-finite measure preserving dynamical system. For
convenience, we will assume that X = R+ and that µ is a locally finite measure,
i.e. for any bounded set B ⊂ R+, we have µ(B) <∞. Let

X∗ :=

{
locally finite measures of the form

∑
i≥1

δxi

}
.

A point process is a probability measure on X∗. The Poisson point process of
intensity µ, which we denote µ∗, is the point process characterized by the fact
that, for A1, ..., An ⊂ X measurable disjoint subsets such that 0 < µ(Ai) < ∞,
the random variables ω(A1), ..., ω(An), for ω ∈ X∗, are independent Poisson
random variables of respective parameter µ(Ai), for i ∈ J1, nK.

On the probability space (X∗, µ∗), we define the transformation

T∗ :
∑
i≥1

δxi 7→
∑
i≥1

δTxi .

The resulting dynamical system X∗ := (X∗, µ∗, T∗) is called the Poisson suspen-
sion over (X,µ, T ).

It is well known that the Poisson suspension X∗ is ergodic if and only if there
is no T -invariant measurable subset A ⊂ X such that 0 < µ(A) < ∞ (see [8]).
Moreover, this implies that if X∗ is ergodic, it is automatically weakly mixing.
Also, note that it is not necessary that X is ergodic for X∗ to be ergodic.

We use the notion of Poisson splittings from [7], but with different choices
in the notations. A splitting of order n of the Poisson suspension (X∗, µ∗, T∗)
is a family {νi}1≤i≤n of T∗-invariant probability measures on X∗ and λ a T×n∗ -
invariant joining of {νi}1≤i≤n such that Σ

(n)
∗ λ = µ∗, where

Σ(n) : X∗ × · · · ×X∗ −→ X∗

(ω1, ..., ωn) 7−→ ω1 + · · ·+ ωn
.

The splitting is said to be ergodic if λ is an ergodic joining. The splitting is a
Poisson splitting if there exist {µi}1≤i≤n, σ-finite measures on X such that, for
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i ∈ J1, nK, νi = µ∗i , and λ is the product measure µ∗1 ⊗ · · · ⊗ µ∗n. With that
notation, the result [7, Theorem 2.6] becomes

Theorem 1.4. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index. Then any ergodic splitting of the Poisson suspen-
sion (X∗, µ∗, T∗) is a Poisson splitting.

Consider two σ-finite systems Z := (Z, ρ,R) and X := (X,µ, T ) and a factor
map π : Z −→ X, which means that we have an extension Z

π−→ X of σ-finite
systems. We can then define the map

π∗ :
∑
i≥1

δxi 7→
∑
i≥1

δπ(xi).

One can check that this yields a factor map from Z∗ to X∗, therefore we have
defined an extension Z∗

π∗−→ X∗ between Poisson suspensions. Such an extension
is what we call a Poisson suspension.

2 A Poisson extension over a trivial cocycle
In this section, we study Poisson extensions over extensions of the form

T × Id : X ×K −→ X ×K
(x, κ) 7−→ (Tx, κ)

,

on (X ×K,µ⊗ ρ), where K is a standard Borel space and ρ is a probability mea-
sure on K. We start in Section 2.1 by showing that if T has infinite ergodic index,
the associated Poisson extension is confined. Then in Section 2.3, we see that
marked point processes enable us to write Poisson extensions through a Rokhlin
cocycle, and we give an application in probability theory by giving an alternative
proof of the De Finetti theorem (see Corollary 2.4.1). Finally, in Section 2.4, we
give an example of a non-confined Poisson extension.

2.1 Confinement as a consequence of Poisson splittings

We derive the content of this section as a consequence of Theorem 1.4. In [7],
the authors proved Theorem 1.4 and gave an application of that splitting result
(specifically, [7, Theorem 3.1]). Here, we note that it can be rephrased as a relative
unique ergodicity result for the Poisson extension. In our notation, it becomes:
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Theorem 2.1. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index, and K a standard Borel space. Let λ be an
invariant marked point process over µ∗, i.e. a (T × Id)∗-invariant probability
measure on (X × K)∗ such that (π∗)∗λ = µ∗. If (λ, (T × Id)∗) is ergodic, then
there exists a probability measure ρ on K such that λ = (µ⊗ ρ)∗.

We deduce that the Poisson extension is confined:

Theorem 2.2. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index, and (K, ρ) a standard probability space. Then
the Poisson extension

((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗) −→ (X∗, µ∗, T∗),

is confined.

Proof. Set Z := ((X ×K)∗, (µ ⊗ ρ)∗, (T × Id)∗) and π : (x, κ) 7→ x. Let λ be
a 2-fold self joining of Z such that (π∗ × π∗)∗λ = µ∗ ⊗ µ∗. Since Z∗ and X∗ are
ergodic, and even weakly mixing (see Section 1.5 or [8]), up to taking an ergodic
component, one can assume that λ is ergodic. Note that λ is a probability measure
on

(X ×K)∗ × (X ×K)∗.

On this set, each projection on (X ×K)∗ yields a Poisson process. We view the
realization of both of those processes simultaneously on X × K and we tag the
points coming from the first coordinate with a 1, and the points coming from the
second coordinate with a 2. To do that formally, we define the map

Ω : (X ×K)∗ × (X ×K)∗ −→ (X ×K × {1, 2})∗,

so that
Ω(ω1, ω2)(· × {i}) = ωi,

and consider η := Ω∗λ. Then, η is (T × IdK×{1,2})-invariant, and, because (π∗ ×
π∗)∗λ = µ∗ ⊗ µ∗, we get (π̃∗)∗η = (2µ)∗, where π̃ : (x, κ, i) 7→ x. Theorem 2.1
tells us that there exists χ ∈ P(K × {1, 2}) such that η = (2µ ⊗ χ)∗. Now we
compute χ: let A ⊂ X such that 0 < µ(A) <∞, B ⊂ K and i ∈ {1, 2}

e−2µ(A)χ(B×{i}) = η({ω̃ ; ω̃(A×B × {i}) = 0})
= λ({(ω1, ω2) ; ωi(A×B) = 0})
= (µ⊗ ρ)∗({ω ; ω(A×B) = 0}) = e−µ(A)ρ(B).
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So, χ(B × {i}) = 1
2
ρ(B). Therefore χ = ρ ⊗B(1/2, 1/2), so η = (2µ ⊗ ρ ⊗

B(1/2, 1/2))∗. Finally, we get

λ = Ω−1
∗ η = Ω−1

∗ (2µ⊗ ρ⊗B(1/2, 1/2))∗

= (µ⊗ ρ)∗ × (µ⊗ ρ)∗.

2.2 Marked Point processes

Let (X,µ) be a standard Borel space equipped with a σ-finite measure such that
µ(X) = ∞. Without loss of generality, we can assume that X = R+, thus
enabling us to use the natural order on R+, but any other order could be used here.
We can also assume that µ is the Lebesgue measure on R+ (by doing so, we ignore
the case where µ has atoms, but for the rest of our work, that is not a problem). Up
to a set of µ∗-measure 0 we can assume that the elements ω of (R+)∗ are locally
finite measures with no multiplicity, i.e. such that ∀x ∈ R+, ω({x}) ≤ 1. This
allows us to define a sequence (tn)n∈N of measurable maps from (R+)∗ to R+

such that
ω =

∑
n≥1

δtn(ω),

and
0 ≤ t1(ω) < t2(ω) < · · · .

Now consider a Polish spaceK. We will call a marked point process over µ∗ a
probability measure λ on (R+×K)∗ such that (π∗)∗λ = µ∗, where π : (x, κ) 7→ x.
We already manipulated marked point processes in the previous section, we are
simply giving them a name now. We can describe marked point processes as
follows: define the map

f : (R+)∗ ×KN −→ (R+ ×K)∗

(ω, (κn)n≥1) 7−→
∑

n≥1 δ(tn(ω),κn)
.

Since f is injective, we know that f((R+)∗ ×KN) is a Borel set and f−1 is mea-
surable, and we can write it as

Φ := f−1 : ω̃ 7→ (π∗(ω̃), (κn(ω̃))n≥1), (2)

where (κn(ω̃))n≥1 is called the sequence of the marks of ω̃. For a marked point
process λ, λ

(
f((R+)∗ × KN)

)
= 1, therefore, up to a set of measure 0, f is a

bijection. Moreover, we have the following result, from [4, Lemma 6.4.VI]:

9



Proposition 2.3. Let ρ be a probability measure on K. The Poisson process (µ⊗
ρ)∗ is a marked point process over µ∗ and f∗(µ∗ ⊗ ρ⊗N) = (µ⊗ ρ)∗.

We can interpret this result as the fact that if ω̃ ∈ (R+×K)∗ is distributed ac-
cording to the Poisson process of intensity µ⊗ρ, the sequence of marks (κn(ω̃))n≥1

is i.i.d. of law ρ.

2.3 A S(N)-valued cocycle and its action on KN

In Section 2.2, we saw that, assuming that X = R+, a point process on (X ×K)∗

can be represented on X∗ ×KN, via the map introduced in (2):

Φ : (X ×K)∗ −→ X∗ ×KN

ω̃ 7−→ (π∗(ω̃), (κn(ω̃))n≥1)
.

Now we mean to determine the dynamic on X∗ × KN that would correspond to
(T × Id)∗ on (X ×K)∗. To do this, we will need a tool to track how the order of
the points of ω ∈ X∗ changes when T∗ is applied.

The group S(N) is the group of the permutations of N, i.e. the bijections from
N onto itself. Equipped with the metric

d(σ, τ) :=
∑
n∈N

1

2n
1σ(n)6=τ(n),

it is a Polish group, i.e. (S(N), d) is a complete separable metric space and the
map (σ, τ) 7→ σ ◦ τ−1 is continuous. This group acts on KN via the measurable
action

(σ, (κn)n≥1) 7→ (κσ−1(n))n≥1. (3)

We recall that the sequence (tn(ω))n≥1 is the ordered sequence of the points
of ω. To describe the action T∗ on (tn(ω))n≥1, define

Ψ : X∗ −→ S(N),

so that
T (tn(ω)) = tΨ(ω)(n)(T∗ω).

We consider the skew-product define by the cocycle Ψ:

(T∗)Ψ : X∗ ×KN −→ X∗ ×KN

(ω, (κn)n≥1) 7−→ (T∗ω, (κΨ(ω)−1(n))n≥1)
.

10



Then we check that

Φ ◦ (T × Id)∗(ω̃) = (π∗(T × Id)∗ω̃, (κn((T × Id)∗ω̃))n≥1)

= (T∗π∗ω̃, (κΨ(ω)−1(n)(ω̃))n≥1)

= (T∗)Ψ(π∗ω̃, (κn(ω̃))n≥1)

= (T∗)Ψ ◦ Φ(ω̃).

(4)

Combined with Proposition 2.3, this tells us that the extensions

((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗) −→ (X∗, µ∗, T∗),

and
(X∗ ×KN, µ∗ ⊗ ρ⊗N, (T∗)Ψ) −→ (X∗, µ∗, T∗),

are isomorphic. Through this isomorphism, Theorem 2.1 becomes

Theorem 2.4. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system of infinite ergodic index, and K a standard Borel space. Let λ be a (T∗)Ψ-
invariant probability measure onX∗×KN such that λ(·×KN) = µ∗. If (λ, (T∗)Ψ)
is ergodic, then there exists a probability measure ρ onK such that λ = µ∗⊗ρ⊗N.

As an unexpected corollary, we get the following result, which is the De Finetti
theorem written in the language of ergodic theory:

Corollary 2.4.1 (De Finetti, Hewitt-Savage). Let ρ∞ be a S(N)-invariant (under
the action defined by (3)) probability measure on KN and ρ its marginal on the
first coordinate. The action (KN, ρ∞,S(N)) is ergodic if and only if ρ∞ = ρ⊗N.

Proof. If ρ∞ = ρ⊗N, the action is ergodic because the shift transformation is in
the closure of the automorphisms induced by S(N).

Assume that (KN, ρ∞,S(N)) is ergodic. Let (X,µ, T ) be a dynamical system
of infinite ergodic index. Since ρ∞ is S-invariant, it follows that µ∗⊗ρ∞ is (T∗)Ψ-
invariant. Then Theorem 2.4 tells us that the ergodic decomposition of µ∗⊗ ρ∞ is
of the form

µ∗ ⊗ ρ∞ =

∫
Γ

µ∗ ⊗ γ⊗NdP(γ) = µ∗ ⊗
∫

Γ

γ⊗NdP(γ),

so ρ∞ =
∫

Γ
γ⊗NdP(γ). However, each measure γ⊗N is S(N)-invariant, and ρ∞ is

ergodic under S(N). Therefore, there exists γ ∈ Γ such that ρ∞ = γ⊗N.
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2.4 A non-confined Poisson extension

We give here an example of a non-trivial non-confined Poisson extension, to show
that the infinite ergodic index assumption in Theorem 2.2 cannot be removed.
Take X := R, µ the Lebesgue measure on R, and

T : x 7→ x+ 1.

The system (X,µ, T ) is not ergodic and not conservative and its ergodic index is
0, but the Poisson suspension (X∗, µ∗, T∗) is ergodic, since it is Bernoulli. We get
the following:

Proposition 2.5. Let (K, ρ) be a standard probability space. The extension ((X×
K)∗, (µ⊗ ρ)∗, (T × Id)∗)→ (X∗, µ∗, T∗) is not confined.

Proof. We will make use of the setup presented in the previous section for the
study of marked point processes. We make some slight adjustments since now
X = R (instead of R+): define a sequence (tn(ω))n∈Z such that

ω =
∑
n∈Z

δtn(ω),

and
· · · t−1(ω) < t0(ω) < 0 ≤ t1(ω) < t2(ω) · · · ,

and a cocycle
Ψ̃ : X∗ −→ S(Z),

so that
T (tn(ω)) = tΨ̃(ω)(n)(T∗ω).

In our present case, the map Ψ̃ can be described explicitly: denote the shift S :
k 7→ k + 1 and then one can check that

Ψ̃ : ω 7→
{

Id if t0(ω) < −1
S if t0(ω) ≥ −1

.

As in the previous section, we get an isomorphism in between the extensions

((X ×K)∗, (µ⊗ ρ)∗, (T × Id)∗) −→ (X∗, µ∗, T∗),

and
(X∗ ×KZ, µ∗ ⊗ ρ⊗Z, (T∗)Ψ̃) −→ (X∗, µ∗, T∗).
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We prove our proposition by showing that the second extension is not confined.
We need to build a self-joining of µ∗⊗ρ⊗Z. It will be more convenient to describe
this joining as a measure on X∗ × X∗ × KZ × KZ. We start with the marginal
on X∗ ×X∗ which has to be λ(· × · ×KZ ×KZ) = µ∗ ⊗ µ∗, and for (ω1, ω2) ∈
X∗ × X∗, the conditional law λ(ω1,ω2) is as follows. The sequence of marks of
ω1, (κn(ω1))n∈Z is chosen with probability ρ⊗Z. For the choice of κn(ω2), we
distinguish two situations:

• If ω1([tn(ω2), tn+1(ω2)[) = 0, we choose κn(ω2) with law ρ.

• If ω1([tn(ω2), tn+1(ω2)[) ≥ 1, we set

` := min{k ∈ Z | tk(ω1) ∈ [tn(ω2), tn+1(ω2)[},

and then we choose κn(ω2) := κ`(ω1).

The construction of λ is concluded by taking

λ :=

∫
δω1 ⊗ δω2 ⊗ λ(ω1,ω2) d(µ∗ ⊗ µ∗)(ω1, ω2).

Note that our choices for (κn(ω1))n∈Z and (κn(ω2))n∈Z depend only on the relative
positions of the points {tn(ω1)}n∈Z and {tn(ω2)}n∈Z. Since those relative posi-
tions are preserved under application of (T∗×T∗), the measure λ is (T∗)Ψ̃×(T∗)Ψ̃-
invariant (up to a permutation of coordinates).

From our construction, it is clear that λ is not a product measure and that

λ(· ×X∗ × · ×KZ) = µ∗ ⊗ ρ⊗Z.

We are left with checking that λ(X∗ × · × KZ × ·) = µ∗ ⊗ ρ⊗Z. Consider
that ω1, ω2 and (κn(ω2))n<n0 are known and compute the law of κn0(ω2): if
ω1([tn(ω2), tn+1(ω2)[) = 0, it is follows from our construction that the law of
κn0(ω2) is ρ. If ω1([tn(ω2), tn+1(ω2)[) ≥ 1, we have κn(ω2) = κ`(ω1) (see
above for the definition of `). One can check that (κn(ω2))n<n0 is measurable
with respect to ω1, ω2 and (κn(ω1))n<` and κ`(ω1) is independent from ω1, ω2 and
(κn(ω1))n<` and κ`(ω1). So, even with ω1, ω2 and (κn(ω2))n<n0 fixed, the law of
κ`(ω1) is ρ, so the law of κn(ω2) is also ρ.

To sum up, up to a permutation of coordinates, λ is a (T∗)Ψ̃ × (T∗)Ψ̃-invariant
measure on X∗ ×KZ ×X∗ ×KZ, such that

λ(· × · ×X∗ ×KZ) = µ∗ ⊗ ρ⊗Z and λ(X∗ ×KZ × · × ·) = µ∗ ⊗ ρ⊗Z.

13



So it a self-joining of µ∗ ⊗ ρ⊗Z. Moreover, it projects onto µ∗ ⊗ µ∗ without being
equal to the product measure µ∗ ⊗ ρ⊗Z ⊗ µ∗ ⊗ ρ⊗Z. This precisely means that the
extension

(X∗ ×KZ, µ∗ ⊗ ρ⊗Z, (T∗)Ψ̃) −→ (X∗, µ∗, T∗),

is not confined.

3 A Poisson suspension over a compact extension
In this section, we are interested in the Poisson extension a over compact exten-
sion, i.e. over the system Z given by

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

,

for some measurable cocycle ϕ : X → G. Our goal will be to show that

Theorem 3.1. Let X := (X,µ, T ) be a dynamical system of infinite ergodic index.
If the compact extension (X × G, µ ⊗ mG, Tϕ) is also of infinite ergodic index,
then the Poisson extension

((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗)

is confined.

We start with the Sections 3.1 and 3.2, where we introduce some useful notions
and results from the literature. We then prove the main technical step in the proof
of our theorem in Section 3.3. We conclude in Section 3.4 .

3.1 Ergodicity of Cartesian products in spectral theory

We present briefly some results on the ergodicity of Cartesian products of σ-finite
measure preserving dynamical systems.

We start by introducing some classic notions in spectral theory. Let (X,µ, T )
be a σ-finite measure preserving dynamical system. Consider the space L2(X,µ)
and the operator

UT : L2(X,µ) −→ L2(X,µ)
f 7−→ f ◦ T .

14



Denote L2
0(X,µ) ⊂ L2(X,µ) the subspace orthogonal to the space of constant

maps. For f ∈ L2(X,µ), the spectral measure of f , σf , is defined as the measure
on T such that

σ̂f (n) =

∫
X

f Un
T fdµ.

There exists a finite measure σ0
X on T, unique up to equivalence, such that ∀f ∈

L2
0(X,µ), σf � σX and for every finite measure σ such that σ � σX , there exists

f ∈ L2
0(X,µ) such that σ = σf . It is the restricted maximal spectral type of

(X,µ, T ).
We define a L∞-eigenvalue as λ ∈ C such that there exist f ∈ L∞(X,µ) such

that
f ◦ T = λf.

Such a map f is called a L∞-eigenfunction. Denote e(T ) the group of L∞-
eigenvalues of (X,µ, T ), which is a sub-group of T, provided T is conservative.
The notion of L∞-eigenvalues is mainly useful in the infinite measure case. In-
deed, if µ(X) < ∞, we have L∞(X,µ) ⊂ L2(X,µ), so L∞-eigenfunctions are
simply eigenvectors of the operator UT .

We will use the following ergodicity criterion, due to Keane (see [1, Section
2.7]):

Theorem 3.2. Let X := (X,µ, T ) be a conservative and ergodic dynamical sys-
tem and Y := (Y, ν, S) be an ergodic probability measure preserving dynamical
system. The Cartesian product X⊗Y is ergodic if and only if σ0

Y (e(T )) = 0.

We use that criterion to prove

Corollary 3.2.1. Let X := (X,µ, T ) be a conservative and ergodic dynamical
system and k ≥ 1. If X⊗2k is ergodic, the product system

(X,µ, T )⊗k ⊗ (X∗, µ∗, T∗)

is ergodic.

Proof. Let k ≥ 1. Assume that X⊗2k is ergodic. We show that e(T×k) = {1}.
Otherwise, take λ ∈ e(T×k)\{1} and f ∈ L∞(Xk, µ⊗k) the associated eigen-
function. Define the tensor function as

f ⊗ f : Xk ×Xk −→ C
(x1, x2) 7−→ f(x1)f(x2)

.
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We have

f ⊗ f ◦ T×2k = (f ◦ T×k)⊗ (f ◦ T×k) = λλf ⊗ f = f ⊗ f.

Since X⊗2k is ergodic, it yields that f ⊗ f is constant, so that f is constant.
However, this is incompatible with the fact that λ 6= 1. Therefore e(T×k) = {1}.

Moreover, since (X,µ, T ) is ergodic, (X∗, µ∗, T∗) is as well, so σ0
X∗({1}) = 0.

We have shown that σ0
X∗(e(T

×k)) = 0, so Theorem 3.2 tells us that

(X,µ, T )⊗k ⊗ (X∗, µ∗, T∗)

is ergodic.

Remark 3.3. The result from Corollary 3.2.1 should be compared to the following
result from Meyerovitch (see [9, Theorem 1.2]):

(X,µ, T )⊗ (X∗, µ∗, T∗) is ergodic if and only if (X,µ, T ) is ergodic.

This gives the result of Corollary 3.2.1 in the case k = 1, but with a weaker condi-
tion: we need (X,µ, T ) to be ergodic, instead of (X,µ, T )⊗2. We conjecture that
one could extend the result from Meyerovitch and get the conclusion of Corollary
3.2.1 under the weaker assumption that (X,µ, T )⊗k is ergodic.

3.2 Distinguishing points in a Poisson process

The purpose of this section is to study the map

Φ̃k : Xk ×X∗ −→ X∗

(x1, ..., xk, ω) 7−→ δx1 + · · ·+ δxk + ω
.

We view the points of Xk ×X∗ as a Poisson process for which the first k points
are distinguished, so that we can track each of them individually. To avoid any
multiplicity on the right-hand term, we will study this map on a smaller setX(k) ⊂
Xk ×X∗, defined as

X(k) := {(x1, ..., xk, ω) ∈ Xk ×X∗ |x1 < · · · < xk < t1(ω)}.
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From now on, Φk denotes the restriction of Φ̃k to X(k). We start by computing the
measure of X(k), using the fact t1 follows an exponential law of parameter 1:

µ⊗k × µ∗(X(k)) =

∫
X∗

∫
(R+)k

1x1<···<xk<t1(ω)dµ(x1) · · · dµ(xk)dµ
∗(ω)

=

∫
R+

∫
(R+)k

1x1<···<xk<tdµ(x1) · · · dµ(xk)e
−tdt

=

∫
R+

tk

k!
e−tdt = 1,

the last equality being obtain through k successive integrations by parts. We com-
plete this with the following result

Proposition 3.4. Let k ≥ 1. The map Φk sends (µ⊗k ⊗ µ∗) X(k) onto µ∗. There-
fore

Φk : (X(k), (µ⊗k ⊗ µ∗) X(k)) −→ (X∗, µ∗),

is an isomorphism of probability spaces.

Proof. It is clear that Φk is a bijection whose inverse is

ω 7→ (t1(ω), ..., tk(ω), ω − (δt1(ω) + · · ·+ δtk(ω))).

We then need to prove that Φk is measure-preserving. We prove that result
by induction on k. The case k = 1 can be found in [9, Proposition 6.1], but we
give a proof for completeness. Denote Exp the law of an exponential variable of
parameter 1.

To prove that (Φ1)∗(µ⊗ µ∗) X(1) = µ∗, we need to show that, if (x, ω) is
chosen under (µ⊗ µ∗) X(1) , the sequence(

x, t1(ω)− x, (ti+1(ω)− ti(ω))i≥1

)
is i.i.d. of law Exp. First, we know that (ti+1 − ti)i≥1 is i.i.d. of law Exp. It is
also clear that (x, t1 − x) is independent from (ti+1 − ti)i≥1. Therefore, we now
only have to compute the law of (x, t1 − x) under (µ⊗ µ∗) X(1) . Let A, B ⊂ R+

be measurable sets. We have:

µ⊗ µ∗(x < t1, x ∈ A,t1 − x ∈ B) =

∫
A

µ∗(x < t1, t1 − x ∈ B)dµ(x)

=

∫
A

µ∗(x < t1)︸ ︷︷ ︸
=e−x

µ∗(t1 − x ∈ B | t1 > x)︸ ︷︷ ︸
=µ∗(t1∈B)

dµ(x)

=

∫
A

e−xdµ(x)µ∗(t1 ∈ B) = Exp(A) · Exp(B),
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where we use the fact that the law of t1 is Exp, and the loss of memory property
of Exp.

Let k ≥ 1, and assume that the result is true for k. We start by noting that
Φk+1 = Φ1 ◦ (Id× Φk) and use the induction hypothesis to prove that

(Id× Φk)∗(µ
⊗k+1 ⊗ µ∗) X(k+1) = (µ⊗ µ∗) X(1) . (5)

Indeed, for a measurable map, F : X(1) → R, we have∫
X(k+1)

F (x1, δx2 + · · ·+ δk+1 + ω) dµ⊗k+1(x1, ..., xk+1)dµ∗(ω)

=

∫
R+

∫
X(k)

1x1<x2F (x1,
k+1∑
i=2

δxi + ω) dµ⊗k(x2, ..., xk+1)dµ∗(ω)dµ(x1)

=

∫
R+

∫
X∗

1x1<t1(ω)F (x1, ω)dµ∗(ω)dµ(x1)

=

∫
X(1)

Fdµ⊗ µ∗,

where we used the induction hypothesis and the fact that x2 = t1(δx2 + · · · δk+1 +
ω). Therefore (5) is proven. We then combine it with the result for k = 1 to
conclude that

(Φk+1)∗(µ
⊗k+1 ⊗ µ∗) X(k+1) = (Φ1)∗(µ⊗ µ∗) X(1) = µ∗.

We now want to study how Φk matches the dynamics on X(k) and X∗. We
recall that we defined Ψ : (R+)∗ → S(N) so that T (tn(ω)) = tΨ(ω)(n)(T∗ω). We
then iterate it to define

Ψp(ω) := Ψ(T p−1
∗ ω) ◦ · · · ◦Ψ(ω).

Now consider

N (k)(ω) := inf{p ≥ 1 |Ψp(ω)(1) = 1, ...,Ψp(ω)(k) = k}.

This is the first time in which the first k points of ω are back to being the first k
points of T p∗ω and in their original order. If the random time N (k) is almost surely
finite, we can define the automorphism TN

(k) on (X∗, µ∗) by(
TN

(k)

∗

)
(ω) := TN

(k)(ω)
∗ (ω).

We conclude this section with the following result:
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Theorem 3.5. Let X := (X,µ, T ) be a σ-finite measure preserving dynamical
system. Assume that T has infinite ergodic index. Then N (k) is µ∗-almost surely
well defined and Φk is an isomorphism between the systems

(X(k), (µ⊗k ⊗ µ∗) X(k) , (T
×k × T∗) X(k))

and
(X∗, µ∗, TN

(k)

∗ ).

Proof. Let k ≥ 1. Since X = (X,µ, T ) is of infinite ergodic index, the system
X⊗k = (Xk, µ⊗k, T×k) is conservative and ergodic. Since µ∗ is a probability
measure, one can check that the system (Xk × X∗, µ⊗k ⊗ µ∗, T×k × T∗) is also
conservative. Therefore, the induced system

(X(k), (µ⊗k ⊗ µ∗) X(k) , (T
×k × T∗) X(k))

is well defined. Moreover, if M (k) is the first return time in X(k), then M (k) is
(µ⊗k ⊗ µ∗) X(k)-almost surely finite. However, since we have

Φ̃k ◦ (T×k × T∗) = T∗ ◦ Φ̃k, (6)

one can check that on X(k), we have

N (k) = M (k) ◦ Φk. (7)

So, because Proposition 3.4 tells us that (Φk)∗(µ
⊗k ⊗ µ∗) X(k) = µ∗, we deduce

that N (k) is µ∗-almost surely finite. Finally, by combining (6) and (7), one gets

Φk ◦ (T×k × T∗) X(k) = TN
(k)

∗ ◦ Φk.

Since Proposition 3.4 tells us that Φk is a bijection for which (Φk)∗(µ
⊗k ⊗ µ∗) X(k) =

µ∗, we have shown that it yields the desired isomorphism of dynamical sys-
tems.

3.3 Relative unique ergodicity

The main step in proving Theorem 3.1 is the following relative unique ergodicity
result:

Theorem 3.6. Let X := (X,µ, T ) be a dynamical system of infinite ergodic index.
If the compact extension (X × G, µ ⊗ mG, Tϕ) is also of infinite ergodic index,
then the only (Tϕ)∗-invariant measure ρ ∈ P((X × G)∗) such that (π∗)∗ρ = µ∗

is ρ = (µ⊗mG)∗.
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Similarly to what we did in Section 2.3, we represent the Poisson extension
((X×G)∗, (µ⊗mG)∗, (Tϕ)∗)

π∗−→ (X∗, µ∗, T∗) through a Rokhlin cocycle. We do
this using the representation of ((X ×G)∗, (µ⊗mG)∗) as a marked point process
given in Proposition 2.3.

We start by introducing the group GN ×S(N) whose law we define by

((hn)n≥1, τ) · ((gn)n≥1, σ) = ((hσ(n) · gn)n≥1, τ ◦ σ).

This group acts on (GN,mG
⊗N) via the maps

χ(gn)n≥1,σ ((hn)n≥1) :=
(
gσ−1(n) · hσ−1(n)

)
n≥1

.

Then we define the cocycle from X∗ to GN ×S(N) by

ϕ : ω 7→ (ϕ(tn(ω))n≥1,Ψ(ω)).

This cocycle induces the following transformation

(T∗)ϕ : X∗ ×GN −→ X∗ ×GN

(ω, (gn)n≥1) 7−→ (T∗ω, χϕ(ω)((gn)n≥1))
.

Then, for a (Tϕ)∗-invariant measure ρ such that (π∗)∗ρ = µ∗, an adaptation of
the computation (4) show that the map Φ introduced in (2) gives an isomorphism
between the extensions

((X ×G)∗, ρ, (Tϕ)∗)
π∗−→ (X∗, µ∗, T∗),

and
(X∗ ×GN,Φ∗ρ, (T∗)ϕ) −→ (X∗, µ∗, T∗).

Therefore, to prove Theorem 3.6, we need to take a (T∗)ϕ-invariant measure
λ such that λ(· × GN) = µ∗ and show that λ = µ∗ ⊗mG

⊗N. This is what we do
bellow:

Proof of Theorem 3.6. Let λ be a (T∗)ϕ-invariant measure on X∗ × GN such that
λ(· ×GN) = µ∗. Fix k ≥ 1 and set λk as the image of λ via pk, the projection on
X∗ × Gk. The main idea of this proof will be to use Theorem 3.5 to distinguish
the points t1(ω), ..., tk(ω) since they determine the action of (T∗)ϕ on g1, ..., gk
and we mean to then view (t1(ω), g1), ..., (tk(ω), gk) as a compact extension of
t1(ω), ..., tk(ω) to which we can apply Furstenberg’s relative unique ergodicity
Lemma.
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We start our argument by understanding better the dynamics on g1, ..., gk.
Since (X,µ, T ) has infinite ergodic index, Theorem 3.5 tells us that

Ñ (k)(ω, (gn)n≥1) := N (k)(ω)

is λ-almost-surely finite. Now note that, by definition of N (k), we have

pk ◦ (T∗)
Ñ(k)

ϕ (ω,(gn)n≥1)

= (TN
(k)(ω)

∗ ω, ϕ(N(k)(ω))(t1(ω)) · g1, ..., ϕ
(N(k)(ω))(tk(ω)) · gk)

= (TN
(k)(ω)

∗ ω, ϕk(ω) · (g1, ..., gk)),

where we define ϕk as a cocycle taking values in Gk via the formula:

ϕk(ω) := ϕ(N(k)(ω))(t1(ω)), ..., ϕ(N(k)(ω))(tk(ω)),

and
ϕ(p)(x) := ϕ(T p−1x) · · ·ϕ(x).

Therefore λk is invariant under the transformation

(TN
(k)

∗ )ϕk
: X∗ ×Gk −→ X∗ ×Gk

(ω, (g1, ..., gk)) 7−→ ((T∗)
N(k)(ω)ω, ϕk(ω) · (g1, ..., gk))

.

This map yields a compact extension of (T∗)
N(k) , but to apply Furstenberg’s Lemma

(i.e. Lemma 1.3), we still have to prove that

(X∗ ×Gk, µ∗ ⊗m⊗kG , (TN
(k)

∗ )ϕk
) (8)

is ergodic.
We recall that M (k) is defined as the return time on X(k) and that M (k) ◦

Φk = N (k). Then, Theorem 3.5 tells us that (X∗ × Gk, µ∗ ⊗m⊗kG , (TN
(k)

∗ )ϕk
) is

isomorphic to(
X(k) ×Gk,

(
µ⊗k ⊗ µ∗

)
X(k) ⊗m⊗kG ,

(
(T×k × T∗) X(k)

)
ϕ̂k

)
, (9)

where ϕ̂k is the cocycle defined by

ϕ̂k := ϕk ◦ Φk = (ϕ(M(k))(x1), ..., ϕ(M(k))(xk)).

21



However, it is straightforward to check that, up to a permutation of coordinates,
(9) is an induced system of

(Xk ×Gk ×X∗, µ⊗k ⊗m⊗kG ⊗ µ
∗, T×kϕ × T∗),

which can be written as

(X ×G, µ⊗mG, Tϕ)⊗k ⊗ (X∗, µ∗, T∗). (10)

However, this is a factor of

(X ×G, µ⊗mG, Tϕ)⊗k ⊗ ((X ×G)∗, (µ⊗mG)∗, (Tϕ)∗). (11)

But, since (X×G, µ⊗mG, Tϕ) is of infinite ergodic index, we can apply Corollary
3.2.1 which tells us that (11) is ergodic, and therefore (10) is as well. Since an
induced system on an ergodic system is also ergodic, this yields that (8) is ergodic.
In conclusion, Furstenberg’s Lemma implies that λk = µ∗ ⊗m⊗kG .

This being true for every k ≥ 1, it follows that λ = µ∗ ⊗m⊗NG .

3.4 Conclusion of the proof of Theorem 3.1

We now finish the proof of Theorem 3.1. This will be done by combining our rel-
ative unique ergodicity result from the previous section with Theorem 1.4. In our
application of the splitting result (Theorem 1.4), the fact that marginals {νi}i∈J1,nK

are Poisson measures will already be known, and the important part will be the
fact that the associated joining λ is the product joining.

Proof of Theorem 3.1. Let X := (X,µ, T ) be a dynamical system, and ϕ : X →
G a cocycle so that the compact extension Z := (X ×G, µ⊗mG, Tϕ) has infinite
ergodic index.

Let λ be a (Tϕ)∗ × (Tϕ)∗-invariant self-joining of (µ⊗mG)∗ such that

(π∗ × π∗)∗λ = µ∗ ⊗ µ∗. (12)

Since, as mentioned in Section 1.5, (X∗, µ∗, T∗) is weakly mixing, up to replacing
λ with one of its ergodic components, we can assume that the system

((X ×G)∗ × (X ×G)∗, λ, (Tϕ)∗ × (Tϕ)∗),

is ergodic. Now set ρ := Σ∗λ. We then use (12) to compute

(π∗)∗ρ = (π∗)∗Σ∗λ = Σ∗(π∗ × π∗)∗λ = Σ∗(µ
∗ ⊗ µ∗) = (2µ)∗.

22



In other words, (12) means that the projection of ρ onX∗ is the sum of to indepen-
dent Poisson point processes of intensity µ, and the result of this sum is a Poisson
point process of intensity 2µ. Now, since X is rigidity-free and Tϕ has infinite
ergodic index, we can apply Theorem 3.6 to conclude that ρ = (2µ⊗mG)∗.

Using again the fact that Tϕ has infinite ergodic index, we can now deduce
from Theorem 1.4 that λ is the product joining

λ = (µ⊗G)∗ × (µ⊗G)∗.

4 A compact extension of infinite ergodic index
The construction in Theorem 3.1 relies on a compact extension

(X ×G, µ⊗mG, Tϕ),

which is of infinite ergodic index. In this section, we build a compact extension
that has that property, which shows that Theorem 3.1 is not void. We start with
Section 4.1, where we give a criterion for the ergodicity of compact extensions.
Then, in Section 4.2, we choose a suitable system (X,µ, T ): the infinite Chacon
transformation (see [2, Section 2]). Finally, in Section 4.3, we describe our choice
for the cocycle ϕ and prove that the resulting transformation Tϕ is of infinite er-
godic index.

4.1 Ergodic compact extensions

Let X := (X,µ, T ) be a measure preserving dynamical system, G a compact
group and ϕ : X −→ G a cocycle. We mean to study ergodic properties of the
compact extension:

Tϕ : X ×G −→ X ×G
(x, g) 7−→ (Tx, g · ϕ(x))

.

In this section, we prove the following lemma, for which a statement can be found
in [10, Theorem 3] for the finite measure case and in [11, Lemma 1] for the infinite
measure case. We give a proof inspired from [10] that works for both cases.
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Lemma 4.1. Let X := (X,µ, T ) be an ergodic measure preserving dynamical
system where µ is a finite or σ-finite infinite measure. Assume that G is an abelian
group. The compact extension given by Z = (X × G, µ ⊗ mG, Tϕ) is ergodic
if and only if, for every character χ ∈ Ĝ \{1}, there is no measurable function
f : X −→ T such that

f(Tx)

f(x)
= χ(ϕ(x)) almost everywhere. (13)

If there is a measurable map f so that (13) holds, we say that χ ◦ ϕ is a co-
boundary. Therefore, Z is ergodic if there is no character χ ∈ Ĝ\{1} for which
χ ◦ ϕ is a co-boundary. In our proof, we will use results on Fourier analysis on
locally compact abelian groups from [12]. This is why we need to assume that G
is abelian.

Proof. Assume there is a character χ 6= 1 and a map f : X −→ T that satisfies
(13). Then define

h(x, g) := f(x) · χ(g)−1.

One can simply check that

h ◦ Tϕ(x, g) = h(Tx, g · ϕ(x))

= f(Tx) · χ(g · ϕ(x))−1

= f(x) · χ(ϕ(x)) · χ(ϕ(x))−1 · χ(g)−1

= f(x) · χ(g)−1 = h(x, g).

Since χ 6= 1, h is not constant, and therefore Z is not ergodic.
Conversely assume that there exists h ∈ L∞(Z) non constant such that h ◦

Tϕ = h. For χ ∈ Ĝ, define

fχ(x) :=

∫
G

h(x, g)χ(g)dmG(g).

We know that this integral is well defined for almost every x because h ∈ L∞(Z).
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Then we have, almost surely:

fχ(Tx) =

∫
G

h(Tx, g)χ(g)dmG(g)

=

∫
G

h(Tx, g · ϕ(x))χ(g · ϕ(x))dmG(g)

=

∫
G

h(x, g)χ(g) · χ(ϕ(x))dmG(g) = χ(ϕ(x))fχ(x).

Now we simply need to find χ 6= 1 such that fχ is not almost everywhere equal to
0. First, notice that f1 is T invariant, and therefore constant. Take c ∈ C such that
f1 ≡ c.

Assume that for every χ 6= 1, fχ(x) = 0 for almost every x. Since G is
compact, [12, Theorem 1.2.5] tells us that Ĝ is discrete, and therefore countable.
From that, we deduce that for almost every x, we have

∀χ 6= 1, fχ(x) = 0.

Therefore, using the fact that, for χ 6= 1,
∫
G
χdmG = 0 and f1 ≡ c, we get that,

for almost every x:

∀χ ∈ Ĝ,
∫
G

(h(x, g)− c)χ(g)dmG(g) = 0.

Then, using a result from [12, Section 1.7.3], we know that for those x, the map
g 7→ h(x, g)−c is almost surely 0. Therefore, for almost every (x, g), h(x, g) = c.
But we assumed that h was not constant, so this is absurd.

This means that there exists χ ∈ Ĝ \{1} such that µ({fχ 6= 0}) > 0. Since
the set {fχ 6= 0} is T invariant, this yields that µ({fχ = 0}) = 0. Finally, define
f := fχ/|fχ|, which takes its values in T and satisfies (13).

4.2 Description of the infinite Chacon transformation

Let X := (X,µ, T ) be the system given by the infinite Chacon transformation
defined in [2, Section 2]. We chose this transformation because it is known that
it has an infinite ergodic index (see [2, Theorem 2.2]), and because the rank one
structure is convenient to define a suitable cocycle in Section 4.3. Other infinite
measure preserving rank one transformations could be used here. For example
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the nearly finite Chacon transformation introduced in [6] has all the properties we
require in this work. All the following constructions and proofs could be applied
to that transformation.

As any rank one transformation, the infinite Chacon transformation can be
defined as an increasing union of towers (Tn)n≥1. The tower Tn of order n, is
composed of its levels {E(1)

n , ..., E
(hn)
n } so that

Tn =
hn⊔
k=1

E(k)
n .

We say that hn is the height of Tn. The transformation T acts on Tn so that, for
k ∈ J1, hn − 1K, we have

TE(k)
n = E(k+1)

n .

All the levels of Tn have same measure under µ, and we denote it by µn :=

µ(E
(k)
n ).
The construction of the sequence (Tn)n≥1 is done inductively. It will be done

by taking intervals of R+ to be the levels of our towers. Start by taking the interval
[0, 1[ to be T1. Now assume that the tower Tn has been built. The construction of
Tn+1 goes as follows.

Decompose Tn into three disjoint towers of equal measure Tn = T 1
n tT 2

n tT 3
n .

Specifically, split each level of Tn into three intervals of length µn/3, then put the
left-most interval in T 1

n , the middle one in T 2
n and the right one in T 3

n . We will
call spacers a collection of intervals of length µn/3, disjoint from Tn. We put
a spacer on top of T 2

n and 3hn + 1 spacers on top of T 3
n , and, once the spacers

are in place, we stack T 1
n , T 2

n and T 3
n on top of each other, which yields Tn+1.

Therefore Tn+1 is a tower of height 2(3hn + 1) whose levels are of measure µn/3,
which means that µ(Tn+1) ≥ 2µ(Tn). Finally, for k ∈ J1, hn+1 − 1K, define T on
E

(k)
n+1 as the translation that sends E(k)

n+1 to E(k+1)
n+1 (which is possible because they

are both intervals of the same length). The transformation is not yet defined on
E

(hn+1)
n , that will be done in the next step of the construction.

We end the construction of (X,µ, T ) by setting X :=
⋃
n≥1 Tn . Since

µ(Tn+1) ≥ 2µ(Tn), we have µ(X) =∞.

4.3 Construction of the extension

Take X := (X,µ, T ) the system given by the infinite Chacon transformation in-
troduced in Section 4.2.
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Figure 1: Construction of the infinite Chacon transformation

Let n0 ∈ N and i0 ∈ J1, hn0K. Set A := E
(i0)
n0 , and consider the cocycle taking

its values in Z/2Z (identified with {0, 1}):

ϕ := 1A.

We study the system Z given on (Z, ρ) := (X × {0, 1}, µ⊗B(1/2, 1/2)) by the
transformation

Tϕ : X × {0, 1} −→ X × {0, 1}
(x, ε) 7−→ (Tx, ε+ ϕ(x) mod 2)

.

This is a compact extension of X.

Remark 4.2. By a simple induction, one can check that, for all n ≥ n0, there are
3n−n0 levels in Tn that belong to A.
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Theorem 4.3. The system Z = (X ×{0, 1}, ρ, Tϕ) is of infinite ergodic index, i.e.
for every p ≥ 1, Z⊗p is a conservative and ergodic system.

It is known from the work in [2, Theorem 2.2] that X is of infinite ergodic
index, therefore, our goal is to show that Z is as well. Let p ≥ 1. Then X⊗p is a
conservative and ergodic system, and Z⊗p is the compact extension given by the
cocycle

ϕ(p) : Xp −→ {0, 1}p
(x1, ..., xp) 7→ (ϕ(x1), ..., ϕ(xp)).

The characters of {0, 1} (identified to Z/2Z) are

χ1 := 1 and χ−1 := (−1)•.

Therefore, the characters of {0, 1}p will be the tensor products of the form⊗
i/∈I

χ1 ⊗
⊗
i∈I

χ−1 =
⊗
i∈I

(−1)•,

for I ⊂ J1, pK. The character is then entirely determined by the choice of the set
I . Then, Lemma 4.1 tells us that Z⊗p is non-ergodic if and only if there exist
I ⊂ J1, pK with I 6= ∅ and a map f : Xp −→ {±1} such that

f(Tx1, ..., Txp)

f(x1, ..., xp)
= (−1)

∑
i∈I ϕ(xi) almost everywhere. (14)

Proposition 4.5 and Corollary 4.6.1 will show that such functions cannot exist,
which will complete the proof of Theorem 4.3.

We now turn our attention to the proofs of Proposition 4.5 and Corollary 4.6.1.
We start by giving some setup common to both of those results, and we will then
conclude each proof separately in Sections 4.3.1 and 4.3.2.

Denote νp := µ⊗p. We defineHp
n := Tn× · · ·×Tn. We can decomposeHp

n as

Hp
n =

hn⊔
k1=1

· · ·
hn⊔
kp=1

E(k1)
n × · · · × E(kp)

n .

This gives a filtration on X × · · · ×X:

Fn := σ
(
{E(k1)

n × · · · × E(kp)
n }k1,...,kp∈J1,hnK, (Hp

n)c
)
.

Each Fn is not a σ-finite σ-algebra, because µ((Hp
n)c) = ∞. So the conditional

expectation E[· |Fn] is not well defined. However, if we fix N ∈ N and consider

28



the probability space (Hp
N ,

1
νp(Hp

N )
νp(·∩Hp

N)), for every n ≥ N , Fn yields a finite
partition ofHp

N . Moreover, we can compute that, for any measurable function f :

EHp
N

[f |Fn] =
1

µpn

∫
E

(k1)
n ×···×E(kp)

n

fdνp. (15)

The important thing to note is that the right-hand term does not depend on N .
Therefore we define the following, for f : Xp −→ R:

E[f |Fn] :=

{
1
µpn

∫
E

(k1)
n ×···×E(kp)

n
fdνp if (x1, ..., xp) ∈ E(k1)

n × · · · × E(kp)
n

0 if (x1, ..., xp) /∈ Hp
n

.

Despite our choice of notation, this is not a true conditional expectation. However,
since we have (15), we can conclude, using the fact that Xp =

⋃
N≥1H

p
N and that∨

n≥1 Fn separates the points onXp, that by the martingale convergence theorem,
we have

E[f |Fn] −→
n→∞

f almost everywhere.

Before we present the remaining details of the proof, we give a technical lemma:

Lemma 4.4. Let p ≥ 1. Let i1, ..., ip ∈ {1, 2, 3}. For almost every (x1, ..., xp) ∈
Xp, for every M ≥ 1, there exits n ≥M such that (x1, ..., xp) ∈ T i1n × · · · × T

ip
n .

Proof. We recall that Hp
n := Tn × · · · × Tn and νp := µ⊗p. Let M ≥ 1. Take

M ′ ≥M , and note that

νp
(
∀n ≥M,(x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

≤ νp
(
∀n ∈ JM,M ′K, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)
.

A straightforward induction on M ′ shows that

νp
(
∀n ∈ JM,M ′K, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

=

(
3p − 1

3p

)(M ′−M+1)

νp(Hp
M) −→

M ′→∞
0.

Therefore, we have

νp
(
∀n ≥M, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

= 0,

which implies

νp
(
∃M ≥ 1,∀n ≥M, (x1, ..., xp) ∈ Hp

n\(T i1n × · · · × T ipn )
)

= 0.

Combining this with the fact that Xp =
⋃
n≥1Hp

n ends our proof.
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4.3.1 If #I is odd

Let us first give a rough sketch of the argument to prove that we cannot find f
satisfying (14) when #I is odd. For such a function f , we study the evolution
of its values along the orbit of a point (x1, ..., xp). By (14), every time some
coordinate of index i ∈ I goes through A, it causes a change of sign for f . Now,
if we choose n so that all the {xi}i∈J1,pK start in T 1

n , to avoid hitting the spacers,
after hn applications of T ×· · ·×T , each coordinate is then back in the level from
which it started and its orbit has gone through each level of Tn exactly once. But
we know from Remark 4.2 that each tower Tn has 3n−n0 levels that are subsets of
A. So, on the piece of the orbit that we consider, the sign of f changes #I · 3n−n0

times, and since #I is odd, this means that the sign of f changes. But, since each
xi is back on the level from which it started, if f is close enough to being constant
on cells of the form E

(k1)
n × · · · ×E(kp)

n , this yields a contradiction. We detail this
argument in the following proposition:

Proposition 4.5. Let I ⊂ J1, pK such that #I is odd. There is no measurable map
f : Xp −→ {±1} that satisfies (14).

Proof. Suppose by contradiction that there exists f : Xp −→ {±1} that satisfies
(14). Take δ > 0 and (x1, ..., xp) ∈ Xp. Up to a set of measure 0, we can assume
that there exists N ≥ 1 such that ∀n ≥ N , we have

|E[f |Fn](x1, ..., xp)− f(x1, ..., xp)| ≤ δ. (16)

We know from Lemma 4.4, that, up to another set of measure 0, we can assume
that there is n ≥ N such that

(x1, ..., xp) ∈ T 1
n × · · · × T 1

n .

Let (k1, ..., kp) such that for i ∈ J1, pK, xi ∈ E
(ki)
n . Using the definition of

E[f |Fn], we denote E := E
(k1)
n × · · · × E(kp)

n , x := (x1, ..., xp) and compute

|E[f |Fn](x)− f(x)| =
∣∣∣∣ 1

νp(E)

∫
E

fdνp − f(x)

∣∣∣∣
=

∣∣∣∣f(x)
νp(E ∩ {f = f(x)})− νp(E ∩ {f = −f(x)})

νp(E)
− f(x)

∣∣∣∣
=

∣∣∣∣νp(E)− νp(E ∩ {f = −f(x)})− νp(E ∩ {f = −f(x)})
νp(E)

− 1

∣∣∣∣
= 2

νp(E ∩ {f 6= f(x)})
νp(E)

,
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where we use the facts that f takes only two possible values and |f | = 1. This
shows that (16) implies

νp((E
(k1)
n × · · · × E(kp)

n ) ∩ {f 6= f(x1, ..., xp)}) ≤
δ

2
µpn. (17)

Define
B := (E(k1)

n × · · · × E(kp)
n ) ∩ (T 1

n × · · · × T 1
n ),

and
C := (E(k1)

n × · · · × E(kp)
n ) ∩ (T 2

n × · · · × T 2
n ).

Since there is no spacer on top of T 1
n , we get that (T×· · ·×T )hnB = C. However,

since #I is odd, for any (x′1, .., x
′
p) ∈ B, Remark 4.2 and (14) imply that

f(T hnx′1, ..., T
hnx′p) = (−1)#I·3n−n0f(x′1, ..., x

′
p) = −f(x′1, ..., x

′
p).

Therefore

νp(C ∩ {f = −f(x1, ..., xp)}) = νp(B ∩ {f = f(x1, ..., xp)})

≥ νp(B)− δ

2
µpn.

But, by construction, νp(B) = µpn/3
p. So

νp(C ∩ {f = −f(x1, ..., xp)}) ≥
µpn
3p
− δ

2
µpn

=

(
1

3p
− δ

2

)
µpn >

δ

2
µpn,

if δ < 1/3p. Since C ⊂ E
(k1)
n × · · · × E

(kp)
n , combined with (17), this implies

that f(x1, ..., xp) = −f(x1, ..., xp). However, by definition, f 6= 0, so this is
absurd.

4.3.2 If #I is even

If #I is even, the argument given above no longer works: when the orbits of
all the {xi}i∈J1,pK go through the levels of Tn, it causes an even number of sign
changes for f , which means that f remains unchanged. Here we need to make use
of the placement of the spacers in the construction of T . We will fix i0 ∈ I and
choose n so that all the points {xi}i 6=i0 start in T 2

n so that they can hit the spacer.
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On the other hand, the choice of n enables us to assume that xi0 will start in T 1
n

and its orbit can go through all the levels of Tn without hitting a spacer. Therefore,
after hn+ 1 applications of T ×· · ·×T , all the coordinates of index i 6= i0 will be
back in the level from which they started, but xi0 will be one level higher, which
will yield the equation we get in Proposition 4.6. Then applying our reasoning
from the odd case will give a contradiction, as stated in Corollary 4.6.1.

Let us show the following:

Proposition 4.6. Let I ⊂ J1, pK such that I 6= ∅ and #I is even. Assume that
there exists f : Xp −→ {±1} that satisfies (14). Then, for ever i ∈ I , we have:

f(x1, ..., Txi, ..., xp)

f(x1, ..., xp)
= (−1)ϕ(xi) almost everywhere. (18)

Proof. Up to a permutation of coordinates, we can assume that 1 ∈ I and deal
with the case i = 1. Define also T̃n := Tn ∩ (X\E(hn)

n ), i.e. we get T̃n by
removing the top level from Tn.

Let (x1, ..., xp) ∈ Xp. Take a small δ > 0. Up to a set of measure 0, we can
assume that there exists N ≥ 1 such that ∀n ≥ N , we have

|E[f |Fn](x1, ..., xp)− f(x1, ..., xp)| ≤ δ,

|E[f |Fn](Tx1, ..., xp)− f(Tx1, ..., xp)| ≤ δ.
(19)

Also note that in the construction of a tower, the top level is obtained with a
spacer, so if x1 ∈ Tm, then for every n > m, x1 ∈ Tn\E(hn)

n = T̃n. Since
X =

⋃
n≥1 Tn, this means that if N is large enough, we can also assume that for

every n ≥ N , x1 ∈ T̃n. Finally, using Lemma 4.4, we know that up to another set
of measure zero, we can find n ≥ N for which (x1, ..., xp) ∈ T 1

n ×T 2
n ×· · ·×T 2

n .
Set k1, ..., kp such that xi ∈ E(ki)

n for every i ∈ J1, pK. The fact that x1 ∈ T̃n
implies that k1 ≤ hn − 1. The same computation that gave (17) shows that (19)
implies

νp
(
(E(k1)

n × · · · × E(kp)
n ) ∩ {f 6= f(x1, ..., xp)}

)
≤ δ

2
µpn, (20)

and

νp
(
(E(k1+1)

n × E(k2)
n × · · · × E(kp)

n ) ∩ {f 6= f(Tx1, ..., xp)}
)
≤ δ

2
µpn. (21)
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Denote
B := (E(k1)

n × · · · × E(kp)
n ) ∩ (T 1

n × T 2
n × · · · × T 2

n )

and

C := (E(k1+1)
n × E(k2)

n × · · · × E(kp)
n ) ∩ (T 2

n × T 3
n × · · · × T 3

n ).

One can check that, because there is a spacer on top of T 2
n and no spacer on top

of T 1
n , we get

(T × · · · × T )hn+1B = C.

However, using the fact that B ⊂ T̃ 1
n × T 2

n × · · · × T 2
n , we can track the times

f changes sign between B and C. The orbits of the {xi}i 6=1 go through each
level of Tn, therefore contributing (#I − 1)3n−n0 sign changes. The orbit of x1

goes through every level of Tn after hn applications of T , contributing 3n−n0 sign
changes, and one additional sign change from the hn + 1-th application if E(k1)

n ⊂
A, or, equivalently, if ϕ(x1) = 1. This means that for every (x′1, ..., x

′
p) ∈ B, we

have

f(T hn+1x′1, ..., T
hn+1x′p) = (−1)

#I3n−n0+1
E
(k1)
n ⊂Af(x′1, ..., x

′
p)

= (−1)ϕ(x1)f(x′1, ..., x
′
p) because #I is even.

So, we have

νp(C ∩ {f =(−1)ϕ(x1)f(x1, ..., xp)}) = νp(B ∩ {f = f(x1, ..., xp)})
= νp(B)− νp(B ∩ {f 6= f(x1, ..., xp)})
≥ νp(B)− νp

(
(E(k1)

n × · · · × E(kp)
n ) ∩ {f 6= f(x1, ..., xp)}

)
≥ νp(B)− δ

2
µpn, because of (20).

Moreover, νp(B) = µpn/3
p, so

νp
(
(Ek1+1)

n × · · · × E(kp)
n )∩{f = (−1)ϕ(x1)f(x1, ..., xp)}

)
≥ νp(C ∩ {f = (−1)ϕ(x1)f(x1, ..., xp)})

≥
(

1

3p
− δ

2

)
µpn >

δ

2
µpn,

if δ is small enough (δ < 1/3p). However, this is only compatible with (21) if

(−1)ϕ(x1)f(x1, ..., xp) = f(Tx1, ..., xp).
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Corollary 4.6.1. Let I ⊂ J1, pK such that I 6= ∅ and #I is even. There is no
measurable map f : Xp −→ {±1} that satisfies (14).

Proof. Assume that there is a measurable map f : Xp −→ {±1} that satis-
fies (14). Up to a permutation of coordinates, we can assume that 1 ∈ I . Fix
(x2, ..., xp) ∈ Xp−1. Up to a set of measure 0 in our choice of (x2, .., xp), we
know from Proposition 4.6 that the map g(x2,...,xp) : x1 7→ f(x1, ..., xp) satisfies

g(x2,...,xp)(Tx1)

g(x2,...,xp)(x1)
= (−1)ϕ(x1) almost everywhere.

However, Proposition 4.5 tells us that such a map cannot exist.

Remark 4.7. Now that the proof of Theorem 4.3 is complete, we have an ex-
ample of compact extension of an infinite measure preserving system that is of
infinite ergodic index. But we only proved the infinite ergodic index of a specific
extension, and we wonder if more general results can be found. In particular, a
significant difference between finite and infinite ergodic theory is the fact that for
probability preserving systems, an ergodic index greater or equal to 2 is automat-
ically infinite. This is not true in the infinite measure case, but we could consider
an intermediate situation: take an extension Z

π−→ X of σ-finite infinite measure
systems and assume that X has an infinite ergodic index. Is it possible that Z have
a finite ergodic index greater or equal to 2 ? In our example, proving that the er-
godic index is at least 2 contain exactly as much difficulty as proving it is infinite,
therefore suggesting that the answer could be negative.
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