A 9-dimensional family of K3 surfaces with finite dimensional motive - Archive ouverte HAL
Article Dans Une Revue Rendiconti del Circolo Matematico di Palermo Année : 2023

A 9-dimensional family of K3 surfaces with finite dimensional motive

Robert Laterveer

Résumé

Let S be a K3 surface obtained as triple cover of a quadric branched along a genus 4 curve. Using the relation with cubic fourfolds, we show that S has finite dimensional motive, in the sense of Kimura. We also establish the Kuga-Satake Hodge conjecture for S, as well as Voisin'conjecture concerning zero-cycles. As a consequence, we obtain Kimura finite dimensionality, the Kuga-Sataka Hodge conjecture, and Voisin's conjecture for 2 (9-dimensional) irreducible components of the moduli space of K3 surfaces with an order 3 non-symplectic automorphism.
Fichier principal
Vignette du fichier
9dimfamK3.pdf (254.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04505980 , version 1 (15-03-2024)

Identifiants

Citer

Michele Bolognesi, Robert Laterveer. A 9-dimensional family of K3 surfaces with finite dimensional motive. Rendiconti del Circolo Matematico di Palermo, 2023, 73 (7), pp.2313-2331. ⟨10.1007/s12215-024-01036-0⟩. ⟨hal-04505980⟩
45 Consultations
28 Téléchargements

Altmetric

Partager

More