A 9-dimensional family of K3 surfaces with finite dimensional motive
Résumé
Let S be a K3 surface obtained as triple cover of a quadric branched along a genus 4 curve. Using the relation with cubic fourfolds, we show that S has finite dimensional motive, in the sense of Kimura. We also establish the Kuga-Satake Hodge conjecture for S, as well as Voisin'conjecture concerning zero-cycles. As a consequence, we obtain Kimura finite dimensionality, the Kuga-Sataka Hodge conjecture, and Voisin's conjecture for 2 (9-dimensional) irreducible components of the moduli space of K3 surfaces with an order 3 non-symplectic automorphism.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|