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A 9-DIMENSIONAL FAMILY OF K3 SURFACES WITH FINITE-DIMENSIONAL

MOTIVE

MICHELE BOLOGNESI AND ROBERT LATERVEER

ABSTRACT. Let S be a K3 surface obtained as triple cover of a quadric branched along a genus

4 curve. Using the relation with cubic fourfolds, we show that S has finite-dimensional mo-

tive, in the sense of Kimura. We also establish the Kuga–Satake Hodge conjecture for S, as

well as Voisin’s conjecture concerning zero-cycles. As a consequence, we obtain Kimura finite-

dimensionality, the Kuga–Satake Hodge conjecture, and Voisin’s conjecture for 2 (9-dimensional)

irreducible components of the moduli space of K3 surfaces with an order 3 non-symplectic auto-

morphism.

1. INTRODUCTION

The interplay between cubic fourfolds and K3 surfaces has since long been an important source

of new, beautiful geometric constructions and results. Many crucial conjectures (e.g. [32]) turn

around the relations between these objects, and most interesting invariants of the one are related

to those of the other ([22], [6]). However, heuristically speaking, the stream of information has

almost always been flowing from the K3 side to the cubic fourfold side. This is quite natural,

since somehow K3 surfaces have been an important object of research for longer than cubic

fourfolds, and are in many respects better understood.

In this paper we reverse a bit the perspective: by using some recent results about the motives

of cyclic cubic fourfolds we obtain a proof of the finite-dimensionality of the motive of certain

K3 surfaces. Indeed, the goal of this paper is to show the following theorem.

Theorem (=Theorem 3.1). Let S ⊂ P4 be a K3 surface defined as a smooth complete intersection

with equations {
f(x0, . . . , x3) = 0

g(x0, . . . , x3) + x3
4 = 0 ,

where f and g are homogeneous polynomials of degree 2 resp. 3. Then S has finite-dimensional

motive, in the sense of Kimura [28].

To prove this, we use in a substantial way a nice result of Boissière-Heckel-Sarti, who show

that certain cuspidal cyclic cubic fourfolds have a Fano variety of lines F that is singular exactly

along a (2, 3)-complete intersection S as in Theorem 3.1. Moreover, the blow-up of F along S is

Key words and phrases. Algebraic cycles, Chow group, motive, Kimura–O’Sullivan finite-dimensionality, Kuga–

Satake correspondence, K3 surface, cubic fourfold.
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smooth and isomorphic to the Hilbert scheme S [2]. This allows us to use some motivic technical

results and extend the finite-dimensionality of the motive of cyclic cubic fourfolds (known thanks

to the work of the second named author [39]) to the motive of our family of degree 6 K3 surfaces.

In a similar vein, we establish the Kuga–Satake Hodge conjecture for these K3 surfaces:

Theorem (=Theorem 4.4). Let S be a K3 surface as in Theorem 3.1, and let A be its associated

Kuga–Satake variety. The injection

H2(S,Q) →֒ H2(A× A,Q)

is induced by a cycle on S × A× A.

This relies on the relation with cyclic cubic fourfolds, combined with the fact that the Kuga–

Satake Hodge conjecture is known for cyclic cubic fourfolds [18].

Combining Theorems 3.1 and 4.4, we obtain the verification of an old conjecture of Voisin

[59] for these K3 surfaces:

Theorem (=Theorem 5.3). Let S be a K3 surface as in Theorem 3.1. For any two degree zero

0-cycles a, b ∈ A2
hom(S), there is equality

a× b = b× a in A4(S × S) .

Surfaces S as in Theorem 3.1 form a 9-dimensional family. Thanks to work of Artebani–

Sarti [1], this family constitutes a Zariski open subset of an irreducible component of the moduli

space of K3 surfaces with an order 3 non-symplectic automorphism. Using this, we can deduce

the following:

Corollary (cf. Section 6). Let S be a K3 surface with an order 3 non-symplectic automorphism

σ. Assume that the fixed locus of σ contains a curve. Then S has finite-dimensional motive, in

the sense of Kimura [28]. Moreover, the Kuga–Satake Hodge conjecture and Voisin’s conjecture

are true for S.

(Unfortunately, we have not been able to get rid of the assumption on the fixed locus; cf. Re-

mark 6.7 below.) We observe that this corollary is not a rephrasing of the preceding result, since

the sextic K3 surfaces described so far describe only (the generic) elements of one component of

the moduli space. We show that the Corollary holds also for a second component, whose general

element is the Jacobian elliptic fibration of an element of the first component.

Finally, let us mention the following remarkable consequence of Kimura finite-dimensionality:

Corollary. Let S be as in Corollary 6.1, and let X = S [m] be the Hilbert scheme of length m

0-dimensional subschemes of S. Then the Beauville–Voisin conjecture is true for X , i.e. the

Q-subalgebra

R∗(X) :=
〈
A1(X), cj(X)

〉
⊂ A∗(X)

generated by divisors and Chern classes of the tangent bundle of X injects into cohomology.

This follows from work of Yin [63], cf. Theorem 2.4 below.
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Conventions. In this article, the word variety will refer to a reduced irreducible scheme of finite

type over C. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we will denote by Aj(Y ) the Chow group

of j-dimensional cycles on Y with Q-coefficients; for Y smooth of dimension n the notations

Aj(Y ) and An−j(Y ) are used interchangeably. The notation A
j
hom(Y ) will be used to indicate

the subgroup of homologically trivial cycles. For a morphism f : X → Y , we will write Γf ∈
A∗(X × Y ) for the graph of f .

The contravariant category of Chow motives (i.e., pure motives with respect to rational equiv-

alence as in [52], [46]) will be denoted Mrat.

2. PRELIMINARIES

2.1. Finite-dimensionality. There are plenty of good references [28], [26], [46] for the defini-

tion of finite–dimensional motive. A crucial property of varieties that have finite-dimensional

motive is certainly the nilpotence theorem.

Theorem 2.1. (Kimura [28]) Let X be a smooth projective variety of dimension n with finite

dimensional motive. Let Γ ∈ An(X × X) be a numerically trivial correspondence. Then there

exists m ∈ N such that

Γ◦m = 0 ∈ An(X ×X).

More precisely, the nilpotence property for all the powers of X could even be used as an

alternative definition of finite-dimensionality for a motive (see e.g. Jannsen [26, Corollary 3.9]).

Kimura has conjectured that all projective variety has finite dimensional motive [28], but this is

of course far from being proved. Nevertheless there exists a bunch of interesting examples.

Remark 2.2. The following varieties are known to have a finite-dimensional motive:

(1) varieties that are dominated by products of curves [28], and varieties of dimension ≤ 3
rationally dominated by products of curves [57, Example 3.15] (in particular, the K3

surfaces studied in [48] and the K3 surfaces in [24]);

(2) K3 surfaces with Picard number 19 or 20 [50];

(3) K3 surfaces obtained as complete intersections of 3 diagonal quadrics in P5 [34];

(4) surfaces not of general type with vanishing geometric genus [21, Theorem 2.11];

(5) many examples of surfaces of general type with pg = 0 [51];

(6) Hilbert schemes of surfaces known to have finite-dimensional motive [9];

(7) Fano varieties of lines of smooth cubic threefolds, and Fano varieties of lines of smooth

cubic fivefolds [37];

(8) generalized Kummer varieties [62, Remark 2.9];

(9) 3-folds with nef tangent bundle [57, Example 3.16], and certain 3-folds of general type

[58, Section 8];

(10) varieties X with Abel-Jacobi trivial Chow groups (i.e. Ak
AJ(X) = 0 for all k) [55,

Theorem 4];

(11) products of varieties with finite-dimensional motive [28].
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Remark 2.3. It is worth pointing out that so far, all the examples of finite-dimensional Chow

motives happen to be of abelian type. This is the tensor subcategory generated by Chow motives

of curves. On the other hand, many very important examples do not lie inside this subcategory,

e.g. the motive of a general hypersurface in P3 [10, Section 7].

For K3 surfaces, finite-dimensionality has a remarkable consequence:

Theorem 2.4 (Yin [63]). Let S be a K3 surface, and assume S has finite-dimensional motive.

Then the Beauville–Voisin conjecture is true for the Hilbert schemes X := S [m] for all m ∈ N,

i.e. the Q-subalgebra

R∗(X) :=
〈
A1(X), cj(X)

〉
⊂ A∗(X)

generated by divisors and Chern classes of the tangent bundle of X injects into cohomology.

Proof. This is [63, Corollary]. �

2.2. K3 surfaces with an order 3 non-symplectic automorphism.

Notation 2.5. As in [1, Section 5], let Mn,k denote the moduli space of K3 surfaces S with an

order 3 non-symplectic automorphism σ such that the fixed locus of σ consists of n points and k

irreducible curves.

Theorem 2.6. (Artebani–Sarti [1]) The moduli space of K3 surfaces with an order 3 non-

symplectic automorphism has 3 irreducible components (of dimension 9, 9 and 6), which are

the closures of

M0,1 , M0,2 , M3,0 .

Proof. This is [1, Theorem 5.6]. �

One has explicit descriptions of the various Mn,k; in particular, M0,1 consists of the surfaces

that are of interest to us:

Proposition 2.7. (Artebani–Sarti [1]) Any surface S ∈ M0,1 is isomorphic to a complete inter-

section in P4 of the form {
f(x0, . . . , x3) = 0

g(x0, . . . , x3) + x3
4 = 0 ,

where f and g are homogeneous polynomials of degree 2 resp. 3.

Conversely, the generic complete intersection of this form is in M0,1.

Proof. This is part of [1, Proposition 4.7]. �

Remark 2.8. The K3 surfaces in M0,1 admit an alternative decription as triple cover of a

quadric branched along a genus 4 curve [1, Remark 4.8]. Conversely, any triple cover of a

quadric branched along a (smooth) genus 4 curve is in M0,1 [30, Theorem 1]. Very recently, a

new description of the component M3,0 has been given in [44].

There is a nice relation between the moduli spaces M0,1 and M0,2:

Proposition 2.9. (Kondo [30]) Any surface in M0,1 admits an elliptic fibration. The general

surface S ∈ M0,2 is the Jacobian elliptic fibration associated to some S ′ ∈ M0,1.

Proof. This is contained in [30, Section 4]. �
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2.3. Cuspidal cyclic cubic fourfolds and K3 surfaces.

Theorem 2.10 (Boissière–Heckel–Sarti [8]). Let Y ⊂ P5 be a cuspidal cyclic cubic fourfold, i.e.

a cubic defined by an equation

x0f(x1, . . . , x4) + g(x1, . . . , x4) + x3
5 = 0 ,

where f and g are homogeneous of degree 2 resp. 3. Assume that f and g are sufficiently

general. Then the Fano variety of lines F = F (Y ) has transversal A2-singularities along a

surface S ⊂ F which is isomorphic to the smooth complete intersection in H0 := {x0 = 0} ∼= P4

given by equations {
f(x1, . . . , x4) = 0

g(x1, . . . , x4) + x3
5 = 0 .

Moreover, the blow-up F̃ → F with center S is a resolution of singularities, and F̃ is isomorphic

to the Hilbert scheme S [2].

Proof. This is part of [8, Theorem 4.1]. Recall that an automorphism of a cubic fourfold X is

said to be symplectic if the induced automorphism on H4(X,Z) acts trivially on H3,1(X). We

note that the cubic Y has an order 3 non-symplectic automorphism (defined by multiplying x5

with a cubic root of unity). This induces an order 3 non-symplectic automorphism of F , and

S ⊂ F is the fixed locus of this automorphism. The generality assumptions guarantee that S is

non-singular, and that F does not contain planes passing through the cusp z = [1 : 0 : . . . : 0]. In

that case, it is proven in loc. cit. that there exists a birational morphism ϕ : S [2] → F . To define

ϕ, first consider a pair of distinct points x1, x2 ∈ S. The lines ℓi, i = 1, 2 spanned by xi and the

cusp z are contained in the cubic Y , and the plane spanned by ℓ1 and ℓ2 cuts Y along a third line

ℓ3. One defines

ϕ({x1, x2}) := ℓ3 .

It is then shown in loc. cit. that this extends to a birational morphism ϕ, contracting a certain

“trident divisor” Ψ ⊂ S [2] to the surface S ⊂ F ; the morphism ϕ coincides with the blow-up

with center S. �

2.4. The motive of cyclic cubic fourfolds and their Fano variety of lines.

Theorem 2.11 (Laterveer [39]). Let Y ⊂ P5 be a cyclic cubic fourfold, i.e. a smooth cubic

fourfold defined by the equation

g(x0, . . . , x4) + x3
5 = 0 ,

where g is a homogeneous polynomial of degree 3. Then Y has finite-dimensional motive, in the

sense of Kimura [28].

Proof. This is Theorem 3.1 of [39]. The argument consists in showcasing an embedding of

motives

h(Y ) →֒ h(Z)⊗ h(E)(−1)⊕
⊕

i

L(mi),

where E is an elliptic curve, and Z is the cubic fivefold of equation

g(x0, . . . , x4) + x3
5 + x3

6 = 0 .
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Since Z has finite-dimensional motive, and E is a curve, this implies the finite-dimensionality of

the motive of Y . Remark that a similar construction in cohomology was studied by van Geemen

and Izadi [18].

�

Theorem 2.12 (Laterveer [37]). Let Y ⊂ Pn+1 be a smooth cubic hypersurface, and let F =
F (Y ) be the Fano variety of lines contained in Y . There is a relation of Chow motives

h(F )(−2)⊕

n⊕

i=0

h(Y )(−i) ∼= h(Y [2]) in Mrat .

Proof. This is [37, Theorem 5]. A slightly stronger result is obtained in [13, Theorem 3]. �

We state a proposition for later use:

Proposition 2.13. Let Z be a singular cubic fivefold with isolated singularities of type An, and

let Z̃ → Z be a resolution of singularities. Then the motive of Z̃ is finite-dimensional.

Proof. By the work of Hirschowitz-Iyer [23, Section 1.7], any (arbitrarily singular) cubic fivefold

Z has A0(Z) = A1(Z) = Q. (For smooth cubic fivefolds, this is also proven in [49], [42] and

[47].) Thus, there exists a curve C ⊂ Z (obtained as linear section) such that push-forward

induces surjections

Ai(C) ։ Ai(Z) (i = 0, 1) .

Denoting U ⊂ Z the non-singular locus of the cubic, it follows that there are also surjections

Ai(C ∩ U) ։ Ai(U) (i = 0, 1) .

The exceptional divisor of the blow-up Z̃ → Z along the singular points consists of a tree of

projective spaces. The localization sequence (for the inclusion of the exceptional divisor inside

Z̃) then implies that there exist curves C1, . . . , Cr ⊂ Z̃ with the property that push-forward

induces surjections

Ai(
r⋃

j=1

Cj) ։ Ai(Z̃) (i = 0, 1) .

In the terminology of [33], this means that

Niveau
(
Ai(Z̃)

)
≤ 0 (i = 0, 1) .

But then the Bloch–Srinivas “decomposition of the diagonal” argument (in the precise form of

[33, Thm. 1.7]) implies that

Niveau
(
Ai(Z̃)

)
≤ 1 ∀i ,

which is equivalent (cf. [33, Lemma 1.5]) to

Ai
AJ(Z̃) = 0 ∀i .

This guarantees that the motive of Z̃ is finite-dimensional, thanks to Vial’s result [55, Theorem

4]. �
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2.5. The motive of a Hilbert scheme.

Theorem 2.14 (Shen–Vial [53]). Let S be a K3 surface, and let X be the Hilbert square S [2].

Then X admits a self-dual MCK decomposition such that the induced bigraded ring structure

A∗
(∗)(X) on A∗(X) coincides with the bigrading on A∗(X) defined by the “Fourier transform”

of [53], and enjoys the following properties :

(i) cj(X) ∈ A
j
(0)(X) for all j ;

(ii) The multiplication map ·D2 : A2
(2)(X) → A4

(2)(X) is an isomorphism for any choice of

divisor D ∈ A1(X) with deg(D4) 6= 0 ;

(iii) The intersection product map A2
(2)(X)⊗ A2

(2)(X) → A4
(4)(X) is surjective.

Moreover, the incidence correspondence Γ ⊂ S ×X induces an isomorphism

Γ∗ : A2
hom(S)

∼=
−→ A2

(2)(X) .

Proof. We consider the MCK on X constructed in [53, Theorem 13.4] ; its relation with the

Fourier transform is [53, Theorem 15.8]. Statement (i) is [53, Lemma 13.7(iv)], while state-

ment (iii) is [53, Proposition 15.6].

The “moreover” part is implicit in [53]; let us make it explicit. As in loc. cit., for any x ∈ S we

will write Sx ⊂ X for the locus of 0-dimensional subschemes with support containing the point

x. Let D ∈ A1(X) be any divisor with deg(D4) 6= 0. Let x, y ∈ S be any 2 points. Combining

[53, Proof of Proposition 12.8] and [53, Proposition 12.6], we find an equality of 0-cycles

D2 · (Sx − Sy) = q(D)
(
[x, o]− [y, o]

)
in A4(X) ,

where q() refers to the Beauville–Bogomolov quadratic form on X , and o ∈ S is any point lying

on a rational curve. This implies that the composition

A2
hom(S)

Γ∗−→ A2
(2)(X)

·D2

−−→ A4
(2)(X)

Γ∗

−→ A2
hom(S)

is equal to multiplication with q(D) 6= 0; in particular the first arrow is an injection. As for the

surjectivity of Γ∗, this follows from the fact that A2
(2)(X) is generated by expressions of the form

Sx − Sy [53, Theorem 2 and Proposition 15.6]. �

2.6. Spread argument. A key ingredient in this paper is the machinery of “spread”, as devel-

oped by Voisin, and its consequences. This allows us to deal efficiently with algebraic cycles in

a family of varieties.

Lemma 2.15 (Voisin [61]). Let π : Y → B be a flat morphism of algebraic varieties, where B

is smooth of dimension r, and let Z ∈ An(Y) be a cycle. Then the set BZ of points t ∈ B such

that Zt := Z|Yt
vanishes in An−r(Yt) is a countable union of closed algebraic subsets of B.

Proof. This is [61, Lemma 3.1]; a proof can be found in [60, Proposition 2.4]. �

Corollary 2.16. Let π : Y → B be a smooth projective morphism whose fibers are surfaces

with 0 irregularity, such that the very general fiber has finite-dimensional Chow motive. Then

the Chow motive of any fiber is finite-dimensional.
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Proof. Let us denote B◦ ⊂ B the dense subset where the fibers have finite-dimensional Chow

motive, as by hypothesis. Since the fibers are surfaces with q = 0, finite-dimensionality of their

motive is equivalent to the even finite-dimensionality. This means that, for b ∈ B◦, there exists a

non-negative integer n ∈ Z such that the projector γnb : Y⊗n
b → Y⊗n

b defining ∧n(Yb) is rationally

equivalent to 0. In our case n = 2 + b2(Yb) + 1, since for this value of n we have the vanishing

in cohomology and, since γb is a projector (up to rational equivalence), the vanishing follows for

the Chow ring. Hence, the cycles γnb can be considered as a family Γn → B◦, whose restriction

Γn|Yb
to the fiber of Y over b is the projector γnb . The closure of Γn inside Y gives a cycle over B

whose restriction to the very general fiber is rationally equivalent to zero. Then, by Lemma 2.15,

the restriction to any fiber is rationally equivalent to zero and the claim is proved. �

2.7. Chow cohomology. While dealing with (blow-ups of) singular varieties, we will use Ful-

ton’s Chow cohomology [15, Chapter 17], because of its properties of fonctoriality. For any (pos-

sibly singular) variety X , we will write A∗(X) for the usual Chow groups (with Q-coefficients)

and A∗(X) for the operational Chow cohomology groups (with Q-coefficients). By construction,

A∗(X) acts on A∗(X); this action is denoted as a cap product. For X non-singular of dimension

n, there is an isomorphism

∩[X ] : Ai(X)
∼=
−→ An−i(X) ,

and so for non-singular X we tacitly identify Ai(X) with An−i(X).

Recall moreover that, thanks to the work of Bloch–Gillet–Soulé [4] and Totaro [54], there

exists a natural cycle class map

A∗(X) → GrW∗ H∗(X)

(where W∗ denotes Deligne’s weight filtration), that allows us to define homologically trivial

cycles A∗
hom(X) also in the singular context. Below, we will need the following:

Proposition 2.17. Let X be a singular 4-dimensional projective variety, with transversal An-

singularities along a smooth surface S with irregularity q(S) = 0. Assume that, via the blow-up

p : X̃ → X along S, we obtain a smooth fourfold X̃ . Then the map

p∗ : A2
hom(X) → A2

hom(X̃)

is an isomorphism.

In addition, if H5(X) = 0 then the maps

p∗ : A
hom
2 (X̃) → Ahom

2 (X);

∩[X ] : A2
hom(X) → Ahom

2 (X)

are injections.

Proof. Let E ⊂ X̃ denote the exceptional divisor of the blow-up morphism p. Kimura [27,

Theorem 2.3] has shown that there is an exact sequence in operational Chow cohomology

0 → A2(X) → A2(X̃)⊕ A2(S) → A2(E) ,
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where all arrows are given by pullbacks. In particular, p∗ : A2(X) → A2(X̃) is injective. To

show that the restriction of p∗ to A2
hom(X) is surjective, we consider the commutative diagram

with exact rows

0 → A2(X) → A2(X̃)⊕A2(S) → Im → 0

↓ ↓ ↓

H3(E) = 0 → GrW4 H4(X) → H4(X̃)⊕H4(S) → GrW4 H4(E) →

where Im is shorthand for Im
(
A2(X̃) ⊕ A2(S) → A2(E)

)
, and H3(E) = 0 because of the

hypotheses. Applying the snake lemma to this diagram furnishes us with an exact sequence

(1) 0 → A2
hom(X) → A2

hom(X̃)⊕A2
hom(S) → Im∩A2

hom(E) .

We now look at the pullback

A2
hom(S) → A2

hom(E) ,

and we claim this is a surjection. This claim suffices to show the first statement of the proposi-

tion, in view of the exact sequence (1). As for the claim, let E1, . . . , En denote the irreducible

components of E. Each Ej is a P1-bundle over the regular surface S, and hence

A2(Ej) = A2(S)⊕ A1(S),

A2
hom(Ej) = A2

hom(S).

The claim then follows from the exact sequence

0 → A2
hom(E) →

r⊕

j=1

A2
hom(Ej) →

⊕

j<k

A2
hom(Ej ∩ Ek)

(which is again obtained via the snake lemma), plus the fact that each intersection Ej ∩ Ek is

isomorphic to S.

As for the “in addition” part of the proposition, this is proven in similar fashion. We consider

the commutative diagram with exact rows

→ A2(E) → A2(X̃)⊕ A2(S) → A2(X) → 0

↓ ↓ ↓

H5(X) = 0 → H4(E) → H4(X̃)⊕H4(S) → H4(X) →

where horizontal arrows are pushforwards (the exactness of the upper row follows from [27,

Theorem 1.8]). The left vertical arrow is an injection thanks to Lemma 2.18 below. Applying the

snake lemma to this diagram (and observing that Ahom
2 (S) = 0 for obvious reasons), we obtain

an injection

p∗ : Ahom
2 (X̃) →֒ Ahom

2 (X) .
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Finally, the projection formula for Chow cohomology [15, Chapter 17] gives an equality

∩[X ] = p∗p
∗ : A2

hom(X) → Ahom
2 (X) ,

and so the results established above imply that ∩[X ] : A2
hom(X) → Ahom

2 (X) is also injective.

Lemma 2.18. In the above set-up, the cycle class map induces an injection

A2(E) →֒ H4(E) .

To prove the lemma, we consider the commutative diagram with exact rows

→
⊕

j<kA2(Ej ∩ Ek) →
⊕n

j=1A2(Ej) → A2(E) → 0

↓ ∼= ↓ ↓

→
⊕

j<kH4(Ei ∩ Ej) →
⊕n

j=1H4(Ej) → H4(E) →

(the left vertical arrow is an isomorphism, since Ei ∩ Ej is a surface). Since each Ej is a P1-

bundle over S, we have

A2(Ej) = A1(Ej) = A1(S)⊕ A0(S) →֒ H2(S)⊕H0(S) = H2(Ej) .

An easy diagram chase then concludes the proof of the lemma. �

3. MAIN RESULT

Theorem 3.1. Let S ⊂ P4 be a K3 surface defined as a smooth complete intersection with

equations {
f(x0, . . . , x3) = 0

g(x0, . . . , x3) + x3
4 = 0 ,

where f and g are homogeneous polynomials of degree 2 resp. 3.

Then S has finite-dimensional motive, in the sense of Kimura [28].

Proof. In view of Corollary 2.16, we may assume the polynomials f and g are sufficiently gen-

eral. Then, Theorem 2.10 implies that the surface S is related to a cuspidal cyclic cubic fourfold

Y via the Fano variety of lines F = F (Y ). The key fact that we need to prove the Theorem is

the content of the following proposition.

Proposition 3.2. Let Y be a general cyclic cuspidal cubic fourfold, and F, F̃ as in Theorem

2.10. There exist correspondences α ∈ A∗(F̃ × G̃), β ∈ A∗(G̃ × F̃ ), where G̃ is a finite union

of smooth projective varieties with finite dimensional motive, such that the composition

(2) A2
hom(F̃ )

α∗−→ A∗(G̃)
β∗
−→ A∗(F̃ )

is the identity.
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Before we prove Proposition 3.2, let us show how it implies the Theorem. By Theorem 2.10,

the blow-up F̃ is isomorphic to the Hilbert square S [2]. By the work of Shen–Vial (cf. Theorem

2.14), we have injections

A2
hom(S) →֒ A2

(2)(S
[2]) →֒ A2

hom(S
[2]) = A2

hom(F̃ ) .

Combining this with Proposition 3.2, we observe that the composition

(3) A2
hom(S)

γ∗
−→ A∗(G̃)

δ∗−→ A2(S)

is the identity, for some correspondences γ and δ. Applying Lemma 3.1 of [53] to ∆S − δ ◦ γ,

this gives a correspondence that induces an injection of motives

(γ, h) : htr(S) →֒ h(G̃)⊕
⊕

i

L(ni) in Mrat ,

where the last direct summand is just a finite sum of twisted Lefschetz motives. It follows that S

has finite-dimensional motive, as requested. �

It remains to prove the proposition:

Proof. (of Proposition 3.2 )

We can find a family Y → B of cyclic cubic fourfolds with B smooth one-dimensional such

that Y = Y0 is the fiber over 0 ∈ B, and the other fibers Yb, b 6= 0 are smooth cyclic cubic

fourfolds. Also, Y is a smooth quasi-projective variety (this follows from smooth base-change,

because the universal cubic fourfold Y → PH0(P5,OP5(3)) is smooth). Let us write F → B

for the corresponding family of Fano varieties of lines, Z → B for the corresponding cubic

fivefolds (cf. the proof of Theorem 2.11). Theorems 2.11 and 2.12 imply that the fibers Fb, b 6= 0
are Kimura finite-dimensional. More precisely, looking at the argument of Theorems 2.11 and

2.12, for any b 6= 0 one finds inclusions of Chow motives

(4) h(Fb) →֒ h(Y
[2]
b )(2)⊕

⊕
h(Yb)(∗) →֒ h((Zb)

2×E2)(∗)⊕
⊕

h(Zb×E)(∗) in Mrat ,

where E is an elliptic curve and Zb is the cubic fivefold associated to Yb (cf. Theorem 2.11).

What’s more, inspection of the proof of Theorems 2.11 and 2.12 reveals that the correspondence

Γb defining the inclusion (4) and its left-inverse Ψb are generically defined with respect to the

base B◦ := B \ {0}. That is, there exist relative correspondences

Γ◦ ∈ A∗
(
F ×B◦ (C ×B◦ C × E2)

)
⊕ A∗

(
F ×B◦ (C × E)

)
,

Ψ◦ ∈ A∗
(
(C ×B◦ C ×E2)×B◦ F

)
⊕ A∗

(
(C × E)×B◦ F

)
,

with the property that

(5) (Ψ◦ ◦ Γ◦)|b = ∆F |b in A4(Fb × Fb) ∀b ∈ B◦ .

For the sake of readability, we will set

G := (Z × E)2/B
∐

(Z ×E)
∐
r .
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A straightforward computation shows that the central cubic fivefold fiber Z0 has one isolated

A3 singularity. We will need to consider a new family Z̃ → B, which is obtained from Z by

blowing up the singular point of the central fiber. Remark that the total space of Z is smooth,

since the universal cubic fivefold is a projective bundle over P6, and we just apply a smooth base

change. This induces a family G̃ → B, with the property that the fibers of G and G̃ over B◦ are

the same, but the fiber over 0 is

(6) G̃|0 = G̃0 ∪ P,

where G̃0 is a resolution of singularities of the singular central fiber G0, and P is some exceptional

divisor which is induced by the blow-up Z̃ → Z .

On the other hand, we define the family F̃ → B as the blow-up of F along the fixed locus of

the fiberwise automorphism. By Theorem 2.10, we have that the central fiber F̃0 is smooth and

isomorphic to the Hilbert square S [2] of the K3 surface S.

For any extension Σ ∈ A∗(F ×B G̃) such that Σ|B◦ = Ψ◦ ◦ Γ◦, we have equality

Σ|b = ∆F |b = ∆Fb
in A4(Fb × Fb) ∀b ∈ B◦

(this is equality (5)). Applying the spread argument (Lemma 2.15), this implies that the restric-

tion to the central fiber satisfies an equality

(7) Σ|0 = ∆F0
in A4(F0 × F0) .

We will now show how to choose a convenient Σ to which we will apply equality (7). Let us

denote by p : F̃ → F the blow-down morphism, p0 : F̃0 → F0 its restriction to the central fiber,

and let us set

Γ̃◦ := (p, id)∗(Γ◦) ∈ A4(F̃ ×B◦ G̃) , Ψ̃◦ := (p, id)∗(Ψ◦) ∈ A4(G̃ ×B◦ F̃) .

We can choose (non-canonical) extensions

Γ̃ ∈ A4(F̃ ×B G̃) , Ψ̃ ∈ A4(G̃ ×B F̃)

with the property that Ψ̃|B◦ = Ψ̃◦ and Γ̃|B◦ = Γ̃◦. By general properties of the formalism of

relative correspondences [46, Section 8.1.2] we have the equality

(Ψ̃ ◦ Γ̃)|0 = Ψ̃|0 ◦ Γ̃|0 in A4(F̃0 × F̃0).

Now we are in position to define

Σ := (p× p)∗(Ψ̃ ◦ Γ̃).

By applying equality (7) in A4(F0 × F0) to this choice of Σ, we obtain a decomposition

(8) ∆F̃0
= Ψ̃|0 ◦ Γ̃|0 +R in A4(F̃0 × F̃0),
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where R is a cycle such that (p0 × p0)∗R = 0. This holds since (p0 × p0)∗∆F̃0
= ∆F0

and so by

functoriality

(p0 × p0)∗
(
(Ψ̃ ◦ Γ̃)|0

)
= (p0 × p0)∗(Ψ̃ ◦ Γ̃)|0 in A4(F0 × F0).

We now claim that the correspondence R is such that

R∗ = 0: A2
hom(F̃0) → A2

hom(F̃0) .

This claim, together with equality (8) shows that

A2
hom(F̃0)

(ψ̃|0)∗
→֒ A∗(G̃|0)

(Γ̃|0)∗
→ A∗(F̃0)

is the identity map. Looking at Equation (6) combined with Proposition 2.13, one sees that G̃|0

is a finite union of smooth projective varieties with finite-dimensional motive, as requested.

It remains to prove the claim; for this we rely on Proposition 2.17 for p∗0 and p0∗ (note that

the hypotheses of Proposition 2.17 are satisfied, as F0 is the Fano variety of lines on a singular

cubic fourfold, and so F0 has no odd-degree cohomology [16, Theorem 6.1]). This proposition

reduces the claim to proving that the composition

A2
hom(F0)

(p0)∗

−−−→ A2
hom(F̃0)

R∗−→ A2
hom(F̃0)

(p0)∗
−−−→ Ahom

2 (F0)

is the zero map. But the projection formula for Chow cohomology [15, Chapter 17] implies that

this composition is the same as the composition

A2
hom(F0)

(π1)∗

−−−→ A2
hom(F0 × F0)

∩(p0×p0)∗(R)
−−−−−−−−→ Ahom

2 (F0 × F0)
(π2)∗
−−−→ Ahom

2 (F0) ,

where π1, π2 : F0 ×F0 → F0 denote the projections on the 2 factors. This last composition is the

zero map, as (p0 × p0)∗R = 0 by construction. The claim is proven, and hence so is Proposition

3.2. �

4. THE KUGA–SATAKE HODGE CONJECTURE

In this section, we prove the Kuga–Satake Hodge conjecture for our K3 surfaces. The ar-

gument is very similar to that of Theorem 3.1: we use that the K3 surface is related to cyclic

cubic fourfolds, plus the fact that the Kuga–Satake Hodge conjecture is known for cyclic cubic

fourfolds (thanks to work of van Geemen–Izadi).

Theorem 4.1 (Kuga–Satake). Let V be a polarized Hodge structure of K3 type. There exists an

abelian variety KS(V ), the Kuga–Satake variety associated to V , such that there is an embed-

ding of Hodge structures

ιV : V →֒ H2(KS(V )×KS(V ),Q) .

Proof. This is explained in [20, Chapter 4] and [17]. The original reference is [31]. �

The following is a special case of the Hodge conjecture:
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Conjecture 4.2. (“Kuga–Satake Hodge conjecture”) Let V = H2r(X,Q) be a Hodge structure

of K3 type, for some smooth projective variety X . The embedding ιV is induced by a correspon-

dence in A∗(X ×KS(V )×KS(V )).

Remark 4.3. Conjecture 4.2 is widely open for K3 surfaces (i.e. when V = H2(S,Q) for S a

K3 surface). It is known for S a (resolution of a) double plane branched along 6 lines [48], for S

a (resolution of a) complete intersection in P4 with 15 double points [24], for S a cyclic quartic

in P3 [17], and for some other K3 surfaces with Picard number 16 [12].

Theorem 4.4. Let S ⊂ P4 be a K3 surface defined as a smooth complete intersection with

equations {
f(x0, . . . , x3) = 0

g(x0, . . . , x3) + x3
4 = 0 ,

where f and g are homogeneous polynomials of degree 2 resp. 3.

Then Conjecture 4.2 is true for V = H2(S,Q).

Proof. The Kuga–Satake construction can be performed in a family. Precisely, let V → B be

a polarized variation of Hodge structure of K3 type. Then it is known [20, Proposition 6.4.10]

that there exists a finite étale base-change B′ → B and an abelian scheme A → B′ such that the

fiber Ab over b ∈ B′ is the Kuga–Satake variety associated to the Hodge structure Vb. Applying

this to the family of smooth complete intersections as in Theorem 4.4, we see that it suffices to

prove that for a generic K3 surface S as in Theorem 4.4, there exists a correspondence that is

generically defined (with respect to the base change B′) inducing the Kuga–Satake embedding.

So let us now assume that S = S0 is a generic member of the family of complete intersections

as in Theorem 4.4. Then Theorem 2.10 applies, and gives us a 1-dimensional family Y → B of

cyclic cubic fourfolds, such that Yb is smooth for b 6= 0 and Y0 is such that the Fano variety of

lines F (Y0) has a resolution of singularities isomorphic to the Hilbert scheme S
[2]
0 . As above, let

us write F → B for the family of Fano varieties of lines, and

π : F̃ → B

for the blow-up of F with center the fixed locus of the order 3 fiberwise automorphism (so that

F0 is isomorphic to S
[2]
0 , cf. Theorem 2.10).

The local system R2π∗Q → B is a variation of Hodge structure of K3 type, and so the above-

mentioned “Kuga–Satake in family” result [20, Proposition 6.4.10] applies. That is, there exists

a finite base-change B′ → B and a family A → B′ of associated Kuga–Satake varieties. Let

B′
◦ ⊂ B′ denote the pre-image of B◦ = B \ {0}. Then for any b ∈ B′

◦, the fiber F̃b of F̃ → B′

over b is a blow-up of the Fano variety of lines of a smooth cyclic cubic fourfold. A lovely

result of van Geemen–Izadi [18, Corollary 5.3] settles the Kuga–Satake Hodge conjecture for

the smooth cyclic cubic fourfold Yb. Moreover, inspection of their proof (cf. [39, Theorem 2.8])

reveals that the correspondence they produce is actually generically defined (with respect to B).

In view of the isomorphisms

H4
tr(Yb,Q) ∼= H2

tr(Fb,Q) ∼= H2
tr(F̃b,Q)
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(where the first isomorphism is given by the Abel–Jacobi map, and the second follows from the

blow-up formula), this gives a generically defined Kuga–Satake correspondence for F̃b, b ∈ B′
◦.

Extending this relative correspondence to B′, we obtain the Kuga–Satake Hodge conjecture for

F̃0
∼= S

[2]
0 . Because of the natural isomorphism (induced by a generically defined correspon-

dence)

H2
tr(S0,Q) ∼= H2

tr(S
[2]
0 ,Q) ,

this also gives a (generically defined) Kuga–Satake correspondence for S0. This closes the proof.

�

Remark 4.5. A general Hilbert schemes argument due to Voisin implies that the inverse to the

Kuga–Satake correspondence is also induced by a generically defined correspondence (cf. [39,

2.3]). The above argument then gives the following: for any K3 surface S as in Theorem 3.1,

with Kuga–Satake variety A, there exist correspondences Γ,Ψ such that the composition

H2(S,Q)
Γ∗−→ H2(A×A,Q)

Ψ∗−→ H2(S,Q)

is the identity. Since we know that S is Kimura finite-dimensional (Theorem 3.1), it follows that

there is an embedding of Chow motives

Γ : h2
tr(S) →֒ h2(A2) in Mrat

(where h∗(A2) refers to the Deninger–Murre decomposition of the motive [11]), and so in par-

ticular there is an embedding of Chow groups

Γ∗ : A2
hom(S) →֒ A2

(2)(A
2)

(where A∗
(∗)(A

2) refers to the Beauville decomposition of the Chow ring [2]).

5. VOISIN’S CONJECTURE

Conjecture 5.1 (Voisin [59]). Let X be a strict Calabi–Yau variety of dimension n (i.e. hi,0(X)
is 0 for 0 < i < n and hn,0(X) = 1). Then for any 2 zero-cycles a, b ∈ An

hom(X) there is

equality

a× b+ (−1)n−1b× a = 0 in A2n(X ×X) .

(Here the notation a× b is by definition π∗
1(a) ·π

∗
2(b), where πi : X×X → X are the projections

on the two factors.)

Remark 5.2. For background and motivation for Voisin’s conjecture, cf. [61, Section 4.3.5.2].

This conjecture is still open for K3 surfaces. For some special cases where Conjecture 5.1 is

known, cf. [59], [34], [35], [36], [38], [40], [41].

Theorem 5.3. Let S ⊂ P4 be a K3 surface defined as a smooth complete intersection with

equations {
f(x0, . . . , x3) = 0

g(x0, . . . , x3) + x3
4 = 0 ,

where f and g are homogeneous polynomials of degree 2 resp. 3.

Then Conjecture 5.1 is true for S.
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Proof. We apply the following general criterion:

Proposition 5.4 ([41]). Let X be a strict Calabi–Yau variety of dimension n. Assume that there

is an isomorphism of Chow motives

h(X) ∼=
⊕

χ

hn(Aχ)⊕
⊕

1(∗) in Mrat ,

where Aχ are abelian varieties, and h∗(Aχ) refers to the Deninger–Murre decomposition [11].

Then Conjecture 5.1 is true for X .

(This is [41, Lemma 2.1].) This criterion applies to S in view of the results we established, cf.

Remark 4.5 above. �

6. FURTHER CONSEQUENCES, AND CLOSING REMARKS

We start this section by proving the consequence announced in the introduction:

Corollary 6.1. Let S be a K3 surface with an order 3 non-symplectic automorphism σ, and

assume that the fixed locus of σ contains a curve. Then S has finite-dimensional motive.

Proof. Thanks to the classification result of Artebani–Sarti (Theorem 2.6), we know that S is in

the closure of M0,1 or in the closure of M0,2. We have shown (Theorem 3.1) that any surface in

M0,1 is Kimura finite-dimensional; thanks to the spread argument (Corollary 2.16), the same is

true for any surface in the closure of M0,1.

As for M0,2, thanks to the work of Kondo (Proposition 2.9) we know that the general element

S ′ ∈ M0,2 is the Jacobian elliptic fibration of an element S ∈ M0,1. This implies that S ′ and S

are twisted derived equivalent, i.e. there is an equivalence of derived categories

Db(S ′, α) ∼= Db(S) ,

where α is a Brauer class [20, Remark 4.9]. This implies that these surfaces have isomorphic

Chow motives:

h(S ′) ∼= h(S) in Mrat

[14, Theorem 1] (cf. also the argument of [19]), and so S ′ is Kimura finite-dimensional. Applying

once more the spread argument (Corollary 2.16), we find that the same is true for any surface in

the closure of M0,2. This ends the proof. �

Also the results from Section 4 and 5 can be extended to M0,1 and M0,2. For instance,

Theorem 4.4 extends harmlessly to the component M0,1 of the moduli space of K3 surfaces with

an order 3 non-symplectic automorphism.

Proposition 6.2. Conjecture 4.2 holds true for V = H2(S,Q), for all K3 surfaces inside the

component M0,1.

Proof. As we have observed in the proof of Theorem 4.4, it is enough that the Kuga-Satake

correspondence is generically defined for the family M0,1. This is true by the same argument

used in the proof of Theorem 4.4, hence the Conjecture holds true for all K3 surfaces in M0,1.

�
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Corollary 6.3. All the statements of Remark 4.5 hold true for a K3 surface inside M0,1.

Proof. In order to conclude, it is enough to observe that, by Corollary 6.1, all K3 surfaces in

M0,1 have finite-dimensional motive and, by Proposition 6.2, their Kuga-Satake correspondence

is algebraic. The same argument of Remark 4.5 then applies. �

Proposition 6.4. Conjecture 4.2 holds for all K3 surfaces inside M0,2.

Proof. By [31], we know that Kuga-Satake varieties exist for all the K3 surfaces in M0,2. We

need to show that the embedding is given by an algebraic correspondence. We will do this

by factoring it through M0,1. That is: as above, we may reduce to a general element S ′ in

M0,2. Then, thanks to Kondo’s work there exists a correspondence δ ∈ A∗(S ′ × S) that induces

the isomorphism of motives h(S ′) ∼= h(S), for a certain S ∈ M0,1. Let us now denote by

γS ∈ A∗(S × KS(V ) × KS(V )) the Kuga-Satake correspondence for S ∈ M0,1. In order to

conclude, it is enough to recall [20, Section 4] that the Kuga-Satake varieties of K3 surfaces with

isomorphic Chow motives are isogenous. Hence the Kuga-Satake correspondence of S ′ ∈ M0,2

is the composition of δ, γS and the correspondence defining the isogeny, hence it is algebraic as

well. �

By Corollary 6.3, we have the following useful consequence.

Corollary 6.5. Conjecture 5.1 holds true for all K3 surfaces in M0,1.

We observe now that Remark 4.5 holds also for M0,2. Hence one can argue as in Section 5,

and by the results of Remark 4.5, combined with Proposition 5.4, we obtain that

Corollary 6.6. Conjecture 5.1 holds true for all K3 surfaces in M0,2.

Remark 6.7. We have tried in vain to establish Kimura finite-dimensionality for surfaces in

M3,0. These surfaces can also be described explicitly as certain complete intersections in P4

[1, Proposition 4.7]. Just as in the argument of Theorem 3.1, we can relate them to certain

singular cubic fourfolds; these singular cubic fourfolds are degenerations of certain smooth

cubic fourfolds with an order 3 non-symplectic automorphism (this is the family described in [7,

Example 6.6]). The problem is that (contrary to the situation of Theorem 3.1), these smooth cubic

fourfolds are not known to be Kimura finite-dimensional, and so our argument breaks down here.

Remark 6.8. From [1], we know that the generic surface in the two families we consider has

Picard number 2. We observe that examples of K3 surfaces with Picard number 2 and finite-

dimensional motive have already been discovered in [50, Corollary 2]. Pedrini’s examples are

isolated in the moduli space, because of [43, Theorem 5], while ours move in 9-dimensional

families.
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