Convergence rate for a regularized scalar conservation law - Archive ouverte HAL
Article Dans Une Revue Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées Année : 2024

Convergence rate for a regularized scalar conservation law

Résumé

This work revisits a recent finding by the first author concerning the local convergence of a regularized scalar conservation law. We significantly improve the original statement by establishing a global convergence result within the Lebesgue spaces $L^\infty_{\mathrm{loc}}(\mathbb{R}^+;L^p(\mathbb{R}))$, for any $p \in [1,\infty)$, as the regularization parameter $\ell$ approaches zero. Notably, we demonstrate that this stability result is accompanied by a quantifiable rate of convergence. A key insight in our proof lies in the observation that the fluctuations of the solutions remain under control in low regularity spaces, allowing for a potential quantification of their behavior in the limit as $\ell\to 0$. This is achieved through a careful asymptotic analysis of the perturbative terms in the regularized equation, which, in our view, constitutes a pivotal contribution to the core findings of this paper.
Fichier principal
Vignette du fichier
GH24.pdf (636.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04493491 , version 1 (07-03-2024)
hal-04493491 , version 2 (18-04-2024)

Identifiants

Citer

Billel Guelmame, Haroune Houamed. Convergence rate for a regularized scalar conservation law. Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées, In press. ⟨hal-04493491v2⟩
159 Consultations
55 Téléchargements

Altmetric

Partager

More