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CONVERGENCE RATE FOR A REGULARIZED SCALAR
CONSERVATION LAW

BILLEL GUELMAME AND HAROUNE HOUAMED

In the memory of Ahmed Blidia

Abstract. This work revisits a recent finding by the first author concerning the local
convergence of a regularized scalar conservation law. We significantly improve the orig-
inal statement by establishing a global convergence result within the Lebesgue spaces
L∞
loc(R+;Lp(R)), for any p ∈ [1,∞), as the regularization parameter ℓ approaches zero.

Notably, we demonstrate that this stability result is accompanied by a quantifiable rate
of convergence. A key insight in our proof lies in the observation that the fluctuations
of the solutions remain under control in low regularity spaces, allowing for a potential
quantification of their behavior in the limit as ℓ → 0. This is achieved through a careful
asymptotic analysis of the perturbative terms in the regularized equation, which, in our
view, constitutes a pivotal contribution to the core findings of this paper.
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1. Introduction

1.1. Motivation. The occurrence of shock formation in solutions of the scalar conserva-
tion laws

∂tu+ ∂xf(u) = 0, (Scl)

is a well-known phenomenon. Given any smooth initial data u0, a unique strong solution
exists. However, due to the nonlinear nature of the flux f , discontinuous shock waves may
develop in finite time. This behavior represents one of the challenges associated with non-
linear conservation laws. In order to avoid the occurrence of shocks, various regularization
techniques have been proposed. These regularizations aim to smooth out discontinuities
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2 GUELMAME AND HOUAMED

by adding “small” terms to the equation, such as diffusion and/or dispersion. While dif-
fusive regularizations are widely used, they tend to dissipate energy everywhere. On the
other hand, the entropy solutions of (Scl) concentrate the energy dissipation at singulari-
ties. Nevertheless, diffusive regularizations are considered as solid tools in establishing the
existence of solutions and in justifying the a priori estimates via the vanishing viscosity
method. Dispersion regularizations lead to the appearance of spurious oscillations and fail,
in general, to converge to the entropy solutions of (Scl).

1.2. The equations of our interest. In order to introduce a regularization while preserv-
ing essential properties of the original equations, Clamond and Dutykh [10] derived a non-
diffusive, non-dispersive regularized Saint-Venant (rSV) system. The study of traveling-
wave solutions to the rSV system has been done in [31]. Furthermore, the local well-
posedness of that system and a construction of initial data leading to the appearance of
singularities have been studied in [30]. The rSV system has been generalized lately to
regularize the barotropic Euler system [23]. Inspired by [10], and due to the complexity of
studying the singular limit for those systems, Guelmame et al. [24] proposed and studied
the scalar non-diffusive, non-dispersive regularized Burgers equation

∂tu
ℓ + uℓ∂xu

ℓ = ℓ2
󰀃
∂3
txxu

ℓ + 2∂xu
ℓ∂2

xxu
ℓ + uℓ∂3

xxxu
ℓ
󰀄
, (rB)

where ℓ is a positive parameter. The equation (rB) is Galilean invariant, it has been
derived using a variational principle and it enjoys both Lagrangian and Hamiltonian struc-
tures. Smooth solutions to (rB) conserve an H1 energy, which prevents the appearing of
discontinuous shocks, thanks to the Sobolev embedding H1(R) ↩→ C0

b (R). In [24], the
authors studied weakly singular shocks and cusped traveling-wave weak solutions of (rB).
Additionally, they demonstrated that for every simple shock-wave entropy solution of the
inviscid Burgers equation, there exists a corresponding monotonic traveling-wave dissipa-
tive solution of (rB). Notably, these solutions exhibit identical shock speed and energy
dissipation rate as the original shock-wave solutions of the Burgers equation, which are
recovered taking ℓ → 0.

In order to obtain general solutions to (rB), inspired by [7, 8], the authors of [24] proved
the existence of two types of global weak solutions to (rB), conserving or dissipating the
energy. The method of proof consists in utilizing two equivalent semi-linear system of
ODEs, formulated in the Lagrangian coordinates. One system provides conservative solu-
tions while the other yields to dissipative ones. Conservative solutions maintain a constant
energy for almost all time, including at singularities. They also fail to satisfy a one-sided
Olĕınik inequality, making them less accurate for regularizing entropy solutions of the
Burgers equation. Conversely, dissipative solutions concentrate the loss of the energy on
the singularities and satisfy the one-sided Olĕınik inequality ∂xu

ℓ(t, x) 󰃑 2/t for almost all
(t, x) ∈ (0,∞)×R. The compactness of the dissipative solutions of (rB) have been studied
in [24]. However, the equation satisfied in the limit was not identified at that time.

In a recent work [22], the first author considered the regularized scalar conservation law

∂tu
ℓ + ∂xf(u

ℓ) = ℓ2
󰀃
∂3
txxu

ℓ + 2f ′′(uℓ)∂xu
ℓ∂2

xxu
ℓ + f ′(uℓ)∂3

xxxu
ℓ + 1

2
f ′′′(uℓ)(∂xu

ℓ)3
󰀄
, (1.1)
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where f is a uniformly convex flux. Notice that the regularized Burgers equation (rB) is
recovered taking f(u) = u2/2. Using an approximation of (1.1) involving a cut-off function,
it has been proved in [22] that global weak dissipative solutions to (1.1) exist. Moreover,
as ℓ approaches zero, it has been shown that

uℓ → u in L∞
loc(R+;Lp

loc(R)), (1.2)

for any p ∈ [1,∞), where u is the unique entropy solution of the scalar conservation law
(Scl). This gives a justification of the denomination “regularization” of the equation (1.1).
The limit (1.2) was obtained via abstract compactness arguments which is why it was
only established on compact sets without a determination of a convergence rate. In this
paper, we improve the latter result (1.2) by showing that it holds globally in space and
establishing an explicit convergence rate. More precisely, we will prove later on that

󰀐󰀐uℓ − u
󰀐󰀐
L∞([0,T ];Lp(R)) = O(ℓ

1
2p ),

for any T > 0 and p ∈ [1,∞). We defer the discussion of this improvement to Section 2.

1.3. Related equations. The rB equation (rB) can be compared to the well-known dis-
persionless Camassa–Holm equation [9]

∂tu
ℓ + 3uℓ∂xu

ℓ = ℓ2
󰀃
∂3
txxu

ℓ + 2∂xu
ℓ∂2

xxu
ℓ + uℓ∂3

xxxu
ℓ
󰀄
. (CH)

The Camassa–Holm equation appears in modeling nonlinear wave propagation in the
shallow-water regime. Both (rB) and (CH) conserve an H1 energy for smooth solutions
and they admit global weak conservative and dissipative solutions. Two key differences be-
tween the two equations are: (1) the equation (CH) is bi-Hamiltonian (therefore integrable)
while only one Hamiltonian structure is known for the equation (rB); (2) the equation (rB)
is Galilean invariant while the equation (CH) is not. The Galilean invariance is crucial
from the physical point of view and also for proving mathematical results. Indeed, due to
the lack of the Galilean invariance, we could only prove that dissipative solutions of the
equation (CH) satisfy a one-sided Olĕınik inequality involving a constant that blows-up
as ℓ → 0. This makes the singular limit ℓ → 0 for the equation (CH) more challenging.
To the authors’ knowledge, this remains an open problem. However, in the presence of
the viscosity in (CH), and under a condition that ℓ is small compared to the viscosity
parameter, the unique entropy solution of the equation ∂tu + ∂x(3u

2/2) = 0 is recovered
by taking both parameters to zero [12, 13, 14, 27].

Another similar equation is the hyperelastic-rod wave equation [18, 19, 20]

∂tu
ℓ + 3uℓ∂xu

ℓ = ℓ2
󰀃
∂3
txxu

ℓ + γ
󰀃
2∂xu

ℓ∂2
xxu

ℓ + uℓ∂3
xxxu

ℓ
󰀄󰀄

, (1.3)

where γ is a real parameter. The equation (1.3) describes radial deformation waves in
cylindrical hyperelastic rods with a finite length and small amplitude. Existence of global
weak solutions to (1.3) has been established in [11, 25]. Observe that the Camassa–Holm
equation is recovered taking γ = 1 in (1.3). It worths noting that the equation (1.3)
satisfies a Galilean-like invariance property only when γ takes the values 0 or 3. Setting
γ = 0 yields to the Benjamin–Bona–Mahony equation [3], which describes long surface
gravity waves of small amplitude. The value γ = 3, on the other hand, corresponds to
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the regularized equation (1.1) with f(u) = 3u2/2 (or simply to (rB) after a change of
variables). Therefore, we emphasize that the results established in [22] and in the present
paper work for the hyperelastic-rod wave equation (1.3) with γ = 3, as well.

The equation (rB) can also be compared to the Leray-type regularization proposed and
studied by Bhat and Fetecau [4, 5]

∂tu
ℓ + uℓ∂xu

ℓ = ℓ2
󰀃
∂3
txxu

ℓ + uℓ∂3
xxxu

ℓ
󰀄
, (1.4)

which admits global solutions. Moreover, as ℓ → 0, solutions to (1.4) converge, up to a
subsequence, to a weak solution of the Burgers equation. Additionally, considering a simple
Riemann problem with a decreasing initial data, the correct shock of the Burgers equation
is recovered. However, for an increasing initial data, solutions of (1.4) create non-entropy
jumps [5].

1.4. Outline. This paper is organized as follows. In Section 2, we discuss some crucial
basis of the equations of our interest, including a result about the existence of solutions to
(1.1) and we state the main theorem of this paper. Then, Section 3 is devoted to obtaining
uniform bounds on the solutions to viscous approximations of both equations (Scl) and
(1.1). Thereafter, in Section 4, we establish a decay estimate on the perturbative terms
of (1.1) (on its non-local form, see (2.1) below) and prove the main result of the paper
(Theorem 2.3). At last, for clarity, we defer the recap on the definitions of the functional
spaces utilized in this paper to Appendix A, where, for the sake of completeness, we also
collect a few useful properties of these spaces which apply in our proofs.

2. Preliminaries and Main result

Before we state our main result, allow us to prepare the ground around it by first setting
up the essential assumptions in the paper and introducing the notion of solutions we are
concerned with. Here, we are interested in the behavior, as ℓ tends to zero, of solutions to
the regularized scalar conservation laws

∂tu
ℓ + ∂xf(u

ℓ) + ℓ2∂xP
ℓ = 0, P ℓ − ℓ2∂2

xP
ℓ = 1

2
f ′′(uℓ)

󰀃
∂xu

ℓ
󰀄2

, (2.1)

with an initial datum u0 ∈ H1(R). Hereafter, we chose to lighten our notations by denoting
∂2
x instead of ∂2

xx.
Henceforth, the flux f is assumed to be a regular uniformly convex function in the sense

that

f ∈ C4(R), 0 < c1 󰃑 f ′′(u) 󰃑 c2 < ∞, (2.2)

for some given positive constants c1 and c2. Additionally, it will become apparent later
on that the initial datum will be required to be of a bounded variation and satisfies a
one-sided Lipschitz condition, that is

u′
0 ∈ L1(R) and M

def
= sup

x∈R
u′
0(x) < ∞. (2.3)

Further precisions on the initial data will be discussed, later on. Note that the equation
(2.1) is equivalent to (1.1) for smooth solutions. Indeed, one easily sees that (1.1) is formally
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recovered from (2.1) by applying the elliptic operator Id − ℓ2∂2
x. Clearly the analysis of

(2.1), and thus (1.1), hinges upon a comprehensive study of the term P ℓ and its behavior
in suitable functional spaces. A primary important observation here is the validity of the
identity

P ℓ =
󰀃
Id− ℓ2∂2

x

󰀄−1
󰀓

1
2
f ′′(uℓ)

󰀃
∂xu

ℓ
󰀄2󰀔

= 1
2
f ′′(uℓ)

󰀃
∂xu

ℓ
󰀄2 ∗Gℓ,

where

Gℓ(x)
def
= 1

2ℓ
exp

󰀓
− |x|

ℓ

󰀔
.

Notice that (2.2) entails the lower bound

P ℓ 󰃍 0, (2.4)

which will come in handy later on.
Let us now introduce the notion of solutions that we are concerned with in this paper.

Definition 2.1. We say that uℓ ∈ L∞(R+;H1)∩Lip(R+;L2) is a weak dissipative solution
of (2.1) if it satisfies the equation in the L2 sense, dissipates the energy in a weak sense

∂t

󰀓
1
2

󰀃
uℓ
󰀄2

+ 1
2
ℓ2
󰀃
∂xu

ℓ
󰀄2󰀔

+ ∂x

󰀓
K

󰀃
uℓ
󰀄
+ 1

2
ℓ2f ′󰀃uℓ

󰀄 󰀃
∂xu

ℓ
󰀄2

+ ℓ2uℓP ℓ
󰀔
󰃑 0,

where K ′(u) = uf ′(u), and is right continuous in H1, that is to say

lim
t→t0
t>t0

󰀐󰀐uℓ(t, ·)− uℓ(t0, ·)
󰀐󰀐
H1 = 0,

for all t0 󰃍 0. In particular, the solution is required to satisfy the initial condition uℓ(0, ·) =
u0 in the sense of the H1 norm.

One way to establish the existence of global weak dissipative solutions to (2.1) can be
performed via introducing a viscosity term, leading to the equation

∂tu
ℓ,ε + ∂xf(u

ℓ,ε) + ℓ2∂xP
ℓ,ε = ε∂2

xu
ℓ,ε, P ℓ,ε − ℓ2∂2

xP
ℓ,ε = 1

2
f ′′(uℓ,ε)

󰀃
∂xu

ℓ,ε
󰀄2

, (2.5)

supplemented with the regularized initial datum uℓ,ε(t, ·) = uε
0

def
= u0 ∗ ϕε, where ϕε stands

for the standard one-dimensional Friedrich’s mollifier. Additionally, following [11, 22, 32],
one can show that, up to an extraction of a subsequence, solutions of (2.5) converge to
dissipative solutions of (2.1) as ε → 0 in the sense that

uℓ,ε → uℓ in Cloc([0,∞)× R). (2.6)

In another word, solutions of (2.1) can be constructed as accumulation points of the family
of regularized solutions uℓ,ε as ε → 0. As a result, the following theorem holds.

Theorem 2.2. Consider an initial datum u0 ∈ H1(R) and assume that the flux is uniformly
convex in the sense of (2.2). Then, for any ℓ > 0, there exists a global weak dissipative
solution uℓ ∈ L∞([0,∞), H1(R)) ∩ C([0,∞) × R) of (2.1) in the sense of Definition 2.1
satisfying the following:
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• For any T > 0, any bounded set [a, b] ⊂ R and α ∈ [0, 1) there exists C =
C(α, T, a, b, ℓ) > 0 such that

󰁝 T

0

󰁝 b

a

󰀓󰀏󰀏∂tuℓ
󰀏󰀏2+α

+
󰀏󰀏∂xuℓ

󰀏󰀏2+α
󰀔
dx dt 󰃑 C.

• The one-sided Olĕınik inequality

∂xu
ℓ(t, x) 󰃑 1

c1t
2
+ 1

M

a.e. (t, x) ∈ (0,∞)× R,

where M = supx∈R u
′
0(x) ∈ (0,∞].

Moreover, if the initial datum satisfies (2.3), then it holds that

󰀐󰀐uℓ(t)
󰀐󰀐
L∞ 󰃑

󰀐󰀐∂xuℓ(t)
󰀐󰀐
L1 󰃑 󰀂u′

0󰀂L1

󰀕
c1Mt

2
+ 1

󰀖 2c2
c1

,

for all t 󰃍 0.

The proof of Theorem 2.2 is presented in [22] using another approximated equation
involving a cut-off function, rather than the viscous approximation (2.5). However, the
same elements of proof therein remain valid for the viscous approximation, too. See also
[11, 32] for the vanishing viscosity limit for the Camassa–Holm equation.

Henceforth, we agree that uℓ is a dissipative solution obtained from a vanishing viscos-
ity process, though, we believe that it possible to show that this is actually the unique
dissipative solution to (2.1), as discussed in our next remark.

Remark. Dafermos [17] proved, following the characteristics, that dissipative solutions of
the Hunter–Saxton equation are unique. In the same spirit, the uniqueness of dissipative
solutions to the Camassa–Holm equation (CH) has been proved in [28]. Additionally, a
different proof has been established recently in [21]. Although we do not address such an
issue in this paper, we believe that, following the same arguments from [17, 21, 28], one
could prove the uniqueness of dissipative solutions to the regularized equation (2.1), too.

As previously discussed in the introduction, given any solution of (2.1) by Theorem 2.2,
the next natural question to be asked is about its behavior as ℓ tends to zero. In [22],
the first author constructed global dissipative solutions to (2.1) converging to the unique
entropy solution of (Scl) in L∞

loc(R+;Lp
loc(R)), for any p ∈ [1,∞).

The main result of this paper improves the preceding convergence by showing that it
holds globally in space and by also obtaining a precise rate of convergence. This is the
content of the next theorem.

Theorem 2.3. Let uℓ be any solution, given by Theorem 2.2, of (2.1) with a uniformly
convex flux (2.2) and an initial datum u0 ∈ H1(R) satisfying (2.3). Consider, moreover, u
to be the unique entropy solution of the scalar conservation law (Scl) with the same initial
datum u0. Then, for any T > 0, there exists a constant

C = C
󰀓
T, 󰀂u0󰀂H1(R) , 󰀂u

′
0󰀂L1(R) ,M, c1, c2

󰀔
> 0,
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such that 󰀐󰀐uℓ − u
󰀐󰀐
L∞([0,T ];Lp(R)) 󰃑 Cℓ

1
2p , (2.7)

for any ℓ ∈ (0, 1] and p ∈ [1,∞).

Remark. It will be apparent in the proof below that the convergence (2.7) can be improved
to hold in Sobolev spaces which scale below the BV regularity. However, we have chosen
to only state the convergence in Lebesgue spaces for the mere sake of simplicity.

In fact, we will prove later on (see Theorem 4.3) a slightly stronger version of Theorem
2.3 where solely the initial datum of the regularized equation (2.1) is assumed to belong to
Ḣ1(R). In that case, the initial datum of (Scl) is not required to belong to Ḣ1(R) whereas
the initial datum of (2.1) may depend on ℓ and have a growth rate of its Ḣ1-norm at most
of order ℓ−1 as ℓ → 0.

Below, we briefly discuss the main challenges and comment on the strategy of our proof
of the main theorem.

Methodology and idea of the proof. A naive way to study the convergence of uℓ − u
to zero would be by performing Lp energy estimates directly on the equation

∂t(u
ℓ − u) + ∂x

󰀃
f(uℓ)− f(u)

󰀄
+ ℓ2∂xP

ℓ = 0. (2.8)

Such a direct attempt to analyze the fluctuations uℓ−u probably would not be efficient and
the most drawback here would be the potential instability of the term ℓ2∂xP

ℓ, as ℓ → 0, in
any Lebesgue space. Of course, neither the stability of the nonlinear term ∂x

󰀃
f(uℓ)− f(u)

󰀄

in Lebesgue spaces is clear to be under control in the case of weak solutions.
The proof that we are going to present in this paper consists in first studying (2.8) in

a low regularity space, namely in a L∞
loc(R+; Ẇ−1,1(R))-like space. Once this is done, the

convergence in Lebesgue spaces of the fluctuations uℓ − u will be achieved by a direct
interpolation argument, seen that both uℓ and u enjoy some additional regularity — the
BV bound, to be more precise. This strategy of proof draws insight from the method
introduced in [1] to study the stability of Yudovich solutions to the two-dimensional Euler
equations. Technically speaking, the idea consists in taking care of the high and low
frequencies of the L2

x-norm separately: the low frequencies of the fluctuations will converge
to zero (with a certain rate) due to the convergence in low regularity spaces, whereas the
high frequencies are just uniformly bounded due to the additional BV regularity. This
paradigm of proof will be implemented here in L1

x-based spaces instead of L2
x in order to

obtain a better rate of convergence.
Thus, a milestone in our approach is based upon the convergence of an anti-derivative of

the fluctuations in L∞
loc(R+;L1(R)) which is the subject of Section 4.2. A crucial gain in the

analysis of the equation (2.8) in Ẇ−1,1
x is that we will be solely seeking the stability of ℓ2P ℓ,

rather than ℓ2∂xP
ℓ, in Lebesgue spaces. As we shall prove in Section 4.1 later on, the term

ℓ2P ℓ, which is equivalent to ℓ2|∂xuℓ|2, enjoys a decay rate of order ℓ in L1
loc(R+;L1(R)).

This is a consequence of a careful analysis, improving on some results from [22], and is
based on a step-by-step argument (of a bootstrap-type) leading to the aforementioned rate
of convergence.



8 GUELMAME AND HOUAMED

For clarity, we point out that this roadmap of proof will be conducted on regularized
equations; the solutions of which are sufficiently regular to fulfill all the requirements in
our computations and estimates which are close to the solutions uℓ and u. This will be
detailed in Section 3 along side with all the a priori bounds on the regularized solutions.
In the end, the proof of Theorem 2.3 will be outlined in Section 4.3.

Notations. Allow us now to introduce some notations that will be routinely used through-
out the paper. Given two positive quantities A and B, we will often write A ≲ B instead
of A 󰃑 CB when the dependence on the generic constant C > 0 is not of a substantial im-
pact. Moreover, we will sometime use the notation A ≲δ B to emphasize that the generic
constant in that estimate depends on the some parameter δ, which could blow up when δ
approaches some critical values.

3. Uniform estimates

This section is devoted to establishing all the primary lineup of bounds on u and uℓ,
uniformly with respect to the parameter ℓ ∈ (0, 1]. This is obtained as a consequence of
a regularization procedure, made by adding the viscosity dissipation ε∂2

x to the equations
(Scl) and (2.1) and by smoothing out the initial datum. More precisely, we approximate
these equations by

∂tu
ε + ∂xf(u

ε) = ε∂2
xu

ε (3.1)

and

∂tu
ℓ,ε + ∂xf(u

ℓ,ε) + ℓ2∂xP
ℓ,ε = ε∂2

xu
ℓ,ε, P ℓ,ε − ℓ2∂2

xP
ℓ,ε = 1

2
f ′′(uℓ,ε)

󰀃
∂xu

ℓ,ε
󰀄2

(3.2)

respectively, where ε ∈ (0, 1] and both regularized equations are supplemented with the
smooth initial data

uε|t=0 = uε
0

def
= ϕε ∗ u0, uℓ,ε|t=0 = uℓ,ε

0
def
= ϕε ∗ uℓ

0,

where (ϕε)ε∈(0,1] stands for the usual one-dimensional mollifier. In particular, we emphasize
that the regularized solutions uℓ,ε and uε enjoy enough regularities that will allow us to
perform all the computations in this section.

As previously emphasized, we shall prove a slightly stronger version of Theorem 2.3
where the initial data enjoy weaker assumptions. More precisely, henceforth, the original
equations (Scl) and (2.1) will be supplemented with the possibly different initial datum
u0 and uℓ

0, respectively, with the emphasis that the case of Theorem 2.3 is recovered by
setting uℓ

0 = u0 without any substantial change in our arguments below.
In what follows, we stick to the assumptions that

u0 ∈ L2(R) ∩BV (R) and M
def
= sup

x,y∈R, x ∕=y

u0(x)− u0(y)

x− y
< ∞. (3.3)

Moreover, we consider a family (uℓ
0)ℓ>0 of smooth initial data satisfying

󰀂uℓ
0󰀂L2(R) 󰃑 󰀂u0󰀂L2(R), 󰀂∂xuℓ

0󰀂L1(R) 󰃑 󰀂u0󰀂BV (R), sup
x∈R

∂xu
ℓ
0(x) 󰃑 M (3.4)
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and
ℓ󰀂∂xuℓ

0󰀂L2(R) ≲u0 1, (3.5)

for any ℓ ∈ (0, 1]. Notice that, under the first two conditions in (3.4), the weak convergence
of uℓ

0 to u0, as ℓ → 0, is equivalent to its strong convergence in Lp(R), for any p ∈ [2,∞).
This is a direct consequence of Fatou’s lemma.

In Sections 3.1 and 3.2 below, we outline the elements of proof of the energy bounds
as well as the Ẇ 1,1 control on the regularized solutions uniformly with respect to the
parameters ℓ, ε ∈ (0, 1]. Note that similar findings have been established by the first
author in [22] using a different approach, based on a cut-off argument. Here, we show
that the same final bounds on uℓ can be achieved by a classical viscosity-regularization
procedure, as well.

3.1. Uniform bounds on uℓ,ε. We begin with establishing the H1-energy bound on uℓ,ε.
To that end, introducing

qℓ,ε
def
= ∂xu

ℓ,ε

and differentiating (3.2) with respect to the space variable we obtain that

∂tq
ℓ,ε + f ′(uℓ,ε)∂xq

ℓ,ε + 1
2
f ′′(uℓ,ε)(qℓ,ε)2 + P ℓ,ε = ε∂2

xq
ℓ,ε. (3.6)

Thus, it follows, by summing the resulting equations of multiplying (3.2) by uℓ,ε and (3.6)
by ℓ2qℓ,ε, that

1
2
∂t

󰀓󰀃
uℓ,ε

󰀄2
+ ℓ2

󰀃
qℓ,ε

󰀄2󰀔
+ ∂x

󰀓
K
󰀃
uℓ,ε

󰀄
+ 1

2
ℓ2f ′󰀃uℓ,ε

󰀄 󰀃
qℓ,ε

󰀄2
+ ℓ2uℓ,εP ℓ,ε

󰀔

− εℓ2∂x
󰀃
qℓ,ε∂xq

ℓ,ε
󰀄
− ε∂x

󰀃
uℓ,ε∂xu

ℓ,ε
󰀄
= −εℓ2

󰀃
∂xq

ℓ,ε
󰀄2 − ε

󰀃
qℓ,ε

󰀄2
,

where K ′(u) = uf ′(u). Hence, integrating in time and space and using (3.5) we obtain the
energy bound

󰁝

R

󰀃
|uℓ,ε|2 + ℓ2|qℓ,ε|2

󰀄
dx+ 2εℓ2

󰁝 t

0

󰁝

R
|∂xqℓ,ε|2dx dt+ 2ε

󰁝 t

0

󰁝

R
|qℓ,ε|2dx dt

=

󰁝

R

󰀃
|uε

0|2 + ℓ2 |∂xuε
0|

2󰀄 dx ≲u0 1.

(3.7)

Subsequently, integrating the second equation on the right-hand side of (3.2) with respect
to the space variable, we obtain, in view of (2.2), that

1
2
c1ℓ

2󰀂qℓ,ε󰀂2L2 󰃑
󰁝

R
ℓ2P ℓ,ε dx 󰃑 1

2
c2ℓ

2󰀂qℓ,ε󰀂2L2 ≲u0 1. (3.8)

The preceding bounds will come in handy, later on.
The next lemma produces the Olĕınik inequality for uℓ,ε. Again, we outline its proof

thereafter for completeness.

Lemma 3.1. Assume u0 ∈ L2(R) and uℓ
0 satisfying

sup
x∈R

∂xu
ℓ
0(x) 󰃑 M

def
= sup

x,y∈R, x ∕=y

u0(x)− u0(y)

x− y
∈ (0,∞].
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Assume that the flux f fulfills the uniform convexity condition (2.2). Then, it holds that

∂xu
ℓ,ε(t, x) 󰃑 1

c1
2
t+ 1

M

for a.e. (t, x) ∈ (0,∞)× R. (3.9)

Proof. We begin with noticing that Theorem 2.1 from [15] ensures the existence of at least
one point ξ(t) ∈ R such that

h(t)
def
= sup

x∈R
qℓ,ε(t, x) = qℓ,ε(t, ξ(t)),

where the function h is locally Lipschitz and is governed by the equation

dh

dt
(t) = ∂tq

ℓ,ε(t, ξ(t)), for all t > 0.

Since qℓ,ε(t, ·) reaches its maximum at ξ(t), it then follows that

∂xq
ℓ,ε(t, ξ(t)) = 0, ∂2

xq
ℓ,ε(t, ξ(t)) 󰃑 0.

Accordingly, we deduce from (2.2), (3.6) and the fact that P ℓ,ε 󰃍 0 (which can be estab-
lished in a similar way to (2.4)) that

dh

dt
(t) 󰃑 −c1

2
(h(t))2 .

At last, solving the preceding inequality with the initial condition h(0) 󰃑 M completes the
proof of the lemma. □

The next item in our agenda is to establish the Ẇ 1,1 bound on uℓ,ε. This is the content
of the following lemma.

Lemma 3.2. Assume that (3.3), (3.4) and (3.5) hold for some u0 and uℓ
0. Further assume

that the flux f fulfills the uniform convexity condition (2.2). Then, it holds, for all t 󰃍 0,
that

󰀐󰀐∂xuℓ,ε(t)
󰀐󰀐
L1(R) 󰃑 󰀂u0󰀂BV (R)

󰀕
c1Mt

2
+ 1

󰀖 2c2
c1

, (3.10)

for any (ℓ, ε) ∈ (0, 1]× (0, 1].

Remark. Note that, by one-dimensional Sobolev embeddings, the bound stated in the
preceding lemma implies the control

󰀐󰀐uℓ,ε(t)
󰀐󰀐
L∞(R) 󰃑 󰀂u0󰀂BV (R)

󰀕
c1Mt

2
+ 1

󰀖 2c2
c1

, (3.11)

for all t 󰃍 0.

Proof. We begin with introducing the function

Sδ(q)
def
=

󰀻
󰁁󰀿

󰁁󰀽

−q − 1
2
δ, q ∈ (−∞,−δ),

1
2δ
q2, q ∈ [−δ, δ],

q − 1
2
δ, q ∈ (δ,∞),

(3.12)
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for any δ ∈ (0, 1]. Accordingly, it is readily seen that
󰀏󰀏qSδ(q)− q2S ′

δ(q)
󰀏󰀏 󰃑 δSδ(q) (3.13)

and
|q|1{|q|󰃍δ} 󰃑 Sδ(q) +

1
2
δ1{|q|󰃍δ}, |q|1{|q|󰃍δ} 󰃑 2Sδ(q), (3.14)

for any q ∈ R. Additionally, one can easily check that

Sδ(q) ≲δ q
2,

which, in view of the energy bound (3.7), yields that Sδ(q
ℓ,ε)(t, ·) ∈ L1(R) for all δ, ℓ, ε ∈

(0, 1] and any t 󰃍 0.
Next, we want to establish a uniform bound, with respect to the parameters ℓ and δ, on

the preceding L1 control of Sδ(q
ℓ,ε)(t, ·). To that end, multiplying (3.6) by S ′

δ(q
ℓ,ε) yields,

in view of the second equation in (2.5), that

∂tSδ(q
ℓ,ε) + ∂x

󰀃
f ′(uℓ,ε)Sδ(q

ℓ,ε)
󰀄
= f ′′(uℓ,ε)

󰀃
qℓ,εSδ(q

ℓ,ε)− (qℓ,ε)2S ′
δ(q

ℓ,ε)
󰀄
− ℓ2S ′

δ(q
ℓ,ε)∂2

xP
ℓ,ε

+ ε∂x
󰀃
S ′
δ(q

ℓ,ε)∂xq
ℓ,ε
󰀄
− 1

δ
1|qℓ,ε|󰃑δ(∂xq

ℓ,ε)2. (3.15)

Next, writing

−ℓ2S ′
δ(q

ℓ,ε)∂2
xP

ℓ,ε = ℓ2
󰀕
1{qℓ,ε<−δ} −

qℓ,ε

δ
1{|qℓ,ε|󰃑δ} − 1{qℓ,ε>δ}

󰀖
∂2
xP

ℓ,ε

= ℓ2
󰀕
1−

󰀕
1 +

qℓ,ε

δ

󰀖
1{|qℓ,ε|󰃑δ} − 21{qℓ,ε>δ}

󰀖
∂2
xP

ℓ,ε

and making use of the fact that

−ℓ2∂2
xP

ℓ,ε = 1
2
f ′′(qℓ,ε)(qℓ,ε)2 − P ℓ,ε 󰃑 1

2
c2(q

ℓ,ε)2,

which is a direct consequence of (2.2), (3.2) and that P ℓ,ε 󰃍 0, we find that

−ℓ2
󰁝

R
S ′
δ(q

ℓ,ε)∂2
xP

ℓ,ε dx 󰃑 c2
2

󰁝

R

󰀕󰀕
1 +

qℓ,ε

δ

󰀖
1{|qℓ,ε|󰃑δ} + 21{qℓ,ε>δ}

󰀖
(qℓ,ε)2 dx.

Therefore, simplifying the right-hand side by noticing, by definition of Sδ(q), that
󰀕
1 +

qℓ,ε

δ

󰀖
|qℓ,ε|21{|qℓ,ε|󰃑δ} 󰃑 4δSδ(q

ℓ,ε)

and, by virtue of (3.14) and Lemma 3.1, that

2|qℓ,ε|21{qℓ,ε>δ} 󰃑 2
󰀃
Sδ(q

ℓ,ε) + 1
2
δ1{|qℓ,ε|󰃍δ}

󰀄
qℓ,ε1{qℓ,ε>δ}

󰃑 2
c1
2
t+ 1

M

Sδ(q
ℓ,ε) + 2δSδ(q

ℓ,ε),

yields in the end that

−ℓ2
󰁝

R
S ′
δ(q

ℓ,ε)∂2
xP

ℓ,ε dx 󰃑 c2

󰀕
3δ +

1
c1t
2
+ 1

M

󰀖󰁝

R
Sδ(q

ℓ,ε)dx.
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In account of that, integrating (3.15) and utilizing (2.2) together with (3.13) to estimate
the first term in its right-hand side leads to the bound

d

dt

󰁝

R
Sδ(q

ℓ,ε) dx 󰃑
󰀕
4c2δ +

c2
c1t
2
+ 1

M

󰀖󰁝

R
Sδ(q

ℓ,ε) dx,

which implies, by Grönwall’s inequality, that

󰁝

R
Sδ(q

ℓ,ε) dx 󰃑 e4c2δt
󰀕
c1Mt

2
+ 1

󰀖 2c2
c1

󰁝

R
|∂xuℓ

0| dx.

In the end, taking the limit δ → 0 and using the monotone convergence theorem with (3.4)
completes the proof of the lemma. □

3.2. Uniform bounds on uε. For ε > 0, we consider here uε the solution of the viscous
scalar conservation law (3.1). For clarity, we are going to recast the estimates on uε,
without detailed justification. The estimates presented below are well-known, we refer the
reader to [6, 16, 26, 29] for additional details on the viscous approximation of hyperbolic
equations. Moreover, we emphasize that the same arguments presented in the preceding
section can be employed here as well.

The equation (3.1) is globally well-posed, and Lp norms satisfy the maximum principle

󰀂uε󰀂L∞([0,∞),Lp(R)) 󰃑 󰀂u0󰀂Lp(R), (3.16)

for any p ∈ [1,∞], as soon as the initial datum belongs to Lp(R). In our case, due to the
assumption that u0 ∈ H1(R) and the embedding H1(R) ↩→ L2(R) ∩ L∞(R), the bound
(3.16) holds for any p ∈ [2,∞]. Moreover, we can show that the total variation of uε is
decreasing in time, i.e.,

󰁝

R
|∂xuε(t, x)| dx 󰃑

󰁝

R
|∂xuε

0(x)| dx 󰃑 󰀂u0󰀂BV (R), (3.17)

for all t 󰃍 0. Additionally, the solution of (3.1) satisfies the one-sided Olĕınik inequality

∂xu
ε(t, x) 󰃑 1

c1t+
1
M

, (3.18)

for all (t, x) ∈ (0,∞) × R, where M is defined in (3.3). Finally, one can show that, as
ε → 0 and up to a subsequence, we have the convergence

uε → u in C([0, T ];Lp
loc(R)), (3.19)

for any p ∈ [1,∞) and any T > 0, where u is the unique entropy solution of the scalar
conservation law (Scl).
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4. Decay estimates and Convergence

4.1. A crucial decay estimate. An important milestone in our proof of the strong com-
pactness in Lebesgue spaces consists of the analysis of the same problem in a low regularity
space. Interestingly, we are going to show that the convergence in a Ẇ−1,1-like space comes
with a rate. This turns out to be a consequence of Proposition 4.1 below, which can be
considered as the main new contribution in this section, improving on previous results by
the first author. More precisely, in [22], the first author proved that, for any T > 0, any
compact set K ⊂ R and any α ∈ (0, 2

3
), there exists a constant CT,K,α > 0 such that

󰁝 T

0

󰁝

K

ℓ2P ℓ,ε dx dt 󰃑 ℓαCT,K,α,

for all ε > 0, any ℓ ∈ (0, 1]. Here, we provide a twofold improvement on the latter bound
by showing its validity for α = 1 and by also allowing the integral on x to be effective
over the whole real line R instead of a compact set K. This is the content of the next
proposition which is in the crux of the key findings in this paper.

Proposition 4.1. Assume that (3.3), (3.4) and (3.5) hold for some u0 and uℓ
0. Further

assume that the flux f fulfills the uniform convexity condition (2.2). Then, for all T > 0,
there exists CT,u0,c1,c2 > 0 such that

󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt 󰃑 ℓCT,u0,c1,c2 ,

for all ℓ ∈ (0, 1].

Proof. We proceed in four steps by establishing:

(1) A uniform bound on ℓ2|qℓ,ε|P ℓ,ε in L1 ([0,∞)× R), by a suitable energy estimate.
(2) A uniform bound on ℓ2|qℓ,ε|βP ℓ,ε in L1 ([0, T )× R), for any T ∈ (0,∞] and any

β ∈ (2
3
, 1), by an interpolation argument.

(3) A uniform bound on ℓ2|qℓ,ε|2+β in L1 ([0, T )× R), for any finite T > 0, by estimating
differently the case of the barely positive values of qε,ℓ — by the aid of the one-
sided Olĕınik inequality (3.9) —, and the remaining range of its values — by a
constructive energy method.

(4) A decay rate for order ℓ for ℓ2P ℓ,ε in L1 ([0, T ]× R), for any finite time T > 0,
concluding the proof by “bootstrapping” all the bounds shown to hold so far.

Step 1. Multiplying (3.6) by ℓ2|qℓ,ε| we obtain that

∂t
󰀃
1
2
ℓ2qℓ,ε|qℓ,ε|

󰀄
+ ∂x

󰀃
1
2
ℓ2f ′(uℓ,ε)qℓ,ε|qℓ,ε|

󰀄
+ ℓ2|qℓ,ε|P ℓ,ε

= εℓ2∂x
󰀃
|qℓ,ε|∂xqℓ,ε

󰀄
− εℓ2sign(qℓ,ε)(∂xq

ℓ,ε)2.
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Therefore, integrating in time and space, we find that
󰁝

(0,∞)×R
ℓ2|qℓ,ε|P ℓ,ε dx dt 󰃑1

2
ℓ2
󰀕󰁝

R
qℓ,ε0 |qℓ,ε0 | dx dt− lim

t→∞

󰁝

R
qℓ,ε|qℓ,ε| dx dt

󰀖

+ εℓ2
󰁝

(0,∞)×R
(∂xq

ℓ,ε)2 dx dt.

Thus, in view of (3.7), we arrive at the bound
󰁝

(0,∞)×R
ℓ2|qℓ,ε|P ℓ,ε dx dt ≲u0 1, (4.1)

for all ε > 0 and ℓ ∈ (0, 1].

Step 2. Let k ∈ N∗ be fixed and we introduce

β
def
=

2k

2k + 1
∈
󰀅
2
3
, 1
󰀄
.

For any q ∈ R, we define qβ = (q2k)
1

2k+1 󰃍 0. Accordingly, we write by Hölder’s inequality
that

󰁝 T

0

󰁝

R
ℓ2(qℓ,ε)βP ℓ,ε dx dt 󰃑

󰀕󰁝 T

0

󰁝

R
ℓ2|qℓ,ε|P ℓ,ε dx dt

󰀖β 󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1−β

.

Therefore, it follows from (4.1) that
󰁝 T

0

󰁝

R
ℓ2(qℓ,ε)βP ℓ,ε dx dt ≲u0

󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1−β

. (4.2)

In view of (3.8), the preceding control provides us with a uniform bound on ℓ2(qℓ,ε)βP ℓ,ε.
However, in the next step of the proof, we shall make use of the more precise estimate (4.2)
in order to obtain the desired decay, as ℓ → 0, of the term in its right-hand side.

Step 3. Our aim in this step is to obtain a bound on ℓ2|qℓ,ε|2+β in L1
t,x. We begin with

noting that
󰁝 T

0

󰁝

R
|qℓ,ε|2+β1{qℓ,ε󰃍−1} dx dt 󰃑

󰁝 T

0

󰁝

R
|qℓ,ε|β+21{qℓ,ε󰃍0} dx dt

+

󰁝 T

0

󰁝

R
|qℓ,ε|β+21{|qℓ,ε|󰃑1} dx dt

󰃑
󰀃
M1+β + 1

󰀄 󰁝 T

0

󰁝

R
|qℓ,ε| dx dt,

where we employed the one-sided Olĕınik inequality (3.9) in the second estimate. Thus,
we deduce, in view of (3.10), that

ℓ2
󰁝 T

0

󰁝

R
|qℓ,ε|2+β1{qℓ,ε󰃍−1} dx dt ≲T,u0,c1,c2 ℓ

2, (4.3)



REGULARIZED SCALAR CONSERVATION LAW 15

for any finite time T > 0. Now we take care of the the case where qℓ,ε < −1. To that end,
we introduce the function

G(q)
def
=

1

1 + β

󰀻
󰁁󰀿

󰁁󰀽

|q|1+β, q ∈ (−∞,−1],

(1− β)q3 + (2− β)q2, q ∈ [−1, 0],

0, q ∈ [0,∞),

and we emphasize that, by a straightforward computation, one can show that

0 󰃑 G(q) 󰃑 2|q|1+β, for all q ∈ R, (4.4)

and that G is twice differentiable almost every where with

0 󰃑 −G′(q) 󰃑 5|q|β, for all q ∈ R (4.5)

and

G′′(q) 󰃍 0, for almost all q ∈ R. (4.6)

Now, multiplying (3.6) by G′(qℓ,ε) and rearranging the resulting terms yields that

f ′′(uℓ,ε)A(qℓ,ε) = −∂t
󰀃
G(qℓ,ε)

󰀄
− ∂x

󰀃
f ′(uℓ,ε)G(qℓ,ε)

󰀄
−G′(qℓ,ε)P ℓ,ε

+ ε∂x
󰀃
G′(qℓ,ε)∂xq

ℓ,ε
󰀄
− εG′′(qℓ,ε)(∂xq

ℓ,ε)2,
(4.7)

where we denoted

A(qℓ,ε)
def
= 1

2
(qℓ,ε)2G′(qℓ,ε)− qℓ,εG(qℓ,ε) =

(1− β)

2(1 + β)

󰀻
󰁁󰀿

󰁁󰀽

|qℓ,ε|2+β, q ∈ (−∞,−1],

|qℓ,ε|4, q ∈ [−1, 0],

0, q ∈ [0,∞),

whereby, due to the convexity condition (2.2), it is readily seen that

f ′′(uℓ,ε)A(qℓ,ε) 󰃍 c1(1− β)

2(1 + β)
|qℓ,ε|2+β1{q󰃑−1}.

Therefore, integrating (4.7) in space and time and making use of (4.4), (4.5) and (4.6),
dropping the terms having a good sign, infers that

󰁝 T

0

󰁝

R
|qℓ,ε|2+β1{q󰃑−1} dx dt ≲β,c1

󰁝

R
G(qℓ,ε0 ) dx−

󰁝 T

0

󰁝

R
G′(qℓ,ε)P ℓ,ε dx dt

≲β,c1

󰁝

R
|qℓ,ε0 |1+β dx+

󰁝 T

0

󰁝

R
|qℓ,ε|βP ℓ,ε dx dt.

Since β ∈ [2/3, 1), employing Hölder’s inequality, we end up with

ℓ2
󰁝 T

0

󰁝

R
|qℓ,ε|2+β1{q󰃑−1} dx dt ≲β,c1 ℓ

2−2β
󰀐󰀐∂xuℓ

0

󰀐󰀐1−β

L1

󰀃
ℓ
󰀐󰀐∂xuℓ

0

󰀐󰀐
L2

󰀄2β

+ ℓ2
󰁝 T

0

󰁝

R
|qℓ,ε|βP ℓ,ε dx dt.
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All in all, in combination with (4.3) and by employing (4.2) and (3.5), we deduce that

ℓ2
󰁝 T

0

󰁝

R
|qℓ,ε|2+β dx dt ≲T,u0,c1,c2,β ℓ2−2β +

󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1−β

. (4.8)

Step 4. We are now in position to conclude the proof of the proposition. To that end, we
first write by Hölder inequality that

󰁝 T

0

󰁝

R
ℓ2|qℓ,ε|2 dx dt 󰃑 ℓ

2β
1+β

󰀕󰁝 T

0

󰁝

R
|qℓ,ε| dx dt

󰀖 β
1+β

󰀕󰁝 T

0

󰁝

R
ℓ2(qℓ,ε)2+β dx dt

󰀖 1
1+β

≲T,u0,c1,c2,β ℓ
2β
1+β

󰀕󰁝 T

0

󰁝

R
ℓ2(qℓ,ε)2+β dx dt

󰀖 1
1+β

.

Therefore, it follows by virtue of (3.8) that

󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1+β

≲c2

󰀕󰁝 T

0

󰁝

R
ℓ2|qℓ,ε|2 dx dt

󰀖1+β

≲T,u0,c1,c2,β ℓ2β
󰁝 T

0

󰁝

R
ℓ2(qℓ,ε)2+β dx dt,

whereby we deduce, by substituting (4.8), that

󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1+β

≲T,u0,c1,c2,β ℓ2 + ℓ2β
󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1−β

.

Hence, writing, by Young inequality, for any λ > 0, that

󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1+β

≲T,u0,c1,c2,β ℓ2 + Cλℓ
1+β + λ

󰀕󰁝 T

0

󰁝

R
ℓ2P ℓ,ε dx dt

󰀖1+β

and choosing λ as small as it is needed to absorb the last term in the right-hand side by
the right hand side concludes the proof of the proposition. □

4.2. Convergence in a low regularity space. In this section, we establish a stability
estimate for the difference

wℓ,ε def
= uℓ,ε − uε

in a low regularity space. This will be done by particularly studying the evanescence of
the fluctuation

ζℓ,ε(t, x)
def
=

󰁝 x

−∞
wℓ,ε(t, y) dy, (t, x) ∈ (0,∞)× R,

in L∞
t L1

x, as ℓ tends to zero, which crucially builds upon the decay estimate from the
preceding proposition. This is the content of the next proposition.
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Proposition 4.2. Assume that (3.3), (3.4) and (3.5) hold for some u0 and uℓ
0 satisfying

x 󰀁→ ζℓ0(x)
def
=

󰁝 x

−∞

󰀃
uℓ
0(y)− u0(y)

󰀄
dy ∈ L1(R),

for any fixed ℓ ∈ (0, 1]. Further assume that the flux f fulfills the uniform convexity
condition (2.2). Then, it holds that

ζℓ,ε ∈ L∞([0, T ];L1(R))
for all T > 0, with

󰀐󰀐ζℓ,ε
󰀐󰀐
L∞([0,T ];L1(R)) ≲T,u0,c1,c2

󰁝

R
|ζℓ0(x)| dx+ ℓ. (4.9)

Proof. We first observe, in view of (3.1) and (3.2), that wℓ,ε is governed by the equation

∂tw
ℓ,ε + ∂x

󰀃
bℓ,εwℓ,ε

󰀄
+ ℓ2∂xP

ℓ,ε = ε∂2
xw

ℓ,ε, wℓ,ε|t=0 = wℓ,ε
0

def
= uℓ,ε

0 − uε
0, (4.10)

where we have computed that

f(uℓ,ε)− f(uε) =

󰁝 1

0

d

dr
f
󰀃
ruℓ,ε + (1− r)uε

󰀄
dr

=

󰀕󰁝 1

0

f ′ 󰀃ruℓ,ε + (1− r)uε
󰀄
dr

󰀖
wℓ,ε def

= bℓ,εwℓ,ε.

Now, noticing that wℓ,ε
0 ∈ L1(R) by virtue of the interpolation inequality (A.4), one can

show by an energy method (similar to the proof of Lemma 3.2, for instance), for fixed
values of ℓ, ε ∈ (0, 1], that

wℓ,ε ∈ L∞
loc(R+;L1(R)),

for any t 󰃍 0, where, at this stage, the preceding bound is not necessarily uniform when
ℓ → 0. Therefore, by Lebesgue differentiation theorem, the anti-derivative of wℓ,ε, that is
ζℓ,ε which is introduced above, is well defined. More precisely, it satisfies that

∂xζ
ℓ,ε(t, x) = wℓ,ε(t, x), for all (t, x) ∈ R+ × R, (4.11)

and enjoys the bounds
ζℓ,ε ∈ L∞

loc(R+;C0
b (R)),

for any fixed ℓ, ε ∈ (0, 1]. Additionally, thanks to the estimates on uℓ,ε and uε that we
previously established in Section 3, the following bounds

∂xζ
ℓ,ε ∈ L∞(R+;L2(R)) ∩ L∞

loc(R+; Ẇ 1,1(R)),
hold uniformly with respect to the parameters ℓ, ε ∈ (0, 1].

Next, using the indentity ζℓ,ε(0, ·) = ζℓ0 ∗ ϕε, we obtain that

lim
x→∞

ζℓ,ε(0, x) = 0.

Thus, integrating (4.10) over R implies that ζℓ,ε vanishes at infinity for all time. Moreover,
integrating (4.10) over (−∞, x) we deduce that ζℓ,ε is governed by the equation

∂tζ
ℓ,ε + bℓ,ε∂xζ

ℓ,ε + ℓ2P ℓ,ε = ε∂2
xζ

ℓ,ε. (4.12)
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Notice that this equation can be recast as

ζℓ,ε(t, ·) = ζℓ,ε(0, ·) +
󰁝 t

0

󰀃
−bℓ,ε∂xζ

ℓ,ε − ℓ2P ℓ,ε + ε∂2
xζ

ℓ,ε
󰀄
(τ, ·)dτ.

In view of the aforementioned bounds on ζℓ,ε and the estimates that we established in
the previous section, one can show that the right-hand side belongs to L∞

loc(R+;L1(R)),
whereby we deduce that

ζℓ,ε ∈ L∞
loc(R+;L1(R)),

for any ℓ, ε ∈ (0, 1]. Let now δ ∈ (0, 1]. Considering Sδ as is previously defined in (3.12)
and multiplying (4.12) by S ′

δ(ζ
ℓ,ε) yields that

∂tSδ(ζ
ℓ,ε) + ∂x

󰀃
bℓ,εSδ(ζ

ℓ,ε)
󰀄
+ ℓ2P ℓ,εS ′

δ(ζ
ℓ,ε) 󰃑 ε∂x

󰀃
S ′
δ(ζ

ℓ,ε)∂xζ
ℓ,ε
󰀄
+ Sδ(ζ

ℓ,ε)∂xb
ℓ,ε. (4.13)

Next, observe that the Olĕınik inequalities (3.9) and (3.18) with (2.2) entail that

∂xb
ℓ,ε 󰃑 a(t)

def
=

c2
c1
2
t+ 1

M

.

Thus, multiplying (4.13) by exp{−
󰁕 t

0
a(s)ds} and integrating over R, and employing the

simple observation |S ′
δ(ζ

ℓ,ε)| 󰃑 1, we find that

d

dt

󰀕
e−

󰁕 t
0 a(s) ds

󰁝

R
Sδ(ζ

ℓ,ε)(t, x) dx

󰀖
󰃑

󰁝

R
ℓ2P ℓ,ε(t, x) dx.

Therefore, by an integration in time and using Proposition 4.1, we arrive at the bound
󰁝

R
Sδ(ζ

ℓ,ε)(t, x) dx ≲T,u0,c1,c2

󰁝

R
|ζℓ,ε(0, x)| dx+ ℓ 󰃑

󰁝

R
|ζℓ0(x)| dx+ ℓ,

where the last inequality follows from the fact that ζℓ,ε(0, ·) = ζℓ0 ∗ ϕε. Finally, taking
δ → 0 and using the monotone convergence theorem, we obtain (4.9), thereby completing
the proof of the proposition. □

4.3. Proof of the main theorem. We are now in position to prove the main result of
this paper, that is Theorem 2.3, which is a direct consequence of the following slightly
stronger version.

Theorem 4.3. Let u be the unique entropy solution of the scalar conservation law (Scl)
with a uniformly convex flux f satisfying (2.2) and an initial datum u0 ∈ L2(R) ∩ BV (R)
such that

M
def
= sup

x,y∈R, x ∕=y

u0(x)− u0(y)

x− y
< ∞.

Let uℓ be any solution of (2.1), given by Theorem 2.2, for an initial datum satisfying

󰀂uℓ
0󰀂L2(R) 󰃑 󰀂u0󰀂L2(R), 󰀂∂xuℓ

0󰀂L1(R) 󰃑 󰀂u0󰀂BV (R), sup
x∈R

∂xu
ℓ
0(x) 󰃑 M

and

ℓ󰀂∂xuℓ
0󰀂L2(R) ≲u0 1,
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uniformly in ℓ ∈ (0, 1]. Assume further that

x 󰀁→ ζℓ0(x)
def
=

󰁝 x

−∞

󰀃
uℓ
0(y)− u0(y)

󰀄
dy ∈ L1(R),

for any ℓ ∈ (0, 1]. Then, it holds, for any T > 0, that

󰀐󰀐uℓ − u
󰀐󰀐
L∞([0,T ];Lp(R)) ≲u0,T,c1,c2

󰀓󰀐󰀐ζℓ0
󰀐󰀐
L1(R) + ℓ

󰀔 1
2p
, (4.14)

for any ℓ ∈ (0, 1] and p ∈ [1,∞).

Remark. Notice that Theorem 2.3 is recovered by simply taking uℓ
0 = u0, for all ℓ ∈ (0, 1].

Proof. The proof will be achieved in two steps:

(1) Convergence of the approximate solutions in Lebesgue spaces, by an interpolation
argument.

(2) Convergence of the exact solutions in Lebesgue spaces, by local stability with re-
spect to ε.

Step 1. We begin with writing, in view of the identity (4.11) and the interpolation in-
equality (A.4)

󰀐󰀐wℓ,ε(t)
󰀐󰀐
L1(R) ≲

󰀐󰀐ζℓ,ε(t)
󰀐󰀐 1

2

L1(R)

󰀐󰀐∂xwℓ,ε(t)
󰀐󰀐 1

2

L1(R) ,

for any ℓ ∈ (0, 1] and t 󰃍 0. Therefore, applying (3.10), (3.17) and (4.9), we arrive at the
bound

󰀐󰀐wℓ,ε
󰀐󰀐
L∞([0,T ];L1(R)) ≲T,u0,c1,c2

󰀕󰁝

R
|ζℓ0(x)| dx+ ℓ

󰀖 1
2

.

Moreover, using Hölder inequality with (3.11) and (3.16), one can also deduce, for any
p ∈ [1,∞), that

󰀐󰀐wℓ,ε
󰀐󰀐
L∞([0,T ];Lp(R)) ≲T,u0,c1,c2

󰀕󰁝

R
|ζℓ0(x)| dx+ ℓ

󰀖 1
2p

.

Step 2. From (2.6) and (3.19) we deduce that, up to an extraction of a subsequence, we
have the convergence

wℓ,ε → uℓ − u in C([0, T ];Lp
loc(R)),

as ε → 0. Therefore, it follows as a consequence of the convergence result from the
preceding step that

󰀐󰀐uℓ(t)− u(t)
󰀐󰀐
Lp([−n,n])

󰃑 lim inf
ε→0

󰀐󰀐wℓ,ε
󰀐󰀐
C([0,T ];Lp([−n,n]))

≲T,u0,c1,c2

󰀕󰁝

R
|ζℓ0(x)| dx+ ℓ

󰀖 1
2p

,

for any n ∈ N∗ and all t ∈ [0, T ]. In the end, letting n → ∞ yields the validity of (4.14),
thereby concluding the proof of Theorem 2.3. □
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Appendix A. Functional spaces: Interpolation and Embeddings

In this appendix, we agree that d 󰃍 1 denotes the dimension of the space variable. We
shall collect some general results which cover the overall functional embeddings that we
routinely utilize in this paper. This mainly involves properties of distributions belonging
to Besov and BV spaces, which we recall below. For clarity, let us point out here that one
takeaway of this appendix is the justification of the known embedding

M(Rd) ↩→ Ḃ0
1,∞(Rd),

where M(Rd) stands for the space of Radon measures and Ḃ0
1,∞(Rd) is a homogeneous

Besov space, which implies that

BV (Rd) ↩→ Ḃ1
1,∞(Rd),

where BV denotes the space of locally-integrable functions with bounded variations.

A.1. Besov and Sobolev spaces. We denote by S′(Rd) the space of all tempered distri-
butions defined on Rd. Moreover, we say that a tempered distribution f belongs to S′

h(Rd)
if it is not a polynomial near zero. More precisely, if it satisfies that [2, Definition 1.26]

lim
λ→∞

󰀂θ(λD)f󰀂L∞(Rd) = 0,

for any θ ∈ D(Rd), where the symbol θ(D) denotes the Fourier multiplier by the smooth
function θ. Note that the preceding condition is automatically satisfied for any tempered
distribution whose Fourier transform is locally integrable near zero [2, Example 1 page 22].

The homogeneous Besov space Ḃs
p,q(Rd), for s ∈ R and p, q ∈ [1,∞], is defined as the set

of all tempered distributions f in S′
h(Rd) such that

󰀂f󰀂Ḃs
p,q(Rd)

def
=

󰀣
󰁛

j∈Z

󰀓
2js󰀂∆̇jf󰀂Lp(Rd)

󰀔q
󰀤 1

q

< ∞,

with the standard change of definition in the case q = ∞, where (∆̇j)j∈Z denotes the
usual (homogeneous) dyadic partition of unity, which is made of a family of a rescaled
smooth function supported away from zero. See [2, Section 2.2] for the precise definition
and important properties. We also recall the identification (in terms of the semi-norms)

Ḃs
2,2(R2) ≈ Ḣs(Rd), for all s ∈ R,

which defines the homogeneous Sobolev space Ḣs(Rd) as a particular case of Besov spaces.
Finally, we define the Sobolev space Ẇ s,p(Rd), for p ∈ (1,∞) and s ∈ (0, d

p
), as the set of

tempered distributions f ∈ S ′(Rd) such that

󰀂f󰀂Ẇ s,p(Rd)

def
=

󰀐󰀐(−∆)
s
2f

󰀐󰀐
Lp(Rd)

< ∞.
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The inhomogeneous Besov space Bs
p,q(Rd), on the other hand, is defined in a similar

manner and it consists of all tempered distributions f in S′(Rd) such that

󰀂f󰀂Bs
p,q(Rd)

def
=

󰀣
󰁛

j∈Z

󰀃
2js󰀂∆jf󰀂Lp(Rd)

󰀄q
󰀤 1

q

< ∞,

with the standard change of definition in the case q = ∞, where (∆j)j∈Z denotes the usual
(inhomogeneous) dyadic partition of unity. See [2, Section 2.2], again. Finally, we conclude
by pointing out that

Bs
p,q(Rd) ≈ Ḃs

p,q(Rd) ∩ Lp(Rd),

for all s > 0 and p, q ∈ [1,∞].

A.2. Radon measures and BV spaces. The set of Radon measures is defined as the
dual space of continuous functions. More precisely, we introduce

M(Rd)
def
=

󰀋
f ∈ S′(Rd) : 󰀂f󰀂M < ∞

󰀌
,

where
󰀂f󰀂M

def
= sup

ϕ∈C0(Rd)
󰀂ϕ󰀂L∞ 󰃑1

|〈f,ϕ〉|.

Moreover, we define the space of functions with bounded variations as

BV (Rd)
def
=

󰀋
f ∈ L1

loc(Rd) with ∇f ∈ M(Rd)
󰀌
,

equipped with the semi-norm

󰀂f󰀂BV (Rd)

def
= 󰀂f󰀂M(Rd) .

A.3. Embeddings. Here, we recall some functional inequalities which play a crucial role
in our work. We begin with the classical (continuous) Sobolev embeddings, recast in the
general context of Besov spaces [2, Proposition 2.20]

Ḃs
p,1(Rd) ↩→ Ḃs

p,q(Rd) ↩→ Ḃ
s−d( 1

p
− 1

r )
r,q (Rd) ↩→ Ḃ

s−d( 1
p
− 1

r )
r,∞ (Rd),

for all s ∈ R, 1 󰃑 p 󰃑 r 󰃑 ∞ and any q ∈ [1,∞]. Note, moreover, that

Ḃ0
p,1(Rd) ↩→ Lp(Rd) ↩→ Ḃ0

p,∞(Rd), (A.1)

for any p ∈ [1,∞]. Another important feature of embeddings of Besov spaces is the gain
in terms of the third index in interpolation inequalities. More precisely, it holds, for any
f ∈ Ḃs0

p,∞(Rd) ∩ Ḃs1
p,∞(Rd), that

󰀂f󰀂Ḃs
p,1(Rd) ≲ 󰀂f󰀂θḂs0

p,∞(Rd) 󰀂f󰀂
1−θ

Ḃ
s1
p,∞(Rd)

, (A.2)

for any p ∈ [1,∞] and real parameters s0 < s < s1 with s = θs0 + (1− θ)s1 and θ ∈ (0, 1).
At last, the bridge between BV and Besov spaces can be apparent in the following

embedding
󰀂f󰀂Ḃ1

1,∞(Rd) ≲ 󰀂f󰀂BV (Rd) ,
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for all f ∈ BV (Rd). This is a direct consequence of the bound [2, Proposition 2.39]

󰀂∇f󰀂Ḃ0
1,∞(Rd) ≲ 󰀂∇f󰀂M(Rd) . (A.3)

The justification of this inequality can be done by duality, writing [2, Proposition 2.29]

󰀂∇f󰀂Ḃ0
1,∞(Rd) ≲ sup

ϕ∈S(Rd)
󰀂ϕ󰀂

Ḃ0
∞,1

󰃑1

|〈∇f,ϕ〉|,

which, in view of the embedding

Ḃ0
∞,1(Rd) ↩→ C0(Rd),

yields the desired estimate

󰀂∇f󰀂Ḃ0
1,∞(Rd) ≲ sup

ϕ∈C0(Rd)
󰀂ϕ󰀂L∞ 󰃑1

|〈∇f,ϕ〉| = 󰀂∇f󰀂M(Rd) .

Finally, as a by-product of the preceding interpolation and embedding inequalities, one
can show the one dimensional control

󰀂f󰀂L1(R) ≲ 󰀂F󰀂
1
2

L1(R) 󰀂∇f󰀂
1
2

L1(R) , (A.4)

for any f ∈ Ẇ 1,1(R) with an anti-derivative F

x 󰀁→ F (x)
def
=

󰁝 x

−∞
f(y) dy ∈ L1(R).

This can be established by, first, writing in view of the definition of F and (A.1) that

󰀂f󰀂L1(R) ≲ 󰀂∇F󰀂Ḃ0
1,1(R)

= 󰀂F󰀂Ḃ1
1,1(R)

.

Then, employing the interpolation inequality (A.2) leads to the bound

󰀂F󰀂Ḃ1
1,1(R)

≲ 󰀂F󰀂
1
2

Ḃ0
1,∞(R) 󰀂F󰀂

1
2

Ḃ2
1,∞(R) .

Therefore, by further appealing to the definition of F and (A.3), we infer that

󰀂f󰀂L1(R) ≲ 󰀂F󰀂Ḃ1
1,1(R)

≲ 󰀂F󰀂
1
2

M(R) 󰀂∇f󰀂
1
2

M(R) ,

whereby (A.4) follows.
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