ON THE HEIGHT OF SOME GENERATORS OF GALOIS EXTENSIONS WITH BIG GALOIS GROUP
Résumé
We study the height of generators of Galois extensions of the rationals having the alternating group An as Galois group. We prove that if such generators are obtained from certain, albeit classical, constructions, their height tends to infinity as n increases. This provides an analogue of a result by Amoroso, originally established for the symmetric group.
Fichier principal
On_the_height__of_some_generators_of_Galois_extensions_with_big_Galois_group__version_soumise_à_JTHN_ (1).pdf (511.4 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |
Domaine public
|