ON THE HEIGHT OF SOME GENERATORS OF GALOIS EXTENSIONS WITH BIG GALOIS GROUP
Résumé
We study the height of generators of Galois extensions of the rationals having the alternating group An as Galois group. We prove that if such generators are obtained from certain, albeit classical, constructions, their height tends to infinity as n increases. This provides an analogue of a result by Amoroso, originally established for the symmetric group.
Domaines
Théorie des nombres [math.NT]
Fichier principal
Height_of_generators_of_galois_extensions_big_galois_group (1).pdf (509.35 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|