Generalizing OD-Maps to Explore Multi-Dimensional Geospatial Datasets - Archive ouverte HAL
Article Dans Une Revue The Cartographic Journal Année : 2024

Generalizing OD-Maps to Explore Multi-Dimensional Geospatial Datasets

Résumé

Understanding the mobility of entities in geospatial data is important to many fields, ranging from the social sciences to epidemiology, economics, or air traffic control. Visualizing such entities can be challenging as it requires preserving both their explicit properties (spatial trajectories) and their implicit properties (abstract attributes of those trajectories). An existing technique called Origin-Destinations maps preserves both explicit and implicit properties of datasets, using spatial nesting technique. In this paper we aim at generalizing this technique beyond origins and destinations dataset (2-attribute datasets), to explore multi-dimensional datasets (N-attribute datasets) with the nesting approach. We present an abstraction frameworkwe call GRIDIFY-and an interactive open-source tool implementing this framework using several levels of nested maps. We report on several case studies representative of the types of dimensions found in geospatial datasets (quantitative, temporal, discrete, boolean), showing the applicability of this approach to achieve visual exploratory analysis tasks in various application domains.
Fichier principal
Vignette du fichier
_Cartographic__Gridify.pdf (3.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04471211 , version 1 (21-02-2024)

Identifiants

Citer

Liqun Liu, Romain Vuillemot, Philippe Rivière, Jeremy Boy, Aurélien Tabard. Generalizing OD-Maps to Explore Multi-Dimensional Geospatial Datasets. The Cartographic Journal, In press, pp.20. ⟨https://doi.org/10.1080/00087041.2024.2325191⟩. ⟨hal-04471211⟩
193 Consultations
140 Téléchargements

Altmetric

Partager

More