On two modular geometric realizations of an affine Hecke algebra - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

On two modular geometric realizations of an affine Hecke algebra

Résumé

In this paper we construct equivalences of monoidal categories relating three geometric or representation-theoretic categorical incarnations of the affine Hecke algebra of a connected reductive algebraic group $G$ over a field of positive characteristic: a category of Harish-Chandra bimodules for the Lie algebra of $G$; the derived category of equivariant coherent sheaves on (a completed version of) the Steinberg variety of the Frobenius twist $G^{(1)}$ of $G$; a derived category of constructible sheaves on the affine flag variety of reductive group which is Langlands dual to $G^{(1)}$. These constructions build on the localization theory developed by the first author with Mirković and Rumynin and previous work of ours (partly joint with L. Rider), and provide an analogue for positive-characteristic coefficients of a construction of the first author. As an application, we prove a conjecture by Finkelberg-Mirković giving a geometric realization of the principal block of algebraic representations of $G$.
Fichier principal
Vignette du fichier
reg-quotient-part3.pdf (896.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04468114 , version 1 (20-02-2024)

Identifiants

Citer

Simon Riche, Roman Bezrukavnikov. On two modular geometric realizations of an affine Hecke algebra. 2024. ⟨hal-04468114⟩
27 Consultations
37 Téléchargements

Altmetric

Partager

More