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ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN

AFFINE HECKE ALGEBRA

ROMAN BEZRUKAVNIKOV AND SIMON RICHE

Abstract. In this paper we construct equivalences of monoidal categories

relating three geometric or representation-theoretic categorical incarnations of
the affine Hecke algebra of a connected reductive algebraic group G over a

field k of positive characteristic:

• a category of Harish-Chandra bimodules for the Lie algebra of G;
• the derived category of equivariant coherent sheaves on (a completed

version of) the Steinberg variety of the Frobenius twist G(1) of G;

• a derived category of constructible sheaves on the affine flag variety of
reductive group which is Langlands dual to G(1).

These constructions build on the localization theory developed in [BMR1,

BMR2] and previous work (partly joint with L. Rider) in [BRR, BR4], and
provide an analogue for positive-characteristic coefficients of the main result

of [Be4]. As an application, we prove a conjecture by Finkelberg-Mirković giv-

ing a geometric realization of the principal block of algebraic representations
of G.
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1. Introduction

1.1. Two geometric realizations of an affine Hecke algebra. This paper is
the third (and last) part of a project started in [BRR] (joint with L. Rider) and
pursued in [BR4], whose goal was to build an equivalence of monoidal categories
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2 R. BEZRUKAVNIKOV AND S. RICHE

between two geometric realizations (or “categorifications”) of the affine Hecke al-
gebra1 attached to a connected reductive algebraic group, in the case of positive-
characteristic coefficients, thereby providing a “modular” counterpart to the main
result of [Be4].

Namely, consider a connected reductive algebraic group G with simply-connected
derived subgroup over an algebraically closed field k of very good characteristic
` > 0. Fix also a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. Then the
extended affine Weyl group W is the semi-direct product

W := Wf nX∗(T)

where Wf is the (finite) Weyl group of (G,T) and X∗(T) is the character lattice of
T (a free abelian group of finite type). The choice of B determines on this group a
quasi-Coxeter group structure (i.e. W is a semi-direct product of a Coxeter group
by an abelian group acting by Coxeter group automorphisms), and in particular
a length function ` : W → Z≥0 and an associated Hecke algebra HW. Here HW

is a Z[v, v−1]-algebra endowed with a basis (Hw : w ∈ W), where multiplication
satisfies

Hy ·Hw = Hyw if y, w ∈W satisfy `(yw) = `(y) + `(w)

and the elements associated with simple reflections satisfy the usual quadratic re-
lation.

This algebra appears naturally in two different contexts. First, consider a finite
field F0 of characteristic 6= ` and cardinality q, the split connected reductive alge-
braic group G0 over F0 which is Langlangs dual to the Frobenius twist G(1), and
the reductive group GF0((z)) over the local field F0((z)) obtained by base change.2

An important result of Iwahori–Matsumoto [IM] states that the Hecke algebra as-
sociated with this group and an Iwahori subgroup identifies with the specialization
of HW to v = q−

1
2 . (The importance of this algebra stems from later results of

Borel [Bo], showing that it “controls” the category of smooth complex representa-
tions of GF0((z))(F0((z))) generated by their Iwahori-invariant vectors.) In view of
Grothendieck’s “faisceau-fonctions” dictionary, this suggests that, denoting by F
an algebraic closure of F0 and by G the reductive group obtained from G0 by base
change to F, the category of Iwahori-equivariant constructible sheaves on the affine
flag variety of G (over F) should be considered a categorical incarnation of HW.

On the other hand, consider the (Grothendieck–)Steinberg variety St of G. More
explicitly we have

St = g̃ ×g∗ g̃

where g̃ is the Grothendieck resolution associated with G, parametrizing pairs
(ξ,B′) where B′ is a Borel subgroup of G and ξ is a linear form on the Lie algebra
g of G which vanishes on the Lie algebra of the unipotent radical of B′, and the mor-
phism g̃→ g∗ is the obvious one. This variety admits a canonical action of G, and

1Technically, the categories we consider are rather incarnations of the group algebra of the

affine Weyl group.
2Instead of working over a local field of equal characteristic one can work over any local field

with residue field F0; the same Hecke algebra plays the same role in this version. The geometric
picture we will consider below is modeled on the case of equal characteristic, which explains our

restriction here. A geometric picture closer to the mixed characteristic setting has been developed

more recently by Zhu and Scholze (among others), and some specialists expect that an equivalence
similar to ours can be developed in this setting; see [ALWY] for work in this direction. We will

not consider this here.
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an action of the multiplicative group Gm by dilation along the fibers of the projec-
tion to G/B×G/B. Taking Frobenius twists we obtain an action of G(1)×(Gm)(1)

on St(1), so that we can consider the equivariant K-theory KG(1)×(Gm)(1)(St(1)).
This abelian group has a natural structure of Z[v, v−1]-algebra, and a result of
Kazhdan–Lusztig [KL] and Ginzburg [CG] (see also [Lu2]) states that there exists
a Z[v, v−1]-algebra isomorphism

KG(1)×(Gm)(1)(St(1)) ∼= HW.

The bounded derived category of G(1) × (Gm)(1)-equivariant coherent sheaves on

St(1) can therefore also be considered a categorical incarnation of HW.
The main result of this paper is an equivalence of monoidal categories relating

(appropriate versions of) these two categorical incarnations, which adapts a similar
equivalence for characteristic-0 coefficients due to the first author [Be4].

1.2. The equivalence. We continue with our algebraically closed field k, the con-
nected reductive algebraic group G over k (which we no longer assume to have
simply-connected derived subgroup), its subgroups B and T, and the Weyl group
Wf . Let also t be the Lie algebra of T. Then there exists a canonical morphism
St→ t∗×t∗/Wf

t∗, and we denote by St∧ the fiber product of St with the spectrum
of the completion of O(t∗×t∗/Wf

t∗) with respect to the maximal ideal correspond-
ing to the closed point (0, 0). This scheme is noetherian, and admits a canonical
(algebraic) action of G, so that we can consider the bounded derived category

DbCohG
(1)

(St∧(1))

of G(1)-equivariant coherent sheaves on St∧(1). Standard considerations allow to
construct a monoidal product on this category given by convolution, see [DR].

Remark 1.1. We insist that St∧ is a plain scheme with an algebraic action of G,
and not a formal scheme.

On the other hand, consider an algebraically closed field F of characteristic p 6= `,
and the connected reductive group G whose Langlands dual over k is G(1). Let
also T be a maximal torus in G with a fixed identification X∗(T ) = X∗(T(1)), and
denote by B the Borel subgroup containing T whose roots are the coroots of B(1).
Then we consider the loop group LG of G, the arc group L+G ⊂ LG, the Iwahori
subgroup I ⊂ L+G determined by B, and its pro-unipotent radical Iu ⊂ I. We have

the “extended affine flag variety” F̃lG := LG/Iu, a T -torsor over the usual affine
flag variety FlG := LG/I, and we consider the “completed derived category” D∧Iu,Iu
with coefficients in k in the sense of Yun [BY, Appendix A] associated with this
ind-scheme, the action of Iu, and the stratification given by I-orbits. This category
also has a natural structure of monoidal category.

With this notation introduced one can state the main result of the paper. For
this we assume that, for any indecomposable constituent in the root system of
(G,T), ` is strictly bigger than the corresponding bound in Figure 1.1. Under this
assumption, we construct an equivalence of monoidal triangulated categories

(1.1) DbCohG
(1)

(St∧(1)) ∼= D∧Iu,Iu ;

see Theorem 9.1. This equivalence satisfies various favorable properties, and in
particular a compatibility with the geometric Satake equivalence for the group G
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An (n ≥ 1) Bn (n ≥ 2) Cn (n ≥ 3) Dn (n ≥ 4) E6 E7 E8 F4 G2

n+ 1 2n 2n 2n− 2 12 19 31 12 6

Figure 1.1. Bounds on `

(see §1.6 below), where perverse sheaves on the affine Grassmannian are “lifted” to
objects of D∧Iu,Iu via (a variant of) Gaitsgory’s central functor [G1].

Remark 1.2. (1) As the reader will notice, for all types except E7 and E8 the
bound in Figure 1.1 is the Coxeter number h of the root system; in the latter
cases the bound is h+ 1. In the body of the paper we work under slightly
different assumptions, that allow e.g. the group GL`(k) in characteristic `.
See §1.5 below for comments on our assumptions, and §9.4 for a discussion
of the difference between the assumptions in the body of the paper and
those considered here.

(2) The equivalence (1.1) involves on the “coherent” side the scheme St∧(1),
which is not of finite type over k, and on the constructible side the “com-
pleted” category D∧Iu,Iu . Once this equivalence is established, one can de-
duce a version which involves only a scheme of finite type and a “usual”
category of constructible sheaves. Namely, consider the bounded derived

categoryDbCohG
(1)

N (St(1)) of coherent sheaves on St(1) which are supported
scheme theoretically on the preimage of (0, 0) ∈ t∗(1) ×t∗(1)/Wf

t∗(1). On
the other hand consider the full triangulated subcategory DIu,Iu of the Iu-

equivariant bounded derived category of sheaves on F̃lG generated by ob-
jects obtained by pullback from Iu-equivariant complexes on FlG. Then
there exist fully faithful functors

DbCohG
(1)

N (St(1))→ DbCohG
(1)

(St∧(1)), DIu,Iu → D∧Iu,Iu

whose essential images are ideals for the monoidal products, and the equiv-
alence (1.1) restricts to an equivalence of monoidal categories

(1.2) DbCohG
(1)

N (St(1)) ∼= DIu,Iu .

See Theorem 9.3 for details.
(3) Let St′ be the preimage of t∗×t∗/Wf

{0} ⊂ t∗×t∗/Wf
t∗ in St, and consider

the Iu-equivariant bounded derived category DIu,I of k-sheaves on the affine
flag variety FlG. We will also establish a variant of (1.1), in the form of an
equivalence of triangulated categories

DbCohG
(1)

(St′(1)) ∼= DIu,I

which intertwines the actions of the categories in (1.1) on both sides, see
Theorem 9.5. This equivalence also has its counterpart in [Be4]. The
latter paper contains a second variant of (1.1), describing the I-equivariant
bounded derived category of sheaves on FlG in terms of equivariant coherent
sheaves on a certain dg-scheme. We will not consider any version of this
equivalence here. (It is likely that the two variants discussed here, and
many more variants associated to choices of parabolic subgroups, can be
deduced formally from (1.1) once an appropriate ∞-categorical framework
has been developed, following the work done in [CD] for characteristic-0
coefficients.)
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1.3. Harish-Chandra bimodule. As explained above, the equivalence (1.1) is a
“modular variant” of an equivalence for characteristic-0 coefficients proved in [Be4].
Technical obstacles prevent us from using the same strategy as in [Be4] (based on
the earlier work [AB] with Arkhipov) in the modular world, so our approach will
be different. It is based on the use of a third monoidal category, which serves as a

kind of bridge between DbCohG
(1)

(St∧(1)) and D∧Iu,Iu .
Namely, consider the algebra

U := Ug ⊗ZFr
Ugop

where g is the Lie algebra of G, Ug is its universal enveloping algebra, and ZFr is
the Frobenius center of Ug. Consider also the Harish-Chandra center ZHC of Ug;
then U admits a central subalgebra isomorphic to

ZHC ⊗ZFr∩ZHC
ZHC

∼= O(t∗/(Wf , •)×t∗(1)/Wf
t∗/(Wf , •)).

Here the isomorphism is induced by the Harish-Chandra isomorphism

ZHC
∼= O(t∗/(Wf , •))

(where • is the usual “dot-action” of Wf on t∗) and the morphism t∗/(Wf , •) →
t∗(1)/Wf is induced by the Artin–Schreier morphism t∗ → t∗(1). We will denote

by U0̂,0̂ the tensor product of U with the completion of ZHC ⊗ZFr∩ZHC ZHC with
respect to the ideal corresponding to the closed point

(0, 0) ∈ t∗/(Wf , •)×t∗(1)/Wf
t∗/(Wf , •).

Then U0̂,0̂ is a noetherian ring endowed with a structure of algebraic G-module
compatible with the multiplication, and we can consider the category

HC0̂,0̂

of Harish-Chandra modules for this algebra, i.e. finitely generated G-equivariant

U0̂,0̂-modules such that the differential of the action of G coincides with the restric-
tion of the action of U0̂,0̂ along the morphism Ug→ U0̂,0̂ induced by the assignment

x 7→ x ⊗ 1 − 1 ⊗ x (x ∈ g). Here again, the bounded derived category DbHC0̂,0̂

admits a natural monoidal structure.

Remark 1.3. We insist that U0̂,0̂ is not defined as a completion of U, but rather as
a tensor product with a completion of a central subalgebra. In this way, and since

G acts trivially on this subalgebra, U0̂,0̂ inherits from U an algebraic action of G.

On the way to establishing the equivalence (1.1), we will also establish an equiv-
alence of monoidal categories

(1.3) DbCohG
(1)

(St∧(1)) ∼= DbHC0̂,0̂.

This equivalence will be obtained using a variant of the localization theory devel-
oped by the first author with Mirković and Rumynin in [BMR1, BMR2, BM], which
can be considered a “modular” counterpart to the Bĕılinson–Bernstein localization
theory for complex semisimple Lie algebras. Notice, however, that the statement
of (1.3) is simpler than the main result of [BMR1] in that the latter involves mod-
ules over a nonsplit Azumaya algebra, while the former does not due to cancellation

of gerbe classes coming from the two factors in the fiber product St(1).
We believe that the equivalence (1.3) is interesting in its own right, in that it

provides a third incarnation of the “affine Hecke category.” But technically, its role
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in our construction of (1.1) is that it allows us to check properties of a certain family

of objects in DbCohG
(1)

(St∧(1)) by translating the question in DbHC0̂,0̂, where it
becomes easy; see §1.4 below for more details.

Remark 1.4. (1) The category HC0̂,0̂ has already appeared in our earlier pa-
per [BR3], where we established a version of the equivalence (1.3) “over the
Kostant section.” Some of our arguments are based on the results of [BR3],
but the construction of the full equivalence requires further work.

(2) During the final stages of preparation of this manuscript a version of equiv-
alence (1.3) was also obtained independently by Losev [Lo1]. Our construc-
tion is partly similar although some of the proofs are different

(3) As in Remark 1.2(2), once the equivalence (1.3) is proved one can deduce

a version not involving any completion: if we denote by HC0̂,0̂
nil the cate-

gory of finitely generated Harish-Chandra U-modules such that the ideal of
ZHC ⊗ZFr∩ZHC ZHC corresponding to the point (0, 0) acts nilpotently, then
the equivalence restricts to an equivalence of monoidal categories

(1.4) DbCohG
(1)

N (St(1)) ∼= DbHC0̂,0̂
nil .

(4) As in Remark 1.2(3), the results we have presented above have a variant
where one imposes the action of the Harish-Chandra center on the right
to factor through the trivial character; this involves a category of Harish-

Chandra bimodules denoted HC0̂,0.

1.4. Soergel bimodules. Our construction of the equivalence (1.1) follows a fa-
miliar pattern originating from the work of Soergel [So]: we identify on both sides a
monoidal additive subcategory A such that the whole category can be reconstructed
as the bounded homotopy category of A, and then we identify these additive cat-
egories by comparing both of them to a category of “Soergel bimodules” for the
group W. On the constructible side, this construction is the content of [BR4].
In this case the additive category we consider is the subcategory of tilting per-
verse sheaves in D∧Iu,Iu . The category of “Soergel bimodules” we use is in fact a
category of representations of a smooth affine group scheme over an affine scheme
constructed out of the restriction of the universal centralizer to a Steinberg section.
(A variant of this category is considered in [BR3]; this variant can be related to a
“true” category of Soergel bimodules via the work of Abe [Ab1].)

On the side of the category DbCohG
(1)

(St∧(1)), we do not a priori have a “nice”
t-structure such that we can consider tilting objects in the heart. We use the “lo-
calization” equivalence (1.3) to construct a subcategory “A” which “behaves like a
category of tilting objects,” i.e. such that there exists no nonzero morphisms from
an object of A to a nonzero cohomological shift of an object of A. More specifically,

this subcategory of DbHC0̂,0̂ is generated (under the monoidal product, directs sums
and direct summands) by the “wall crossing bimodules” studied in [BR3], i.e. the
objects which realize wall-crossing functors on the principal block of the category
Rep(G) of finite-dimensional algebraic G-modules. The relation with Soergel bi-
modules is obtained via a variant of the methods developed in [BR3].

1.5. Nilpotent cone versus unipotent cone. There exists a variant of the Stein-
berg variety which is obtained by replacing g̃ by the “multiplicative” Grothendieck

resolution G̃ parametrizing pairs (g,B′) where B′ is a Borel subgroup of G and
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g ∈ B′, and g∗ by G. This variant is denoted Stm. This scheme admits a natural
morphism to T ×T/Wf

T, and we denote by St∧m the fiber product of Stm with
the spectrum of the completion of O(T×T/Wf

T) with respect to the ideal corre-
sponding to the point (1, 1) ∈ T ×T/Wf

T. As part of our constructions we prove
that under our assumptions there exists a G-equivariant isomorphism of schemes
St∧m

∼= St∧, which induces an equivalence of monoidal categories

(1.5) DbCohG
(1)

(St∧(1)
m ) ∼= DbCohG

(1)

(St∧(1)).

Combining this equivalence with (1.1) we deduce an equivalence of monoidal cate-
gories

DbCohG
(1)

(St∧(1)
m ) ∼= D∧Iu,Iu .

We expect this version of our equivalence to be more “canonical,” and in fact
to hold under much weaker assumptions on ` (e.g. for ` good). In fact, the scheme
that appears naturally from the study of D∧Iu,Iu is St∧m. Some aspects of the proofs

in [BRR, BR4], which we expect to be artificial, had already forced us to impose
stronger assumptions. As explained above the constructions of the present paper
rely on the localization theory of [BMR1, BMR2, BM], which involves the scheme St
and not Stm, and moreover requires the condition that ` is larger than the Coxeter
number h (so that the weight 0 ∈ t∗ is regular). This explains the appearance of St∧

here, and the further restrictions on ` that we impose. A proof in larger generality
would most likely require a direct and better understanding of the structure of the

category DbCohG
(1)

(St∧(1)
m ).

1.6. Application to the Finkelberg–Mirković conjecture. Our desire to con-
struct the equivalence (1.1) comes from expected applications to representation
theory of reductive groups in positive characteristic. In fact the characteristic-0
version of this equivalence from [Be4], and its preliminary step obtained in [AB],
have already found important applications to the representation theory of quantum
groups at roots of unity [Be2] and of representations of Lie algebras of reductive
groups in large characteristic [BM, BeLo1, BeLo2]. We expect its modular version
to allow new applications where representations of quantum groups are replaced by
algebraic representations of reductive groups, and to extend the results on repre-
sentations of Lie algebras to general characteristics.

Remark 1.5. The equivalences of [AB, Be4] have also found important applications
in another direction, namely the Geometric Langlands Program, see e.g. [BCHN,
HZ] for two examples. It is likely that its modular counterpart will lead to refine-
ments of these results for positive-characteristic coefficients, but no concrete result
in this direction will be discussed here.

As an illustration of this idea, here we establish an equivalence of categories
conjectured by Finkelberg–Mirković [FM]. Namely, recall that the geometric Satake
equivalence provides an equivalence of monoidal categories between the category
Rep(G(1)) of finite-dimensional algebraic representations of G(1) (endowed with the
tensor product of representations) and the category PL+G,L+G of L+G-equivariant
k-perverse sheaves on the affine Grassmannian GrG := LG/L+G.

One can “enlarge” the categories on both sides of this equivalence in the fol-
lowing way. Let Rep〈0〉(G) be the “extended principal block” in Rep(G), i.e. the
Serre subcategory generated by the simple objects whose highest weights belong
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to the W-orbit of 0 (for the “dot” action of W on X∗(T)). Then there exists a
canonical action of the category Rep(G(1)) on Rep〈0〉(G) given by tensor product
with pullbacks under the Frobenius morphism. On the other hand, consider the
“opposite” affine Grassmannian Gr′G = L+G\LG with the natural action of Iu (in-
duced by multiplication on the right on LG), and denote by PL+G,Iu the category

of Iu-equivariant k-perverse sheaves on Gr′G. Then there exists a canonical action
of PL+G,L+G on PL+G,Iu defined by convolution on the left.

The conjecture of Finkelberg–Mirković that we establish here (under the assump-
tion considered in §1.2) is that there exists an equivalence of abelian categories

Rep〈0〉(G) ∼= PL+G,Iu

intertwining the actions of Rep(G(1)) and PL+G,L+G (identified via the geometric
Satake equivalence); see Theorem 11.2. This equivalence induces the obvious bijec-
tion between the isomorphism classes of simple objects on both sides. One of the
motivations for this equivalence is that it makes Lusztig’s character formula [Lu1]
for simple representations in Rep〈0〉(G) in large characteristics completely trans-
parent, since it transfers to the standard observation that fibers of intersection
cohomology sheaves in PL+G,Iu have the same dimension in large characteristic and
in characteristic 0.

A crucial step in the proof of this theorem is the identification of the image of
the perverse t-structure under the equivalence

DIu,Iu
∼= DbHC0̂,0̂

nil

obtained by combining (1.2) and (1.4); the answer is given in terms of the perverse
coherent t-structure constructed and studied in [AriB]. Here again, a closely related
result appears in [Lo1] (with other applications in mind), but our proof is different;
in fact it follows ideas that already played a crucial role in [BM].

In a different direction, notice that by [Lo1, Proposition 6.3] there is a derived

equivalence between the category HC0̂,0 of Remark 1.4(4) and an appropriately de-
fined modular category O. Thus our main result is related to the modular version of
Gaitsgory’s conjectural extension of the Kazhdan–Lusztig equivalence [G2] recently
proved in [CF] (see also [Lo2, Si] for alternative proofs of closely related results). In
fact, a study of this modular category O using constructible sheaves based (among
other things) on the results of the present paper is the subject of a joint project of
the second author with P. Achar and G. Dhillon.

1.7. Contents. In Section 2 we prove preliminary results on Harish-Chandra bi-
modules. In Section 3 we establish a “completed” version of the results of [BMR1,
BMR2] adapted to the schemes and rings we want to consider. In Section 4 we con-
struct equivalences relating our categories of Harish-Chandra bimodules to some
categories of D-modules on (partial) flag varieties. In Section 5 we deduce a con-
struction of the equivalence (1.3). In Section 6 we discuss the compatibility of our
constructions with the natural convolution products on the categories involved.

In Section 7 we study a family of objects in DbCohG
(1)

(St∧(1)) and DbHC0̂,0̂

associated to elements in the braid group of W. (These elements form a categorical
incarnation of the “standard basis” of the Hecke algebra HW.) In Section 8 we
introduce and study a functor of “restriction to a Steinberg section” that will allow

us to apply the strategy outlined in §1.4 in the category DbCohG
(1)

(St∧(1)). (This
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functor will play the role of “functor V” from Soergel’s point of view.) In Section 9
we prove the equivalence (1.1).

In Section 10 we define the “perverse coherent t-structure” on the category

DbHC0̂,0̂
nil , and show that it is the image of the perverse t-structure on DIu,Iu . In

Section 11 we apply this to the proof of the Finkelberg–Mirković conjecture.
The paper finishes with two appendices treating some technical constructions

used in the body of the paper.

1.8. Some notations. If k is a perfect field of characteristic ` > 0, given a k-
scheme X, we will denote by X(1) the associated Frobenius twist defined as the
fiber product

X(1) := X ×Spec(k) Spec(k),

where the morphism Spec(k)→ Spec(k) is associated with the map x 7→ x`. (The
projection X(1) → X is an isomorphism of abstract schemes, but not of k-schemes.)
The Frobenius morphism then defines a morphism of k-schemes FrX : X → X(1).

If X = Spec(A) is an affine scheme and Y ⊂ X is a closed subscheme, defined
by an ideal I ⊂ A, we will denote by FNX(Y ) the spectrum of the completion of A
with respect to I. (Here, “FN” stands for “formal neighborhood.”) In this setting
we have a canonical morphism of schemes FNX(Y )→ X.

If A is a ring, resp. a noetherian ring, we will denote by Mod(A), resp. Modfg(A),
the category of left A-modules, resp. of finitely generated left A-modules. If k is
a commutative ring and H is a flat affine group scheme over k, we will denote
by Rep∞(H) the category of H-modules, i.e. of O(H)-comodules, and, in case k
is noetherian, by Rep(H) the subcategory of representations whose underlying k-
module is finitely generated. If A is a k-algebra endowed with an action of H we will
denote by ModH(A) the category of H-equivariant left A-modules and, in case A is

noetherian, by ModHfg(A) the subcategory of modules which are finitely generated
over A.
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2. Harish-Chandra bimodules

2.1. Notation. We let k be an algebraically closed field of characteristic ` > 0, and
G be a connected reductive algebraic group over k. We also fix a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B, and denote by U the unipotent radical of B.
We will also denote by g, b, t, u the Lie algebras of G, B, T, U respectively.

We will denote by R ⊂ X∗(T) the root system of (G,T). The choice of B
determines a system of positive roots R+ ⊂ R (chosen as the T-weights in g/b),
and we denote by Rs the associated system of simple roots. For any α ∈ R, we will
denote by α∨ ∈ X∗(T) the corresponding coroot. We will also denote by Wf the
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Weyl group of (G,T); the reflection associated with a root α will be denoted sα.
The set Sf = {sα : α ∈ Rs} is a subset of Coxeter generators of Wf ; the longest
element in this group will (as usual) be denoted w◦. Given a weight λ ∈ X∗(T),
we will denote by λ ∈ t∗ its differential.

We will make the following (standard) assumptions:

(1) the derived subgroup DG of G is simply connected;
(2) ` is odd and good for G;
(3) g admits a nondegenerate G-invariant bilinear form;
(4) X∗(T)/ZR has no `-torsion.

In particular, assumption (1) ensures that there exists ς ∈ X∗(T) which satisfies
〈ς, α∨〉 = 1 for any α ∈ Rs. We fix such a weight once and for all. (None of our
constructions below will depend on this choice) In view of (3) we can (and will) fix

a G-equivariant isomorphism g
∼−→ g∗. It is clear that these assumptions are stable

under passage to a Levi subgroup.

Remark 2.1. (1) Assumptions (3) and (4) are automatic in case ` is very good
for G; see [Le, Proposition 2.5.12] for (3).

(2) In [BR3] we imposed the further assumption that G is semisimple. How-
ever, all the results of that paper hold under the present assumptions.

Chevalley’s theorem implies that the isomorphism classes of simple objects in
Rep(G) are in a canonical bijection (via the theory of highest weights) with the
subset X∗(T)+ ⊂ X∗(T) of dominant weights; the simple module of highest weight
λ ∈ X∗(T)+ will be denoted L(λ). For λ ∈ X∗(T) we will denote by Rep〈λ〉(G) the

Serre subcategory of Rep(G) generated by the simple objects whose highest weights
belong to

{w(λ+ ς)− ς + `µ : w ∈Wf , µ ∈ X∗(T)} ∩X∗(T)+.

The linkage principle implies this subcategory is a direct summand in Rep(G). The
category Rep(G) admits a canonical highest weight structure with weight poset
X∗(T)+, and with standard, resp. costandard, objects the Weyl, resp. induced,
modules. This structure induces a highest weight structure on each subcategory
Rep〈λ〉(G).

We will denote by Tilt(G) the full subcategory of Rep(G) consisting of tilting
modules. It is a standard fact that the set of isomorphism classes of indecomposable
objects in Tilt(G) is in a canonical bijection with X∗(T)+. For any λ ∈ X∗(T)+

we fix an object T(λ) in the class corresponding to λ; it is well known that for any
λ ∈ X∗(T)+ we have T(λ)∗ ∼= T(−w◦(λ)).

2.2. Center of the universal enveloping algebra. We consider the universal
enveloping algebra Ug of g. This algebra admits a central subalgebra ZFr, called
the “Frobenius center,” and defined as the subalgebra generated by the elements
of the form x` − x[`] for x ∈ g. (Here, (−)[`] : g → g is the restricted `-th power
operation.) We have a canonical algebra isomorphism

(2.1) ZFr
∼−→ O(g∗(1))

induced by the map x 7→ x` − x[`].
Consider now the adjoint action of G on g, and the induced action on Ug. It is

easily seen that the subalgebra ZHC := (Ug)G ⊂ Ug (called the “Harish-Chandra
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center”) is also central. Under our present assumptions, by [J1, §9] we have a
“Harish-Chandra isomorphism”

(2.2) (Ug)G
∼−→ S(t)(Wf ,•) = O(t∗/(Wf , •)),

where Wf acts on t∗ via the “dot action” defined by

w • ξ = w(ξ + ς)− ς.
Defining a k-algebra morphism ZHC → k is therefore equivalent to fixing a k-point
in t∗/(Wf , •), i.e. a (Wf , •)-orbit in t∗. The characters we will mostly be interested

in are those coming from characters of T; for λ ∈ X∗(T), we will denote by λ̃ the

image of λ in t∗/(Wf , •), and by mλ ⊂ ZHC the maximal ideal defined by λ̃.
Note that, since the isomorphism (2.1) is G-equivariant (for the action on g∗(1)

obtained from the adjoint action of G(1) via the Frobenius morphism FrG), we have

ZHC ∩ ZFr = (ZFr)
G ∼= O(g∗(1)/G(1)).

Under our assumptions we have the Chevalley isomorphism

g∗(1)/G(1) ∼−→ t∗(1)/Wf

(induced by restriction of linear forms), see [BC, §4.1], and under this isomorphism
the embedding

ZHC ∩ ZFr ↪→ ZHC

corresponds to the morphism t∗/(Wf , •)→ t∗(1)/Wf induced by the Artin–Schreier
morphism

(2.3) t∗ → t∗(1),

which itself corresponds to the map O(t∗(1)) → O(t∗) given by x 7→ x` − x[`] for
x ∈ t. We therefore obtain an isomorphism

ZFr ⊗ZFr∩ZHC
ZHC

∼= O
(
g∗(1) ×t∗(1)/Wf

t∗/(Wf , •)
)
,

hence a canonical algebra morphism

(2.4) O
(
g∗(1) ×t∗(1)/Wf

t∗/(Wf , •)
)
→ Ug

with central image. In fact it is well known that under our assumptions this
morphism identifies the left-hand side with the center Z of Ug; see e.g. [BG,
Theorem 3.5(5)]. Using this morphism, one can view Ug as a coherent sheaf of
Og∗(1)×

t∗(1)/Wf
t∗/(Wf ,•)-algebras on the scheme g∗(1)×t∗(1)/Wf

t∗/(Wf , •). (We will

use the same notation for this sheaf of rings.)
Below we will be interested in some “completions”3 of Ug defined as follows.

Given λ ∈ X∗(T), we will denote by (Ug)λ̂ the pullback of Ug under the natural
morphism

g∗(1) ×t∗(1)/Wf
FNt∗/(Wf ,•)({λ̃})→ g∗(1) ×t∗(1)/Wf

t∗/(Wf , •).

Since the left-hand side is an affine scheme, we can (and will) consider (Ug)λ̂ as a

plain k-algebra. Note that (Ug)λ̂ is left and right noetherian, since it is finite over

the commutative ring O(g∗(1)×t∗(1)/Wf
FNt∗/(Wf ,•)({λ̃})), which itself is noetherian

because it is of finite type over the noetherian ring O(FNt∗/(Wf ,•)({λ̃})).

3Here we use this term since it is suggestive of the basic idea of this construction; but we insist
that these algebras are not completions of Ug in the formal sense (of e.g. [SP, Tag 00M9]).

https://stacks.math.columbia.edu/tag/00M9
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Below we will use the following properties.

Proposition 2.2. The algebra Ug is free over ZFr, and flat over ZHC.

Proof. The freeness claim is classical, and follows from the Poincaré–Birkhoff–Witt
theorem. To prove the flatness statement, we consider the Poincaré–Birkhoff–Witt
filtration of Ug, and the filtration on ZHC

∼= O(t∗/(Wf , •)) induced by the degree
filtration on O(t∗). Then Ug is a filtered module over the filtered ring ZHC, and
the associated graded is O(g∗) seen as a module over O(t∗/Wf) ∼= O(g∗/G).
Now the quotient morphism g → g/G is flat (see [BC, Proposition 4.2.6]; in our
present setup all torsion primes are bad, so that this result applies), hence the
same claim holds for g∗, and then the desired claim follows from [Bj, Chap. 2,
Proposition 3.12]. �

2.3. Harish-Chandra bimodules. We will denote by H̃C the category of “Harish-
Chandra bimodules,” i.e. Ug-bimodules M endowed with an (algebraic) action of
G such that

(1) the action morphisms Ug⊗M →M and M ⊗Ug→M are G-equivariant
(with respect to the diagonal G-actions on Ug ⊗M and M ⊗ Ug);

(2) the g-action obtained by differentiating the G-action is given by (x, v) 7→
x · v − v · x.

The morphisms in this category are morphisms of bimodules which commute with
the G-actions. As explained in [BR3, §3.4], the action of Ug ⊗k Ugop on any
Harish-Chandra bimodule factors through an action of the algebra

U := Ug ⊗ZFr Ugop,

which is finite as an O(ZFr)-module; hence a Harish-Chandra bimodule is finitely
generated as a Ug⊗kUgop-module if and only if it is finitely generated as a left Ug-
module, if and only if it is finitely generated as a right Ug-module, if and only if it
is finitely generated as a ZFr-module (either for the left or for the right action). The

full abelian subcategory of H̃C whose objects are those satisfying these conditions
will be denoted HC.

We will denote by ModG(U) the category of G-equivariant U-modules, and by

ModGfg(U) the full subcategory of finitely generated modules. Then we have canon-
ical fully faithful exact functors

HC→ ModGfg(U), H̃C→ ModG(U).

The tensor product of Ug-bimodules provides a monoidal product

(−)⊗Ug (−) : ModG(U)×ModG(U)→ ModG(U)

which stabilizes the subcategories H̃C, ModGfg(U) and HC.
It is easily seen that forgetting the right action of Ug defines an equivalence of

categories

(2.5) HC
∼−→ ModGfg(Ug)

where the right-hand side is the category of G-equivariant finitely generated Ug-
modules; see [BR3, §3.4] for details. (Of course we also have an equivalence HC

∼−→
ModGfg(Ugop) given by forgetting the left action.)

One can produce objects of H̃C out of objects of Rep∞(G) by “diagonal induc-
tion,” see [BR3, §3.4]. Namely, given V ∈ Rep∞(G) one can consider the object
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V ⊗ Ug where G acts diagonally, the left copy of Ug acts diagonally (via the dif-
ferential of the G-action on V and left multiplication on Ug) and the right copy
acts by right multiplication on Ug. In fact, this object is isomorphic to the object
Ug⊗ V where G acts diagonally, the left copy of Ug acts by left multiplication on
Ug and the right copy acts diagonally, via (the opposite of) the differential of the
G-action on V and right multiplication on Ug.

2.4. Central characters and completions. We set

Z := t∗/(Wf , •)×t∗(1)/Wf
t∗/(Wf , •) ∼= Spec(ZHC ⊗ZHC∩ZFr

ZHC)

(see §2.2). For λ, µ ∈ X∗(T), we also set

Zλ̂,µ̂ = FNZ({(λ̃, µ̃)}), Uλ̂,µ̂ := (Ug ⊗ZFr
Ugop)⊗O(Z) O(Zλ̂,µ̂).

The (diagonal) G-action on Ug ⊗ZFr
Ugop induces an (algebraic) action on Uλ̂,µ̂.

Moreover Uλ̂,µ̂ is left and right noetherian, see [BR3, §3.5]. We can therefore
consider the abelian category

ModG(Uλ̂,µ̂)

of G-equivariant modules over this algebra, its full subcategory ModGfg(Uλ̂,µ̂) of
finitely generated modules, and the full abelian subcategories

HCλ̂,µ̂ ⊂ ModGfg(Uλ̂,µ̂), H̃C
λ̂,µ̂
⊂ ModG(Uλ̂,µ̂)

of “Harish-Chandra bimodules,” i.e. modules on which the differential of the G-
action coincides with the action given by (x,m) 7→ x ·m−m · x.

If M is a G-equivariant Uλ̂,µ̂-module, the assignment (x,m) 7→ x · m − m · x
defines an action of Ug which factors through an action of the distribution algebra
Dist(G1) of the Frobenius kernel G1, i.e. the (scheme-theoretic) kernel of FrG.
(Here we use the canonical identification Dist(G1) = Ug ⊗ZFr

k where k is the
trivial ZFr-module.) The module M acquires in this way a structure of G1-module
which, combined with the action of G, provides an action of GnG1. Playing with

the definition one sees that the objects of H̃C
λ̂,µ̂

are the objects of ModG(Uλ̂,µ̂) such
that this action of GnG1 factors through the multiplication morphism GnG1 → G
or, in other words, on which the action of the antidiagonal copy of G1 is trivial.

The following statement follows from standard arguments based on the fact that

Uλ̂,µ̂ is a noetherian ring (see e.g. [AriB, Proof of Corollary 2.11]).

Lemma 2.3. The obvious functor

DbHCλ̂,µ̂ → DbH̃C
λ̂,µ̂

is fully faithful, and identifies the left-hand side with the full subcategory of the
right-hand side whose objects are the complexes all of whose cohomology objects

belong to HCλ̂,µ̂.

We have a natural exact functor

Cλ̂,µ̂ : ModG(U)→ ModG(Uλ̂,µ̂)

given by O(Zλ̂,µ̂)⊗O(Z) (−), which restricts to functors

ModGfg(U)→ ModGfg(Uλ̂,µ̂), H̃C→ H̃C
λ̂,µ̂

and HC→ HCλ̂,µ̂.
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Recall from §2.3 that for V ∈ Rep∞(G) we have an object V ⊗ Ug ∈ H̃C. Below

we will be particularly interested in the modules of the form Cλ̂,µ̂(V ⊗ Ug) where
V is a finite-dimensional tilting module. We will denote by

HCλ̂,µ̂diag

the full idempotent-complete additive subcategory of HCλ̂,µ̂ whose objects are the

direct sums of direct summands of objects of the form Cλ̂,µ̂(V ⊗ Ug) with V ∈
Rep(G), and by

HCλ̂,µ̂diag,tilt

the full idempotent-complete additive subcategory defined in the same way with
the further condition that V is tilting.

For some constructions and proofs below it will be convenient to treat all values
of λ and µ at once, in the following way. Consider the extended affine Weyl group

W := Wf nX∗(T).

For any ν ∈ X∗(T), the image of ν in W will be denoted tν . We have a “dot
action” of W on X∗(T) given by

(2.6) (tνw) • η = w(η + ς)− ς + `ν

for w ∈Wf and ν, η ∈ X∗(T). Then the differentiation morphism X∗(T) → t∗ is
W-equivariant, where W acts on t∗ via the dot-action of its quotient Wf considered

in §2.2. As a consequence, the point λ̃, resp. µ̃, only depends on the image of λ,

resp. µ, in X∗(T)/(W, •). We can therefore consider the notation Cλ̂,µ̂, HCλ̂,µ̂,

Zλ̂,µ̂, etc. for λ, µ ∈ X∗(T)/(W, •). By abuse we will also denote by 0 the image
of 0 ∈ t∗(1) in t∗(1)/Wf , and set

Z∧ := Z×t∗(1)/Wf
FNt∗(1)/Wf

({0}).

We will denote by n ⊂ O(t∗(1)/Wf) the maximal ideal corresponding to 0; then,
since the morphism Z → t∗(1)/Wf is finite, O(Z∧) identifies with the completion
of O(Z) with respect to the ideal generated by n, see [BR3, Equation (3.8)].

If we set

U∧ = U⊗O(Z) O(Z∧),

then U∧ is a G-equivariant O(Z∧)-algebra, so that we can as above consider the
category

ModG(U∧)

of G-equivariant U∧-modules, the full subcategory ModGfg(U∧) of finitely generated
modules, and the full subcategories

H̃C
∧
⊂ ModG(U∧), HC∧ ⊂ ModGfg(U∧)

of Harish-Chandra bimodules. In fact, setting

(Ug)∧ := Ug ⊗O(t∗(1)/W) O(FNt∗(1)/W({0})),

we have

(2.7) U∧ ∼= (Ug)∧ ⊗ZFr⊗O(t∗(1)/Wf )
O(FN

t∗(1)/Wf
({0})) (Ug)∧,op,
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so that a U∧-module is nothing but a (Ug)∧-bimodule on which the left and right
actions of the central subalgebra

ZFr ⊗O(t∗(1)/Wf ) O(FNt∗(1)/Wf
({0}))

coincide. From this point of view it is clear that this category has a natural monoidal
structure, defined by a bifunctor

(2.8) (−) ⊗̂Ug (−) : ModG(U∧)×ModG(U∧)→ ModG(U∧),

which stabilizes the subcategories of finitely generated modules and Harish-Chandra
bimodules in the obvious sense. We also have a canonical monoidal exact functor

C∧ : ModG(U)→ ModG(U∧)

given by
O(Z∧)⊗O(Z) (−) ∼= O(FNt∗(1)/W({0}))⊗O(t∗(1)/W) (−),

which sends Harish-Chandra bimodules to Harish-Chandra bimodules.

Remark 2.4. Let V ∈ Rep∞(G), and recall the Harish-Chandra bimodule V ⊗ Ug
considered in §2.3. Since ZFr acts trivially on V , we have a canonical identification

C∧(V ⊗ Ug) ∼= V ⊗ (Ug)∧,

for the natural actions on the right-hand side.

By [BR3, Lemma 3.4] the natural morphism

(2.9) O(Z∧)→
∏

λ,µ∈X∗(T)/(W,•)

O(Zλ̂,µ̂)

is an isomorphism. (Note that the indexing set on the right-hand side is finite, so
that the product is a direct sum.) It follows that there are canonical decompositions
(2.10)

ModG(U∧) =
⊕

λ,µ∈X∗(T)/(W,•)

ModG(Uλ̂,µ̂), H̃C
∧

=
⊕

λ,µ∈X∗(T)/(W,•)

H̃C
λ̂,µ̂

which restrict to subcategories of finitely generated modules, and for any M ∈
ModG(U) we have a canonical isomorphism

(2.11) C∧(M) ∼=
⊕

λ,µ∈X∗(T)/W

Cλ̂,µ̂(M).

Moreover the ring (Ug)∧ is left and right noetherian (by the same arguments as

for (Ug)λ̂ or Uλ̂,µ̂) and, as for (2.5), forgetting the right action of (Ug)∧ defines
equivalences of categories

(2.12) H̃C
∧ ∼−→ ModG

(
(Ug)∧

)
, HC∧

∼−→ ModGfg
(
(Ug)∧

)
.

Of course, similar comments apply to forgetting the left action instead.
As explained in [BR3, §3.7], for any λ, µ, ν ∈ X∗(T) the bifunctor (2.8) restricts

to a bifunctor

(2.13) ModG(Uλ̂,µ̂)×ModG(Uµ̂,ν̂)→ ModG(Uλ̂,ν̂)

which stabilizes the subcategories of finitely-generated modules and Harish-Chandra
bimodules in the obvious sense. These bifunctors are associative and unital in the
appropriate sense; in particular, in case λ = µ = ν, we obtain a monoidal structure

on the category ModG(Uλ̂,λ̂).



16 R. BEZRUKAVNIKOV AND S. RICHE

Let us note the following other consequence of these considerations.

Lemma 2.5. Let λ, µ ∈ X∗(T). Then for any M in H̃C
λ̂,µ̂

, resp. in HCλ̂,µ̂, there

exists V in Rep∞(G), resp. in Rep(G), and a surjection Cλ̂,µ̂(V ⊗Ug) �M , where
the structure on V ⊗ Ug is as in §2.3.

Proof. We treat the case of H̃C
λ̂,µ̂

; the other one is similar. Consider M as an

object of H̃C
∧

via the right-hand decomposition in (2.10). If V ⊂M is a G-stable
subspace which generates M as a right (Ug)∧-module, then we have a surjection of
G-equivariant right (Ug)∧-modules

(2.14) V ⊗ (Ug)∧ �M

where G acts diagonally on the left-hand side and (Ug)∧ acts via right multiplica-
tion on the second factor. By the analogue for right modules of (2.12), the left-hand

side can be canonically “lifted” to H̃C
∧

so that this morphism becomes a morphism

in H̃C
∧

; moreover, with this structure we have V ⊗ (Ug)∧ = C∧(V ⊗ Ug), see
Remark 2.4. Now by (2.11) we have a canonical decomposition

C∧(V ⊗ Ug) =
⊕

ν,η∈X∗(T)/(W,•)

Cν̂,η̂(V ⊗ Ug).

Since the action of O(Z∧) on M factors through an action of O(Zλ̂,µ̂), our surjec-

tion (2.14) must factor through a surjection Cλ̂,µ̂(V ⊗ Ug) �M . �

2.5. Ext-vanishing. This subsection is devoted to the proof of the following claim.

Proposition 2.6. For any λ, µ ∈ X∗(T) and any V, V ′ ∈ Tilt(G), we have

Extn
HCλ̂,µ̂

(
Cλ̂,µ̂(V ⊗ Ug),Cλ̂,µ̂(V ′ ⊗ Ug)

)
= 0

for any n ∈ Z>0.

Before explaining the proof of this proposition we note its most important con-
sequence (in fact, an equivalent formulation).

Corollary 2.7. For any λ, µ ∈ X∗(T), the natural functor

KbHCλ̂,µ̂diag,tilt → DbHCλ̂,µ̂

is fully faithful.

Proof. The corollary follows from Proposition 2.6 and Bĕılinson’s lemma. �

The right-hand decomposition in (2.10) and (2.11) reduce Proposition 2.6 to the
following claim.

Proposition 2.8. For any V, V ′ ∈ Tilt(G) and any n ∈ Z>0 we have

ExtnHC∧
(
C∧(V ⊗ Ug),C∧(V ′ ⊗ Ug)

)
= 0.

The proof of Proposition 2.8 will use the following property, where we denote
by S(g) the symmetric algebra of G, which we endow with the obvious G-module
structure induced by the adjoint action on g.

Lemma 2.9. The G-module S(g) admits a good filtration.
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Proof. This property follows from the classical claim in [J2, §II.4.22]. Namely, by

assumption we have an isomorphism of G-modules g
∼−→ g∗, so that our claim is

equivalent to the claim that S(g∗) admits a good filtration. If we denote by g′

the Lie algebra of D(G) then we have an exact sequence of G-modules g′ ↪→ g �
g/g′, and G acts trivially on g/g′. We deduce an exact sequence of G-modules
(g/g′)∗ ↪→ g∗ � (g′)∗, which implies that for any m ≥ 0 the G-module Sm(g∗)
admits a (finite) filtration with associated graded⊕

i+j=m

Si((g′)∗)⊗k Sj((g/g′)∗),

where the action on Sj((g/g′)∗) is trivial. In view of our assumptions and [J2,
Equation (1) in §II.4.22], each Si((g′)∗) admits a good filtration as a D(G)-module,
hence as a G-module by [Do, Proposition 3.2.7], which concludes the proof. �

Proof of Proposition 2.8. As in the proof of [BR3, Lemma 3.6] one easily sees that
the functor

C∧(V ⊗ Ug) ⊗̂Ug (−) : HC∧ → HC∧

is left adjoint to

C∧(V ∗ ⊗ Ug) ⊗̂Ug (−) : HC∧ → HC∧.

Since tensor products of tilting G-modules are tilting (see [J2, §II.E.7]), this reduces
the proof of the proposition to the case V = k is the trivial module. We will
therefore replace the notation V ′ by V . Next, by Remark 2.4, for any V ∈ Rep(G)
we have

(2.15) C∧(V ⊗ Ug) ∼= V ⊗ (Ug)∧

with the obvious actions on the right-hand side. Using the equivalence (2.12), these
considerations show that to prove the proposition it suffices to prove that

ExtnModGfg((Ug)∧)

(
(Ug)∧, V ⊗ (Ug)∧

)
= 0 for any V ∈ Tilt(G) and n > 0.

Since (Ug)∧ is left noetherian, as in Lemma 2.3, the canonical functor

DbModGfg((Ug)∧)→ DbModG((Ug)∧)

is fully faithful, so that what we have to prove is that

ExtnModG((Ug)∧)

(
(Ug)∧, V ⊗ (Ug)∧

)
= 0 for any V ∈ Tilt(G) and n > 0.

The functor

(Ug)∧ ⊗ (−) : Rep∞(G)→ ModG((Ug)∧)

is left adjoint to the forgetful functor

ModG((Ug)∧)→ Rep∞(G),

which reduces the desired claim to the fact that

ExtnRep∞(G)

(
k, V ⊗ (Ug)∧

)
= 0,

i.e.

Hn
(
G, V ⊗ (Ug)∧

)
= 0,

for any V ∈ Tilt(G) and any n > 0. Now, using e.g. the fact that the cohomology
can be computed using the Hochschild complex (see [J2, §I.4.14]) and the flatness of
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O(FNt∗(1)/W({0})) over O(t∗(1)/W), one sees that for any V ∈ Rep(G) and n ∈ Z
we have a canonical isomorphism

Hn
(
G, V ⊗ (Ug)∧

)
= Hn(G, V ⊗ Ug)⊗O(t∗(1)/W) O(FNt∗(1)/W({0})).

To conclude the proof it therefore suffices to prove that

(2.16) Hn(G, V ⊗ Ug) = 0 for any V ∈ Tilt(G) and n > 0,

where G acts diagonally on V ⊗ Ug.
Consider the PBW filtration ((U≤mg) : m ≥ 0) of Ug. Then since cohomology

commutes with filtrant direct limits (see [J2, Lemma I.4.17]), to prove (2.16) it
suffices to prove that

Hn(G, V ⊗ U≤mg) = 0 for any V ∈ Tilt(G), m ≥ 0 and n > 0.

Arguing by induction on m, to prove this it suffices to prove that

Hn(G, V ⊗ S(g)) = 0 for any V ∈ Tilt(G) and n > 0.

This fact follows from Lemma 2.9 since modules admitting a good filtration have
no cohomology in positive degree (see [J2, Proposition II.4.16]), V admits a good
filtration (by assumption), and tensor products of G-modules admitting a good
filtration admit a good filtration (see [J2, Proposition II.4.21]). �

2.6. Monoidal structure for derived categories. Recall that in view of (2.7)
a (G-equivariant) U∧-module is a (G-equivariant) (Ug)∧-bimodule on which the
two actions of the central subalgebra ZFr ⊗O(t∗(1)/Wf ) O(FNt∗(1)/Wf

({0})) coin-

cide. The category BimodG((Ug)∧) of G-equivariant (Ug)∧-bimodules admits a
monoidal structure given by the tensor product (−)⊗(Ug)∧ (−), which stabilizes the

subcategories ModG(U∧), ModGfg(U∧), H̃C
∧

and HC∧; this is the monoidal structure

considered in §2.8. Passing to derived categories, for M,N in D−BimodG((Ug)∧)
we set

(2.17) M ?N := M
L
⊗(Ug)∧ N ;

here again this bifunctor defines a monoidal structure on D−BimodG((Ug)∧), with
unit object the “diagonal” bimodule (Ug)∧.

Lemma 2.10. There exist canonical bifunctors

(−) ? (−) : D−H̃C
∧
×D−H̃C

∧
→ D−H̃C

∧

and

(−) ? (−) : D−HC∧ ×D−HC∧ → D−HC∧

which define monoidal structures on D−H̃C
∧

and D−HC∧ and such that the forgetful
functors

D−HC∧ → D−H̃C
∧
→ D−BimodG((Ug)∧)

are monoidal.

Proof. The lemma follows from the fact that any object of HC∧, resp. H̃C
∧

, admits

a resolution by objects of HC∧, resp. H̃C
∧

, which are flat both as left and as right
(Ug)∧-modules; see Lemma 2.5 and Remark 2.4. �
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Now, recall the isomorphism (2.9). We similarly have a canonical isomorphism

t∗/(Wf , •)×t∗(1)/Wf
FNt∗(1)/Wf

({0}) ∼−→
∏

λ∈X∗(T)/(W,•)

FNt∗/(Wf ,•)({λ̃}).

We deduce a canonical decomposition

(2.18) (Ug)∧ =
∏

λ∈X∗(T)/W

(Ug)λ̂,

where we use the notation of §2.2. For λ, µ ∈ X∗(T) we have an identification

(2.19) Uλ̂,µ̂ = (Ug)λ̂ ⊗ZFr⊗O(t∗(1)/Wf )
O(FN

t∗(1)/Wf
({0})) (Ug)µ̂,op,

and we deduce that a Uλ̂,µ̂-module is a ((Ug)λ̂, (Ug)µ̂)-bimodule on which the two
actions of ZFr ⊗O(t∗(1)/Wf ) O(FNt∗(1)/Wf

({0})) coincide. For λ, µ ∈ X∗(T) we

can consider the category BimodG((Ug)λ̂, (Ug)µ̂) of G-equivariant ((Ug)λ̂, (Ug)µ̂)-
bimodules, and for λ, µ, ν ∈ X∗(T) the derived tensor product functor

(−)
L
⊗(Ug)µ̂ (−) : D−BimodG((Ug)λ̂, (Ug)µ̂)×D−BimodG((Ug)µ̂, (Ug)ν̂)

→ D−BimodG((Ug)λ̂, (Ug)ν̂).

Then we have

D−BimodG((Ug)∧) =
∏

λ,µ∈X∗(T)/(W,•)

D−BimodG((Ug)λ̂, (Ug)µ̂),

and the bifunctor (2.17) is the product of the bifunctors (−)⊗L
(Ug)µ̂

(−) (which will

therefore also be denoted ?). We also have

HC∧ =
∏

λ,µ∈X∗(T)/(W,•)

HCλ̂,µ̂,

and by Lemma 2.10 the bifunctor ? considered above restricts, for any λ, µ, ν ∈
X∗(T), to a bifunctor

(2.20) D−HCλ̂,µ̂ ×D−HCµ̂,ν̂ → D−HCλ̂,ν̂ .

In particular, in case λ = µ = ν this bifunctor defines a monoidal structure on

D−HCλ̂,λ̂, with unit object (Ug)λ̂.

Recall the full subcategory HCλ̂,µ̂diag ⊂ HCλ̂,µ̂ defined in §2.4. As explained in [BR3,

§3.7], for λ, µ, ν ∈ X∗(T) and V ∈ Rep(G) we have a canonical isomorphism

Cλ̂,µ̂(V ⊗ V ′ ⊗ Ug) ∼=
⊕

ν∈X∗(T)/(W,•)

Cλ̂,ν̂(V ⊗ Ug)⊗(Ug)∧ C
ν̂,µ̂(V ′ ⊗ Ug).

Combined with the considerations in the proof of Lemma 2.10, this implies that the

subcategories HCλ̂,µ̂diag are “stable under convolution” in the sense that for λ, µ, ν ∈

X∗(T) and any objects M ∈ HCλ̂,µ̂diag and N ∈ HCµ̂,ν̂diag we have

M ?N ∈ HCλ̂,ν̂diag.

Similar comments apply to the subcategories HCλ̂,µ̂diag,tilt. In particular, when λ =

µ we obtain a monoidal structure on the category HCλ̂,λ̂diag,tilt, hence an induced
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monoidal structure on its bounded homotopy category, and it is clear that the

composition of the functor of Corollary 2.7 with the obvious morphism DbHCλ̂,µ̂ →
D−HCλ̂,µ̂ is monoidal.

2.7. Nilpotent Harish-Chandra bimodules. For λ, µ in X∗(T) (or in the quo-
tient X∗(T)/(W, •)), we will denote by

HCλ̂,µ̂nil

the full subcategory of HC whose objects are the bimodules such that the left,
resp. right, action of ZHC vanishes on a power of mλ, resp. mµ. It is clear from

classical properties of completions of rings (see [SP, Tag 05GG]) that HCλ̂,µ̂nil iden-

tifies naturally with the full subcategory of HCλ̂,µ̂ consisting of modules such that
the left, resp. right, action of ZHC vanishes on a power of mλ, resp. mµ. In fact, as

a full subcategory of HCλ̂,µ̂, each of these conditions is sufficient to ensure that an

object belongs to HCλ̂,µ̂nil , as explained in the following lemma.

Lemma 2.11. Let λ, µ in X∗(T). For an object M ∈ HCλ̂,µ̂ the following condi-
tions are equivalent:

(1) M belongs to HCλ̂,µ̂nil ;

(2) the left action of ZHC on M vanishes on a power of mλ;
(3) the right action of ZHC on M vanishes on a power of mµ.

Proof. We prove the equivalence between the first two properties; the equivalence
between the first and third properties can be established similarly. By definition an
object which satisfies the first property satisfies the second one, so what we have

to prove is that if M ∈ HCλ̂,µ̂ and if the left action of (mλ)N vanishes for some N ,
then the right action of a power of mµ vanishes. For this it suffices to prove that
the image of mµ in

O(Zλ̂,µ̂)/(mλ)N · O(Zλ̂,µ̂)

vanishes. Now we have

Zλ̂,µ̂ ∼= FNt∗/Wf
({λ̃})×FN

t∗(1)/Wf
({0}) FNt∗/Wf

({µ̃}),

see [BR3, Equation (3.11)], hence to conclude it suffices to prove that the image of
mµ in

O(FNt∗/Wf
({µ̃}))/nN · O(FNt∗/Wf

({µ̃}))
is nilpotent. By exactness of completion, this quotient identifies with the completion
of the quotient

O(t∗/Wf)/n
N · O(t∗/Wf)

with respect to mµ. By the general theory of artinian rings, and as in the proof
of [BR3, Lemma 3.4], the quotient

O(t∗/Wf)/(n
N · O(t∗/Wf) + (mµ)N

′
)

does not depend on N ′ for N ′ � 0, hence identifies with this completion, which
finishes the proof. �

https://stacks.math.columbia.edu/tag/05GG
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Lemma 2.12. Let λ, µ in X∗(T). The functor

DbHCλ̂,µ̂nil → DbHCλ̂,µ̂

induced by the embedding HCλ̂,µ̂nil → HCλ̂,µ̂ is fully faithful. Its essential image is
the full subcategory whose objects are the complexes M which satisfy one of the
following equivalent conditions:

(1) for any n ∈ Z the object Hn(M) belongs to HCλ̂,µ̂nil ;

(2) the action morphism O(Zλ̂,µ̂)→ End(M) vanishes on a power of the unique
maximal ideal;

(3) there exists n ≥ 0 such that the morphism (mλ)n → End(M) defined by the
left action of ZHC vanishes;

(4) there exists n ≥ 0 such that the morphism (mµ)n → End(M) defined by the
right action of ZHC vanishes.

In fact, it will be more convenient to prove a version of Lemma 2.12 which
treats all choices of λ, µ simultaneously. Namely, recall the category HC∧ and
the decomposition in the right-hand side of (2.10). If we denote by HC∧nil the
full subcategory of HC whose objects are the bimodules annihilated by a power
of n ⊂ O(t∗(1)/Wf), then HC∧nil identifies with a full subcategory in HC∧, and we
similarly have a canonical decomposition

(2.21) HC∧nil
∼=

⊕
λ,µ∈X∗(T)/(W,•)

HCλ̂,µ̂nil .

Lemma 2.12 will follow from the following claim.

Lemma 2.13. The functor

DbHC∧nil → DbHC∧

induced by the embedding HC∧nil → HC∧ is fully faithful. Its essential image is the
full subcategory whose objects are the complexes M which satisfy one of the following
equivalent conditions:

(1) for any n ∈ Z the object Hn(M) belongs to HC∧nil;
(2) there exists n ≥ 0 such that the morphism nn → End(M) vanishes.

Proof. By (2.12) we have an equivalence HC∧
∼−→ ModGfg

(
(Ug)∧

)
, under which the

full subcategory HC∧nil identifies with the full subcategory of G-equivariant Ug-
modules annihilated by a power of n. The lemma is therefore an application of the
considerations of §A.4 for the noetherian commutative ring O(t∗(1)/Wf), its ideal
n, the (affine) scheme Spec(ZFr) over t∗(1)/Wf , the sheaf of algebras corresponding
to Ug and the group scheme obtained from G by base change. �

Proof of Lemma 2.12. Fully faithfulness of our functor directly follows from Lem-
ma 2.13, since it is a direct summand of the functor considered in the latter lemma.
Once this is establish, we know that the essential image of this functor coincides

with the full triangulated subcategory of DbHCλ̂,µ̂ generated by HCλ̂,µ̂nil , i.e. that its
objects are the complexes which satisfy (1). Among these conditions, it is clear that
we have the implications (2)⇒ (3) and (2)⇒ (4), and it follows from Lemma 2.11
that both (3) and (4) imply (1). On the other hand, any bounded complex of

objects in HCλ̂,µ̂nil satisfies (2), so that this condition is implied by (1), which finishes
the proof. �
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Lemma 2.14. For any λ, µ, ν ∈ X∗(T), the bifunctor (2.20) restricts to bifunctors

DbHCλ̂,µ̂nil ×D
bHCµ̂,ν̂ → DbHCλ̂,ν̂nil , DbHCλ̂,µ̂ ×DbHCµ̂,ν̂nil → DbHCλ̂,ν̂nil .

Proof. We treat the first case; the second one is similar. What we have to prove is

that if M ∈ HCλ̂,µ̂nil and N ∈ DbHCµ̂,ν̂ then M ? N is bounded, and has all of its

cohomology objects in DbHCλ̂,ν̂nil . The second property is clear from Lemma 2.11,
computing the tensor product using a flat resolution of N . For the first property,
we observe that we have

M ∼= M ⊗ZHC
O(FNt∗/(Wf ,•)({µ̃}))

(where we consider the action of ZHC via the right action of Ug). Hence if M• →M
is a flat resolution of M as a right Ug-module then we obtain a flat resolution
M• ⊗ZHC

O(FNt∗/(Wf ,•)({µ̃})) → M as a right (Ug)µ̂-module, which can be used
to compute M ?N . Since Ug has finite cohomological dimension, the complex M•

can be chosen bounded, so that M ?N is indeed bounded. �

2.8. Bimodules with a fixed (right) central character. For µ ∈ X∗(T) we
now set

(Ug)µ := Ug/mµ · Ug = Ug ⊗ZHC kµ.
where kµ is the 1-dimensional module over ZHC

∼= O(t∗/(Wf , •)) corresponding to
the closed point µ̃. The algebra

Ug ⊗ZFr (Ug)µ,op

receives a morphism with central image from the structure algebra of the finite
affine scheme

Z×t∗/(Wf ,•) {µ̃} ∼= t∗/(Wf , •)×t∗(1)/Wf
{0},

where the morphism Z→ t∗/(Wf , •) is induced by projection on the second factor.
For λ ∈ X∗(T) we then set

Zλ̂,µ := FNZ×t∗/(Wf ,•){µ̃}
({(λ̃, µ̃)})

(a finite scheme) and

Uλ̂,µ :=
(
Ug ⊗ZFr (Ug)µ,op

)
⊗O(Z×t∗/(Wf ,•){µ̃})

O(Zλ̂,µ).

Note that by the structure theory of artinian rings (see e.g. [SP, Tag 00JB]) the
natural morphism ⊔

λ∈X∗(T)/(W,•)

Zλ̂,µ → Z×t∗/(Wf ,•) {µ̃}

is an isomorphism, so that we have

Ug ⊗ZFr
(Ug)µ,op ∼=

∏
λ∈X∗(T)/(W,•)

Uλ̂,µ.

A Uλ̂,µ-module is exactly a Ug-bimodule which satisfies the following properties
with respect to the actions of the central subalgebras in each factor:

• the left and right actions of ZFr coincide;
• the right action of the ideal mµ ⊂ ZHC vanishes;
• the left action of a power of the ideal mλ ⊂ ZHC vanishes.

https://stacks.math.columbia.edu/tag/00JB


ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 23

This algebra admits a canonical action of G, and we can consider the category

ModG(Uλ̂,µ) of G-equivariant Uλ̂,µ-modules, its full subcategory ModGfg(Uλ̂,µ) of
finitely generated modules, and the full subcategories

H̃C
λ̂,µ
⊂ ModG(Uλ̂,µ), HCλ̂,µ ⊂ ModGfg(Uλ̂,µ)

of Harish-Chandra bimodules. We have a surjective algebra morphism Uλ̂,µ̂ → Uλ̂,µ

which induces a fully faithful exact functor ModG(Uλ̂,µ) → ModG(Uλ̂,µ̂) which
restricts to a fully faithful exact functor

(2.22) HCλ̂,µ → HCλ̂,µ̂.

This functor has a left adjoint functor

(2.23) ModG(Uλ̂,µ̂)→ ModG(Uλ̂,µ)

given by M 7→ Uλ̂,µ⊗Uλ̂,µ̂M = M/M ·mµ, whose composition with the embedding

H̃C
λ̂,µ̂
⊂ ModG(Uλ̂,µ̂) factor through a functor

H̃C
λ̂,µ̂
→ H̃C

λ̂,µ
.

For V ∈ Rep(G), we will denote by Cλ̂,µ(V ⊗Ug) the image of Cλ̂,µ̂(V ⊗Ug) under
this functor.

Lemma 2.15. (1) The algebra Uλ̂,µ̂ is flat over O(FNt∗/(Wf ,•)({µ̃})) (for the
action induced by multiplication on the right).

(2) For any V ∈ Rep(G), the object Cλ̂,µ̂(V ⊗ Ug) is flat as a module over
O(FNt∗/(Wf ,•)({µ̃})) (for the action induced by multiplication on the right).

Proof. (1) Using the identifications (2.18) and (2.19) we see that to prove the lemma
it suffices to prove that

(Ug)∧ ⊗ZFr⊗O(t∗(1)/Wf )
O(FN

t∗(1)/Wf
({0})) (Ug)µ̂,op

is flat over O(FNt∗/(Wf ,•)({µ̃})). Now Ug is free over ZFr (see Proposition 2.2),
hence (Ug)∧ is free over ZFr ⊗O(t∗(1)/Wf ) O(FNt∗(1)/Wf

({0})). The claim then

follows from the fact that (Ug)µ̂,op is flat over O(FNt∗/(Wf ,•)({µ̃})), which itself
follows from the fact that Ug is flat over ZHC, see Proposition 2.2.

(2) We have ∏
λ∈X∗(T)/(W,•)

Cλ̂,µ̂(V ⊗ Ug) ∼= V ⊗ (Ug)µ̂,

so once again the claim follows from the fact that Ug is flat over ZHC. �

Lemma 2.15(1) implies that the left derived functor of (2.23), namely the functor

D−ModG(Uλ̂,µ̂)→ D−ModG(Uλ̂,µ)

given by M 7→ Uλ̂,µ⊗L
Uλ̂,µ̂

M , can also be expressed as M 7→M ⊗LO(FNt∗/(Wf ,•)({µ̃}))
kµ. In particular, since t∗/(Wf , •) is isomorphic to an affine space by [De], the ring
O(FNt∗/(Wf ,•)({µ̃})) has finite global dimension, so that this functor restricts to a

functor from DbModG(Uλ̂,µ̂) to DbModG(Uλ̂,µ). Since the ring Uλ̂,µ̂ is noetherian,

this functor in turn induces a functor from DbModGfg(Uλ̂,µ̂) to DbModGfg(Uλ̂,µ).
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We claim that the composition of the latter functor with the natural functor

DbHCλ̂,µ̂ → DbModGfg(Uλ̂,µ̂) factors canonically through a “specialization” functor

Spλ,µ : DbHCλ̂,µ̂ → DbHCλ̂,µ.

In fact, in view of the comments above, to prove this it suffices to prove that any

object in HCλ̂,µ̂ is a quotient of an object which is flat over O(FNt∗/(Wf ,•)({µ̃})).
This follows from Lemma 2.5 and Lemma 2.15(2).

The following statement is an analogue in this setting of Proposition 2.6.

Proposition 2.16. For any λ, µ ∈ X∗(T) and any V, V ′ ∈ Tilt(G), the functor
Spλ,µ induces an isomorphism

kµ ⊗O(FNt∗/(Wf ,•)({µ̃}))
Hom

HCλ̂,µ̂

(
Cλ̂,µ̂(V ⊗ Ug),Cλ̂,µ̂(V ′ ⊗ Ug)

) ∼−→
Hom

HCλ̂,µ

(
Cλ̂,µ(V ⊗ Ug),Cλ̂,µ(V ′ ⊗ Ug)

)
,

and moreover we have

Extn
HCλ̂,µ

(
Cλ̂,µ(V ⊗ Ug),Cλ̂,µ(V ′ ⊗ Ug)

)
= 0

for any n ∈ Z>0.

Proof. As in (2.10), restricting the action to the right copy of Ug induces a fully
faithful functor

DbHCλ̂,µ̂ → DbModGfg((Ug)µ̂,op)

and a fully faithful functor

DbHCλ̂,µ → DbModGfg((Ug)µ,op).

Under this identification the functor Spλ,µ is induced by the functor

M 7→M
L
⊗(Ug)µ̂ (Ug)µ,

which can also be expressed as M 7→M ⊗LO(FNt∗/(Wf ,•)({µ̃}))
kµ. In view of Propo-

sition 2.6, the proposition will therefore follow if we prove that for any M,N ∈
ModGfg((Ug)µ̂,op) which are flat over O(FNt∗/(Wf ,•)({µ̃})) and satisfy

ExtnModGfg((Ug)µ̂,op)(M,N) = 0

for n > 0, the functor above induces an isomorphism

(2.24) kµ ⊗O(FNt∗/(Wf ,•)({µ̃}))
HomModGfg((Ug)µ̂,op)(M,N)

∼−→ HomModGfg((Ug)µ,op)(M/M ·mµ, N/N ·mµ),

and moreover we have

ExtnModGfg((Ug)µ,op)(M/M ·mµ, N/N ·mµ) = 0

for n > 0. Now by Lemma B.4 we have an identification

kµ
L
⊗O(FNt∗/(Wf ,•)({µ̃}))

RHomModGfg((Ug)µ̂,op)(M,N)

∼−→ RHomModGfg((Ug)µ,op)(M/M ·mµ, N/N ·mµ).

Our assumptions guarantee that the left-hand side is concentrated in nonpositive
degrees, while the right-hand side is concentrated in nonnegative degrees. Hence
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they are both concentrated in degree 0, which proves the desired vanishing result
and provides an isomorphism as in (2.24). We leave it to the reader to check that
this isomorphism is induced by the functor Spλ,µ. �

The same considerations as in §2.6 lead to the construction, for any λ, µ, ν ∈
X∗(T), of a convolution bifunctor

D−HCλ̂,µ̂ ×D−HCµ̂,ν → D−HCλ̂,ν

which is compatible with the bifunctors (2.20) in the natural sense. It particular,

when λ = µ, this bifunctor makes D−HCµ̂,ν a module category for the monoidal
category D−HCµ̂,µ̂.

2.9. Bimodules with trivial left action. There is a canonical exact fully faithful
functor

(2.25) Rep(G)→ HC

defined as follows. (This functor will usually be omitted from notation.) Given
V ∈ Rep(G), we have a left action of Ug on V obtained by taking the differential
of the G-action. We associate to V the object whose underlying vector space is V ,
endowed the given action of G, the trivial left action of Ug, and the right action of
Ug deduced from the left action considered above by composition with the antiau-
tomorphism of Ug sending each x ∈ g to −x. It is easily seen that these structures
define a Harish-Chandra bimodule, which provides the desired functor (2.25). The
essential image of this functor consists exactly of the Harish-Chandra bimodules
on which the left action is trivial, i.e. factors through the augmentation morphism
Ug→ k.

Given λ ∈ X∗(T), one can consider the full subcategory Rep〈λ〉(G) of Rep(G)
defined in §2.1, i.e. the full subcategory whose objects are the representations on
which mλ acts nilpotently (for the action of Ug obtained by differentiation). It is
clear that the functor (2.25) restricts to an exact fully faithful functor

(2.26) Rep〈λ〉(G)→ HC0̂,−̂w◦λ
nil .

In particular, we can consider this construction in case λ = 0, and with the
object k = L(0). The resulting Harish-Chandra bimodule will be called the trivial
Harish-Chandra bimodule.

Lemma 2.17. The essential image of the functor (2.26) consists of the objects of

the form Hn(k ? M) with M ∈ DbHC0̂,−̂w◦λ.

Proof. Computing k ? M using a flat resolution of M and using Lemma 2.12 one
sees that Hn(k ?M) belongs to the essential image of (2.26) for any n ∈ Z. On the
other hand, if V ∈ Rep〈λ〉(G) we observe that H0(k ? V ) ∼= V , so that any object
in the essential image of our functor appears in this way. �

2.10. Translation bimodules. Recall the group W introduced in §2.4, and con-
sider its subgroup

Waff := Wf n ZR,
called the affine Weyl group. We have an action of W on R ⊗Z X

∗(T) extending
the dot-action on X∗(T) and defined by the same formula as in (2.6), now for
η ∈ R⊗Z X

∗(T). The closure A0 of the fundamental alcove

A0 = {v ∈ R⊗Z X
∗(T) | ∀α ∈ R+, 0 < 〈v + ς, α∨〉 < `}
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constitutes a fundamental domain for the restriction of this action to Waff , see [J2,
§6.2].

The affine space R ⊗Z X
∗(T) is divided into facets, see also [J2, §6.2]. The

codimension-1 facets are called walls, and to these walls one can naturally attach
reflections in Waff , see [J2, §6.3]. If we denote by Saff ⊂Waff the subset consist-
ing of reflections attached to walls contained in A0, then Saff is a set of Coxeter
generators for Waff which contains Sf . If we set

Ω := {w ∈W | w •A0 = A0},

then Ω is an abelian subgroup of W such that ωsω−1 ∈ Saff for any ω ∈ Ω and
s ∈ Saff , and the multiplication morphism

Ω n Waff →W

is an isomorphism.
Following the terminology used in [BR3], we will call lower closure of the funda-

mental alcove the set

A↓0 = {v ∈ R⊗Z X
∗(T) | ∀α ∈ R+, 0 ≤ 〈ν + ς, α∨〉 < `}.

As explained in [BR3, §3.5] (see also [BR3, Lemma 3.1]), if ν ∈ X∗(T) belongs to the
lower closure of the fundamental alcove then the stabilizer of ν for the •-action of Wf

is the parabolic subgroup generated by the subset of Sf consisting of the elements s
such that s•ν = ν, which corresponds to the subset {α ∈ Rs | 〈ν+ς, α∨〉 = 0} ⊂ Rs

under the canonical bijection between Rs and Sf .

For any λ, µ ∈ X∗(T) we have a “translation bimodule” Pλ̂,µ̂ defined as follows.
(For a justification of the terminology, see [BR3, Lemma 6.1].) Let ν ∈ X∗(T) be
the unique dominant weight in Wf(λ− µ), and set

Pλ̂,µ̂ := Cλ̂,µ̂(L(ν)⊗ Ug) ∈ HCλ̂,µ̂diag.

The following lemma shows that this object belongs to HCλ̂,µ̂diag,tilt for appropriate λ
and µ.

Lemma 2.18. If λ, µ belong to A0, with one of them at least in A0, we have an
isomorphism

Pλ̂,µ̂ ∼= Cλ̂,µ̂(T(ν)⊗ Ug).

Proof. In [BR3, §3.8–3.9] we have constructed, for any µ, ν ∈ X∗(T) a functor of

“restriction to a Kostant slice” on the category HCµ̂,ν̂ , which by [BR3, Proposi-

tion 3.7] is fully faithful on the subcategory HCµ̂,ν̂diag. To prove the lemma it suffices
to prove that our two bimodules become isomorphic after application of this func-
tor. Now in the proof of [BR3, Lemma 5.5] one can replace the simple module L(ν)
by T(ν) without altering any argument. This lemma therefore holds in the two
cases, which implies the desired isomorphism. �

The same proof as in [BR3, Lemma 3.6] shows that for any λ, µ, η ∈ X∗(T) the
functor

Pλ̂,µ̂ ? (−) : DbHCµ̂,η̂ → DbHCλ̂,η̂

is both left and right adjoint to the functor

Pµ̂,λ̂ ? (−) : DbHCλ̂,η̂ → DbHCµ̂,η̂,
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and similarly for convolution on the right. (These adjunctions are not canonical;
they depend on a choice of isomorphism L(ν)∗ ∼= L(−w◦(ν)) where ν is as above.)

Remark 2.19. It is clear from definitions that for λ, µ ∈ X∗(T) and y ∈W we have

Pλ̂,µ̂ = Pŷ•λ,̂y•µ.

2.11. Bott–Samelson and Soergel type Harish-Chandra bimodules. In this
subsection we assume that ` ≥ h where h is the Coxeter number of G. In this case
we have A0∩X∗(T) 6= ∅, and each wall contained in A0 has nonempty intersection
with X∗(T), see [J2, §6.3]. We can therefore fix a weight λ ∈ A0 ∩X∗(T) and, for
each s ∈ Saff , a weight µs ∈ X∗(T) on the wall attached to s contained in A0. For
s ∈ Saff we set

Rs := Pλ̂,µ̂s ? Pµ̂s,λ̂ ∈ HCλ̂,λ̂diag,tilt.

For ω ∈ Ω we also set

Rω := Pλ̂,̂ω•λ ∈ HCλ̂,λ̂diag,tilt.

(Note that here the images of λ and ω • λ in t∗/Wf coincide.)

Lemma 2.20. (1) For any s ∈ Saff and ω ∈ Ω there exists an isomorphism

Rω ? Rs ? Rω−1
∼= Rωsω−1 .

(2) For any ω, ω′ ∈ Ω there exists an isomorphism

Rω ? Rω′ ∼= Rωω′ .

Proof. We explain the proof of (1); that of (2) is similar. This proof will rely on
the formalism of [BR3].

Recall, for any µ, ν ∈ X∗(T), the fully faithful functor on HCµ̂,ν̂ considered in the
proof of Lemma 2.18. In [BR3, §5.2] we have defined an object Qµ,ν in the target
category of this functor. Then by [BR3, Lemma 5.5] the image of Rs, resp. Rω,
resp. Rω−1 , under this functor is

Qλ,µs ⊗̂USg Qµs,λ, resp. Qω−1•λ,λ, resp. Qλ,ω−1•λ.

(See [BR3, §3.9] for the definition of the bifunctor ⊗̂USg.) Since the functor is
monoidal, the image of Rω ? Rs ? Rω−1 is

Qω−1•λ,λ ⊗̂USg Qλ,µs ⊗̂USg Qµs,λ ⊗̂USg Qλ,ω−1•λ.

Now, by [BR3, Lemma 5.3] we have isomorphisms

Qω−1•λ,λ ⊗̂USg Qλ,µs
∼= Qω−1•λ,µs , Qµs,λ ⊗̂USg Qλ,ω−1•λ ∼= Qµs,ω−1•λ,

and by [BR3, Lemma 5.5] we have isomorphisms

Qω−1•λ,µs
∼= Qλ,ω•µs , Qµs,ω−1•λ ∼= Qω•µs,λ.

Finally, using the fact that ω•µs and µωsω−1 both belong to the wall of A0 attached
to the simple reflection ωsω−1 and [BR3, Lemma 5.15] one checks that

Qλ,ω•µs ⊗̂USg Qω•µs,λ
∼= Qλ,µωsω−1 ⊗̂USg Qµωsω−1 ,λ.

The desired claim follows, using again [BR3, Lemma 5.5]. �
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As explained e.g. in [BR3, §6.6], the results of that paper imply that for any
s ∈ Saff the morphism spaces

Hom
HCλ̂,λ̂

((Ug)λ̂,Rs) and Hom
HCλ̂,λ̂

(Rs, (Ug)λ̂)

are free of rank 1 as left (or right) modules over O(FNt∗/(Wf ,•)({λ̃})). (The left

and right actions on these spaces coincide, since they do on the module (Ug)λ̂.)

We choose generators (Ug)λ̂ → Rs and Rs → (Ug)λ̂, and define the objects Ns and
Ds as their cone and cocone respectively, so that we have distinguished triangles

(2.27) (Ug)λ̂ → Rs → Ns
[1]−→ and Ds → Rs → (Ug)λ̂

[1]−→ .

(These objects are therefore well defined up to isomorphism.)
We will denote by

BSHCλ̂,λ̂

the strictly full subcategory of HCλ̂,λ̂diag,tilt generated under the monoidal product

? by the unit object and the objects Rs (s ∈ Saff) and Rω (ω ∈ Ω). In view of

Lemma 2.20, any object in BSHCλ̂,λ̂ is isomorphic to an object of the form

Rs1 ? · · · ? Rsr ? Rω
where s1, · · · , sr ∈ Saff and ω ∈ Ω. We will also denote by

SHCλ̂,λ̂

the karoubian envelope of the additive hull of BSHCλ̂,λ̂, i.e. the strictly full subcat-

egory of HCλ̂,λ̂ whose objects are the direct summands of the direct sums of objects

in BSHCλ̂,λ̂.

Remark 2.21. In this notation the letters “BS” and “S” refer to Bott–Samelson and
Soergel respectively, since these categories will later be related to some category

of Soergel bimodules, in such a way that BSHCλ̂,λ̂ corresponds to Bott–Samelson
bimodules.

2.12. Further properties of the braid bimodules. We continue with the set-
ting and notation of §2.11. In this subsection we prove for later use some properties
of the objects (Rs : s ∈ Saff), (Ds : s ∈ Saff) and (Ns : s ∈ Saff). The proofs of
these properties rely on the constructions of [BR3].

Lemma 2.22. Let w◦ = s1 · · · sr be a reduced decomposition. Then the object

Pλ̂,−̂ς ? P−̂ς,λ̂ is a direct summand in Rs1 ? Rs2 ? · · · ? Rsr ; in particular, it belongs

to SHCλ̂,λ̂.

Proof. Consider the “Hecke category” H′aff attached to Waff as in [BR3, §2.1], and
the monoidal functor

(2.28) H′aff → BSHCλ̂,λ̂

of [BR3, Theorem 6.3]. (In [BR3], the category H′aff is denoted DBS.) This functor
extends uniquely to a monoidal functor

(2.29) Haff → SHCλ̂,λ̂

where Haff is the karoubian closure of the additive envelope of H′aff .
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The indecomposable objects in Haff are classified (up to isomorphism and shift)
by the elements in Waff . Moreover, the indecomposable object Bw◦ associated with
w◦ is described (in terms of Abe’s incarnation of the Hecke category, see [BR3,
§2.2]) in [Ab2, Proposition 2.10] (whose assumptions are satisfied in our setting
by [Ab2, Remark 2.8]). Using this description, the same arguments as for [BR3,

Proposition 6.6] show that the functor (2.29) sends Bw◦ to Pλ̂,−̂ς ?P−̂ς,λ̂. With the
notation in the statement, the object Bw◦ is a direct summand in Bs1 ? · · · ? Bsr ,
where Bs ∈ Haff is the indecomposable object associated with s. Applying the
(monoidal) functor (2.29), which sends Bs to Rs for any s ∈ Saff , we deduce the
desired claim. �

For w = (s1, · · · , sr) a word on Saff we set

Dw := Ds1 ? · · · ? Dsr , Nw := Ns1 ? · · · ? Nsr .

Lemma 2.23. (1) For any ω ∈ Ω and s ∈ Saff we have

Rω ? Ds ? Rω−1
∼= Dωsω−1 , Rω ? Ns ? Rω−1

∼= Nωsω−1 .

(2) For any s ∈ Saff there exist isomorphisms

Ns ? Ds ∼= (Ug)λ̂ ∼= Ds ? Ns.

(3) If w is a reduced expression for an element in Waff , then the objects Dw
and Nw only depend (up to isomorphism) on the image of w in Waff .

Proof. Statement (1) follows from Lemma 2.20.

To prove (2) and (3), we will again use the monoidal functor Haff → HCλ̂,λ̂

considered in the course of the proof of Lemma 2.22, and the induced functor
between bounded homotopy categories. In [ARV] it is explained (in a general setting
that admits the category Haff as a special case) how to associate with any element
in Waff a “standard object” and a “costandard object” in KbHaff . Inspecting on
definitions we see that the composition of the functor considered above with the
canonical functor

KbSHCλ̂,λ̂ → D−HCλ̂,λ̂

sends, for any s ∈ Saff , the standard, resp. costandard, object associated with s
to Ds, resp. Ns. Since the latter functor is monoidal, the desired properties then
follow from the similar properties of standard and costandard objects, see [ARV,
Proposition 6.11]. �

In view of Lemma 2.23 we can define complexes (Dw : w ∈W) and (Nw : w ∈W)
as follows. If `(w) = r we write w = s1 · · · srω for some s1, · · · , sr ∈ Saff and ω ∈ Ω,
and set

Dw := Ds1 ? · · · ? Dsr ? Rω, Nw := Ns1 ? · · · ? Nsr ? Rω.
Lemma 2.23 guarantees that these objects do not depend on the choice of s1, · · · , sr
and ω, up to isomorphism, and that they satisfy the following properties:

(1) for any w ∈W we have

Dw ? Nw−1
∼= (Ug)λ̂ ∼= Nw−1 ? Dw;

(2) if y, w ∈W satisfy `(yw) = `(y) + `(w) then

Dy ? Dw ∼= Dyw, Ny ? Nw ∼= Nyw.
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Recall the braid group BrW associated with the group W, see [BR1, §1.1]. This
group admits a presentation with generators (Tw : w ∈W) and relations

TyTw = Tyw if `(yw) = `(y) + `(w).

The subgroup Braff of BrW generated by the elements (Tw : w ∈Waff) (or, equiv-
alently, by the elements (Ts : s ∈ Saff)) is the usual Artin braid group associated
with the Coxeter system (Waff ,Saff). The action of Ω on Saff induces an action on
Braff , such that the assignment (ω, b) 7→ Tω · b induces a group isomorphism

(2.30) Ω n Braff
∼−→ BrW.

The group BrW also contains some “Bernstein elements” (θλ : λ ∈ X∗(T)), and it
is also generated by the elements

(2.31) {Ts : s ∈ Sf} ∪ {θλ : λ ∈ X∗(T)}.

(See [BR1, §1.1] for a description of a presentation of BrW in terms of these gener-
ators.)

The properties (1)–(2) above show that the assignment Tw 7→ Nw can be uniquely
extended to a group morphism from BrW to the group of isomorphism classes of

invertible objects in the monoidal category D−HCλ̂,λ̂. The image of b (or, more
specifically, a representative of this image) will be denoted Nb. (It is clear from
construction that this complex is bounded.) Note that for any w ∈ W we have
N(Tw)−1 = Dw−1 .

Lemma 2.24. Let s, t ∈ Saff and b ∈ BrW, and assume that bTsb
−1 = Tt. Then

there exists an isomorphism

Nb ? Rs ? Nb−1
∼= Rt.

Proof. Using the isomorphism (2.30) and Lemma 2.20(1) one can assume that b ∈
Braff . Then the proof is similar to that of Lemma 2.23(2)–(3). Namely, it suffices
to prove a similar isomorphism in KbHaff , which follows from the characterization
of the simple object in the heart of the perverse t-structure attached to t given
in [ARV, §8.1]. �

3. Completed localization for Ug-modules

3.1. (Parabolic) Grothendieck resolutions. Recall that the parabolic subgrou-
ps of G containing B are in a natural bijection with the subsets of Rs. Given a
subset I ⊂ Rs, we will denote by PI ⊂ G the associated parabolic subgroup, by UI

its unipotent radical, by LI ⊂ PI the Levi factor containing T, and by pI , uI and
lI their respective Lie algebras. The “Grothendieck resolution” associated with I
is the induced variety

g̃I := G×PI (g/uI)
∗.

This variety is a vector bundle over G/PI ; in particular it is smooth. It is equipped
with a G-action induced by left multiplication on G. (When I = ∅ this variety
is the usual Grothendieck resolution associated with G; in this case we will often
omit the subscript ∅. When I = Rs we have g̃Rs = g∗.) If I ⊂ J ⊂ Rs we have a
natural G-equivariant projective morphism g̃I → g̃J ; in particular, for any I ⊂ Rs,
taking J = Rs we obtain a G-equivariant projective morphism g̃I → g∗.
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Consider the action of LI on G/UI induced by right multiplication on G, and
the induced action on T ∗(G/UI). Then we have a canonical identification

T ∗(G/UI) ∼= G×UI (g/uI)
∗,

under which the action of LI is given by h · [g : ξ] = [gh−1 : h · ξ] for h ∈ LI , g ∈ G
and ξ ∈ (g/uI)

∗, hence there exists a canonical morphism

T ∗(G/UI)→ g̃I

which is an LI -torsor.
To I ⊂ Rs we also associate the subgroup WI of Wf generated by the simple

reflections sα with α ∈ I, which identifies with the Weyl group of LI . We have a
Chevalley isomorphism

l∗I/LI
∼−→ t∗/WI ,

from which we obtain PI -equivariant morphisms

(g/uI)
∗ → l∗I → t∗/WI

(where the first map is induced by the restriction morphism (g/uI)
∗ → (pI/uI)

∗ =
l∗I , and where PI acts via the quotient PI → LI on l∗I and trivially on the right-hand
side). We deduce a morphism

(3.1) g̃I → t∗/WI

which is G-equivariant for the trivial action on t∗/WI , and such that the following
diagram commutes, where the bottom horizontal map is the coadjoint quotient
morphism and the right vertical map is induced by the quotient morphism t∗ →
t∗/W:

g̃I //

��

t∗/WI

��
g∗ // t∗/W.

If I ⊂ J ⊂ Rs these morphisms (for I and J) and the canonical morphism g̃I → g̃J
satisfy various obvious compatibility properties, whose precise formulation is left
to the reader.

Lemma 3.1. For any subset I ⊂ Rs, the morphism g̃I → t∗/WI is flat.

Proof. Since flatness is local on the source, and by G-equivariance, it suffices to
check that the restriction of the morphism to the preimage of the open subscheme
U+
I ⊂ G/PI is flat, where U+

I is the unipotent radical of the parabolic subgroup

opposite to PI (which identifies with the open subscheme U+
I · PI/PI ⊂ G/PI).

Over this open subscheme g̃I identifies with

U+
I × (g/uI)

∗ ∼= U+
I × l∗I × (u+

I )∗

(where u+
I is the Lie algebra of U+

I ), and our morphism identifies with the compo-
sition of projection to l∗I with the coadjoint quotient morphism for lI . As seen in
the proof of Proposition 2.2 the latter morphism is flat by results of [BC], hence so
is our morphism. �

Remark 3.2. Below, the cases we will mainly consider are when #I ≤ 1. In case
I = {s} for some s ∈ Sf , we will sometimes write g̃s for g̃{s}.
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3.2. Sheaves of algebras and modules. Let X be a k-scheme, and A be a sheaf
of (not necessarily commutative) algebras on X endowed with a ring morphism
OX → A (which does not necessarily take values in the center of A ) which makes
A a quasi-coherent OX -module. In this setting we will denote by

Modqc(A )

the abelian category of sheaves of left A -modules which are quasi-coherent as
sheaves of OX -modules. We will say that A is left, resp. right, noetherian if for any
affine open subscheme U ⊂ X the ring Γ(U,A|U ) is left, resp. right, noetherian; if
A is left noetherian we will denote by

Modc(A )

the abelian category of sheaves of left A -modules which are coherent, i.e. quasi-
coherent and locally finitely generated.

We will consider these constructions in particular in the following setting. If
X is a smooth k-variety, we will denote by DX the sheaf of algebras of crystalline
differential operators on X (see [BMR1, §1.2]), i.e. the enveloping algebra of the
tangent bundle. There exists a canonical morphism OX → DX which makes DX a
quasi-coherent OX -module, and we can consider the abelian category Modqc(DX)
and its abelian subcategory Modc(DX). (Here DX is left and right noetherian.)

Since the Frobenius morphism FrX : X → X(1) is affine, the functor FrX∗ induces
equivalences of categories

Modqc(DX)
∼−→ Modqc(FrX∗DX), Modc(DX)

∼−→ Modc(FrX∗DX).

Moreover, FrX∗DX is a sheaf of OX(1)-algebras (i.e. the natural morphism OX(1) →
FrX∗DX takes values in the center of FrX∗DX); in fact there exists a canonical
identification between the center of FrX∗DX and the pushforward of the structure
sheaf of T ∗X(1) under the canonical morphism $X : T ∗X(1) → X(1), see [BMR1,
Lemma 1.3.2], and FrX∗DX is locally finitely generated over its center. Since $X

is an affine morphism, this implies that there exists a coherent sheaf of OT∗X(1)-
algebras DX such that $X∗DX = FrX∗DX . Then we have equivalences of categories

(3.2) Modqc(DX)
∼−→ Modqc(DX), Modc(DX)

∼−→ Modc(DX),

and a quasi-coherent sheaf of DX -modules is coherent iff it is coherent as a sheaf
of OT∗X(1)-modules.

3.3. Monodromic variant. Let us recall a variant of these constructions taken
from [BMR2, §1.2.1], specialized to the setting we will require below. Let I ⊂ Rs

be a subset. We consider the natural morphism

pI : G/UI → G/PI ,

a Zariski locally trivial torsor for the action of LI on G/UI considered in §3.1, and
the sheaf of algebras

D̃I := (pI)∗(DG/UI
)LI ,

where the superscript means LI -invariants (for the action induced by the action of
LI on G/UI).

The action of LI on G/UI defines an algebra morphism U lI → Γ(G/PI , D̃I).
Restricting this morphism to the Harish-Chandra center (U lI)

LI ∼= O(t∗/(WI , •))
we obtain a canonical morphism

(3.3) O(t∗/(WI , •))→ Γ(G/PI , D̃I);
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moreover this morphism takes values in the center of D̃I . (Note that here the two
possible meanings of the dot-action of WI , obtained by seeing WI either as the
Weyl group of LI or as a subgroup of Wf , coincide.)

On the other hand, the sheaf of algebras (FrG/UI
)∗DG/UI

has a center iso-
morphic canonically to ($G/UI

)∗OT∗(G/UI)(1) , see §3.2. We deduce a canonical

morphism from the pushforward to (G/PI)
(1) of the structure sheaf of g̃

(1)
I =

T ∗(G/UI)
(1)/L

(1)
I to the center of (FrG/PI )∗D̃I . Combining this construction

with (3.3), we obtain a canonical morphism from the pushforward to (G/PI)
(1)

of the structure sheaf of

g̃
(1)
I ×t∗(1)/WI

t∗/(WI , •)

to the center of (FrG/PI )∗D̃I . (Here the morphism t∗/(WI , •) → t∗(1)/WI is
induced by the Artin–Schreier morphism (2.3).) Since all the morphisms under
consideration are affine, there exists a coherent sheaf of O

g̃
(1)
I ×t∗(1)/WI

t∗/(WI ,•)
-

algebras D̃I whose pushforward to (G/PI)
(1) is (FrG/PI )∗D̃I . Moreover, there

exist canonical equivalences of categories

Modqc(D̃I)
∼−→ Modqc(D̃I), Modc(D̃I)

∼−→ Modc(D̃I),

and a quasi-coherent D̃I -module is coherent iff it is coherent as a quasi-coherent

sheaf on g̃
(1)
I ×t∗(1)/WI

t∗/(WI , •).

3.4. Completed localization, I. We continue with our subset I ⊂ Rs. We will
consider below the quotient morphisms

κ : t∗ → t∗/(Wf , •), κI : t∗ → t∗/(WI , •),

and denote by

κI : t∗/(WI , •)→ t∗/(Wf , •)

the morphism such that κ = κI ◦ κI .
To lighten notation, in this subsection we set

XI := g̃
(1)
I ×t∗(1)/WI

t∗/(WI , •), Y := g∗(1) ×t∗(1)/Wf
t∗/(Wf , •),

YI := Y ×t∗/(Wf ,•) t∗/(WI , •) = g∗(1) ×t∗(1)/Wf
t∗/(WI , •).

For ξ ∈ t∗ we set

(Ug)ξ̂ := Ug ⊗O(t∗/(Wf ,•)) O(FNt∗/(Wf ,•)({κ(ξ)}))

and

D̃ξ̂I := D̃I ⊗O(t∗/(WI ,•)) O(FNt∗/(WI ,•)({κI(ξ)})).

We will also denote by D̃ ξ̂
I the pullback of D̃I under the natural morphism from

X ξ̂
I := XI ×t∗/(WI ,•) FNt∗/(WI ,•)({κI(ξ)}) = g̃

(1)
I ×t∗(1)/WI

FNt∗/(WI ,•)({κI(ξ)})

to XI . Then, as in (3.2), there exist canonical equivalences of categories

(3.4) Modqc(D̃ξ̂I) ∼= Modqc(D̃ ξ̂
I ), Modc(D̃ξ̂I) ∼= Modc(D̃ ξ̂

I ).
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Remark 3.3. Recall that any λ ∈ X∗(T) which satisfies 〈λ, α∨〉 = 0 for any α ∈ I
defines in a natural way a line bundle OG/PI (λ) on G/PI . On the other hand, for

such λ, the automorphism of t∗ given by ξ 7→ ξ + λ commutes with the dot-action
of WI , hence induces an automorphism τI,λ of t∗/(WI , •), which itself induces an
isomorphism

X ξ̂
I = g̃

(1)
I ×t∗(1)/WI

FNt∗/(WI ,•)({κI(ξ)})
∼−→

g̃
(1)
I ×t∗(1)/WI

FNt∗/(WI ,•)({κI(ξ + λ)}) = X ξ̂+λ
I .

By [BMR2, Lemma 1.2.1] (see also [BMR1, Lemma 2.3.1]), there exists a canon-

ical equivalence of Azumaya algebras between the pushforward of D̃ ξ̂
I under this

isomorphism and D̃ ξ̂+λ
I , which induces equivalences of categories

Modqc(D̃ ξ̂
I )
∼−→ Modqc(D̃ ξ̂+λ

I ), Modc(D̃ ξ̂
I )
∼−→ Modqc(D̃ ξ̂+λ

I ).

Under the identifications (3.4), this equivalence is given by the assignment

F 7→ OG/PI (λ)⊗OG/PI
F .

Below we will also consider an analogue of this construction for right modules.
In fact, as in [BMR2, Lemma 3.0.6] we have a canonical isomorphism of sheaves of

rings D̃I
∼−→ D̃op

I which, for any ξ, induces equivalences of categories

Modqc(D̃ ξ̂,op
I )

∼−→ Modqc(D̃−̂ξ−2ρ
I ), Modc(D̃ ξ̂,op

I )
∼−→ Modc(D̃−̂ξ−2ρ

I ).

Hence we have equivalences of categories

Modqc(D̃ ξ̂,op
I )

∼−→ Modqc(D̃ ξ̂+λ,op
I ), Modc(D̃ ξ̂,op

I )
∼−→ Modqc(D̃ ξ̂+λ,op

I )

given by the assignment

F 7→ OG/PI (−λ)⊗OG/PI
F .

Setting

ŨIg := Ug ⊗O(t∗/(Wf ,•)) O(t∗/(WI , •)),
by [BMR2, Proposition 1.2.3(b)] we have a canonical algebra isomorphism

(3.5) ŨIg
∼−→ Γ(XI , D̃I).

The O(YI)-algebra ŨIg defines a coherent sheaf of algebras on the affine scheme YI ,
which we will denote similarly; then in view of (3.5) we have a natural morphism
of ringed spaces

(XI , D̃I)→ (YI , ŨIg).

We can also consider the sheaf of rings on the affine scheme Y defined by Ug, which
we also denote by Ug, and the natural morphism of ringed spaces

(YI , ŨIg)→ (Y,Ug).

If ξ ∈ t∗ we set

(ŨIg)ξ̂ := ŨIg ⊗O(t∗/(WI ,•)) O(FNt∗/(WI ,•)({κI(ξ)}))
= Ug ⊗O(t∗/(Wf ,•)) O(FNt∗/(WI ,•)({κI(ξ)})),



ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 35

so that (ŨIg)ξ̂ defines a sheaf of rings on the affine scheme

Y ξ̂I := YI ×t∗/(WI ,•) FNt∗/(WI ,•)({κI(ξ)}) = Y ×t∗/(Wf ,•) FNt∗/(WI ,•)({κI(ξ)}).

If Stab(Wf ,•)(ξ) ⊂ WI , then by the standard criterion [SGA1, Exp. V, Proposi-

tion 2.2] the morphism κI is étale at κI(ξ), and induces an isomorphism of schemes

(3.6) FNt∗/(WI ,•)({κI(ξ)})
∼−→ FNt∗/(Wf ,•)({κ(ξ)}).

(Here we use the standard identification between O(FNt∗/(WI ,•)({κI(ξ)})) and the
completion of the local ring of t∗/(WI , •) at κI(ξ), and similarly for the right-hand

side.) We deduce an isomorphism of schemes from Y ξ̂I to

Y ξ̂ := Y ×t∗/(Wf ,•) FNt∗/(Wf ,•)({κ(ξ)})

and an isomorphism of rings between (ŨIg)ξ̂ and (Ug)ξ̂. In other words, under this
assumption we have an isomorphism of ringed spaces

(3.7) (Y ξ̂I , (ŨIg)ξ̂)
∼−→ (Y ξ̂, (Ug)ξ̂)

where once again we denote by the same symbol a quasi-coherent sheaf of OZ-
algebras over an affine scheme Z and its global sections.

By (3.5) and the flat base change theorem (see [SP, Tag 02KH]), we have a
canonical algebra isomorphism

(3.8) (ŨIg)ξ̂
∼−→ Γ(X ξ̂

I , D̃
ξ̂
I );

we therefore have a canonical morphism of ringed spaces

f ′,ξI : (X ξ̂
I , D̃

ξ̂
I )→ (Y ξ̂I , (ŨIg)ξ̂).

In case Stab(Wf ,•)(ξ) ⊂ WI , the composition of this morphism with the isomor-

phism (3.7) will be denoted fξI . We can then consider the (derived) push/pull
functors

R(fξI )∗ : D+Modqc(D̃ ξ̂
I )→ D+Mod((Ug)ξ̂)

and

L(fξI )∗ : D−Mod((Ug)ξ̂)→ D−Modqc(D̃ ξ̂
I ).

Note that by standard arguments (see e.g. [AriB, Proof of Corollary 2.11]) the
natural functors

DbModc(D̃ ξ̂
I )→ DbModqc(D̃ ξ̂

I ), DbModfg((Ug)ξ̂)→ DbMod((Ug)ξ̂)

are fully faithful, and their essential images consist of complexes with coherent
(resp. finitely generated) cohomology objects.

The following statement is a “completed” version of the main results of [BMR1,
BMR2].

Theorem 3.4. Assume that Stab(Wf ,•)(ξ) ⊂WI .

(1) The functor R(fξI )∗ restricts to a functor

(3.9) DbModc(D̃ ξ̂
I )→ DbModfg((Ug)ξ̂),

still denoted R(fξI )∗.

https://stacks.math.columbia.edu/tag/02KH
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(2) The functor L(fξI )∗ restricts to a functor

(3.10) DbModfg((Ug)ξ̂)→ DbModc(D̃ ξ̂
I ),

still denoted L(fξI )∗.
(3) The functors (3.9) and (3.10) are quasi-inverse equivalences of categories.

To prove Theorem 3.4 we will repeat the construction of the functors in [BMR1,
BMR2], and then reduce the proof that they are equivalences to the results of these
references. In this subsection we prove statements (1) and (2), and the following
weaker variant of (3):

(4) The functor L(fξI )∗ of (3.10) is left adjoint to the functor R(fξI )∗ of (3.9),

and moreover the adjunction morphism id→ R(fξI )∗ ◦L(fξI )∗ is an isomor-

phism; in particular, L(fξI )∗ is fully faithful.

Statement (3) will be deduced in §3.5 below.

Proof of (1), (2) and (4). We assume that Stab(Wf ,•)(ξ) ⊂WI .
(1) We have forgetful functors

Modqc(D̃ ξ̂
I )→ QCoh(X ξ̂

I ), Mod((Ug)ξ̂)→ QCoh(Y ξ̂)

which send coherent (resp. finitely generated) modules to coherent sheaves, and

denoting by gξI : X ξ̂
I → Y ξ̂ the morphism of schemes underlying fξI , the diagram

(3.11)

D+Modqc(D̃ ξ̂
I )

R(fξI )∗ //

��

D+Mod((Ug)ξ̂)

��
D+QCoh(X ξ̂

I )
R(gξI )∗ // D+QCoh(Y ξ̂)

commutes by the same arguments as in [BMR1, §3.1.9]. Note that gξI is proper,
since it can be written as the composition

X ξ̂
I → g̃

(1)
I ×t∗(1)/Wf

FNt∗/(WI ,•)({κI(ξ)}) ∼= g̃
(1)
I ×t∗(1)/Wf

FNt∗/(Wf ,•)({κ(ξ)})

→ g∗(1) ×t∗(1)/Wf
FNt∗/(Wf ,•)({κ(ξ)}) = Y ξ̂

where the first morphism is a closed immersion and the last one is obtained from

the closed morphism g̃
(1)
I → g∗(1) by base change.

Now, note that X ξ̂
I is a scheme of finite type over FNt∗/(WI ,•)({κI(ξ)}). Here

O(FNt∗/(WI ,•)({κI(ξ)})) is the completion of a noetherian local ring of finite Krull
dimension (namely, the local ring of t∗/(WI , •) at κI(ξ)), hence it is itself noether-
ian (see [SP, Tag 0316]) and of finite Krull dimension (see [SP, Tag 07NV]). We

deduce that X ξ̂
I is noetherian of finite Krull dimension, so that the functor (gξI )∗

has finite homological dimension, see [Ha, p. 88]. Since gξI is proper, we deduce

using [SP, Tag 02O5] that R(gξI )∗ restricts to a functor DbCoh(X ξ̂
I )→ DbCoh(Y ξ̂).

Using the diagram (3.11) we deduce that R(fξI )∗ restricts to a functor

DbModc(D̃ ξ̂
I )→ DbModfg((Ug)ξ̂),

as desired.

https://stacks.math.columbia.edu/tag/0316
https://stacks.math.columbia.edu/tag/07NV
https://stacks.math.columbia.edu/tag/02O5
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(2) To prove this claim we will use the identifications (3.4). The closed points in
(κI)−1(ξ) consist of the (WI , •)-orbits θ ⊂ t∗ contained in Wf • ξ, and as in [BR3,
Lemma 3.4] we have a canonical identification

(3.12) FNt∗/(WI ,•)({(κ
I)−1(ξ)}) =

⊔
θ⊂Wf•ξ

FNt∗/(WI ,•)({θ})

where θ runs over the (WI , •)-orbits contained in Wf • ξ. The functor

D̃I ⊗Ug (−) : Mod(Ug)→ Modqc(D̃I),
i.e. the pullback functor associated with the natural morphism of ringed spaces

(XI , D̃I)→ (Y,Ug), induces a functor

(3.13) Mod((Ug)ξ̂)→ Modqc(D̃I ⊗O(t∗/(WI ,•)) O(FNt∗/(WI ,•)({(κ
I)−1(ξ)}))),

and the right-hand side identifies with the direct sum⊕
θ⊂Wf•ξ

Modqc(D̃I ⊗O(t∗/(WI ,•)) O(FNt∗/(WI ,•)(θ)))

where θ is as above. By definition, (fξI )∗ coincides with the composition of (3.13)

with projection to the direct summand Modqc(D̃ξ̂I). Since any flat (Ug)ξ̂-module is
also flat over Ug, this identification also holds at the derived level, and we deduce

that for any M in D−Mod((Ug)ξ̂) the image in D−Modqc(D̃I) of L(fξI )∗(M) is a
direct summand in

D̃I
L
⊗Ug M.

Since Ug has finite homological dimension, it follows that L(fξI )∗ sends bounded
complexes to bounded complexes. The desired claim follows, using the fact that any

finitely generated (Ug)ξ̂-module is a quotient of a finitely generated flat module.

(4) The fact that our functors are adjoint follows from the fact that (fξI )∗ is left

adjoint to (fξI )∗ and general properties of derived functors (see [SP, Tag 0DVC]).

Then we consider the adjunction morphism id → R(fξI )∗ ◦ L(fξI )∗. Recall
from [BMR2, Proposition 1.2.3(b)] that we have Hi(XI ,DI) = 0 for any i > 0. By

the flat base change theorem (see [SP, Tag 02KH]) this implies that Hi(X ξ̂
I , D̃

ξ̂
I ) = 0

for any i > 0. Using also (3.8) and the identification (3.7), we deduce that adjunc-
tion induces an isomorphism

(Ug)ξ̂
∼−→ R(fξI )∗ ◦ L(fξI )∗(Ug)ξ̂.

Since (fξI )∗ has finite homological dimension (see the proof of (1)), it follows that

this property holds for any bounded above complex of finitely generated free (Ug)ξ̂-

modules, hence finally for any object in DbModfg((Ug)ξ̂), proving that this adjunc-

tion morphism id→ R(fξI )∗ ◦L(fξI )∗ is an isomorphism on DbModfg((Ug)ξ̂). Fully

faithfulness of the functor L(fξI )∗ is a standard consequence. �

3.5. Completed localization, II. We will now explain how to complete the proof
of Theorem 3.4. We continue to assume that Stab(Wf ,•)(ξ) ⊂WI . In view of the
work done so far, to conclude it suffices to prove that the adjunction morphism

(3.14) L(fξI )∗ ◦R(fξI )∗(M )→M

is an isomorphism for any M in DbModc(D̃ ξ̂
I ).

https://stacks.math.columbia.edu/tag/0DVC
https://stacks.math.columbia.edu/tag/02KH
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As noted in Remark 3.3, any λ ∈ X∗(T) = X∗(T(1)) orthogonal to any α∨ with

α ∈ I defines a line bundle on (G/PI)
(1), whose pullback to X ξ̂

I will be denoted

O
X ξ̂I

(λ). We can then consider the left D̃ ξ̂
I -module

D̃ ξ̂
I (λ) = D̃ ξ̂

I ⊗O
X
ξ̂
I

O
X ξ̂I

(λ).

Lemma 3.5. (1) For any nonzero M in DbModc(D̃ ξ̂
I ), there exist λ ∈ X∗(T)

orthogonal to any α∨ with α ∈ I and n ∈ Z such that

Hom
DbModc(D̃ ξ̂

I )
(D̃ ξ̂

I (λ),M [n]) 6= 0.

(2) For any λ ∈ X∗(T) orthogonal to any α∨ with α ∈ I, the morphism (3.14)

is an isomorphism when M = D̃ ξ̂
I (λ).

The proof of (2) will use the following preliminary result.

Lemma 3.6. The image under the morphism X ξ̂
I → FNt∗/(Wf ,•)({κ(ξ)}) of any

closed G-invariant subset is closed.

Proof. In view of the isomorphism (3.6), to prove the lemma it suffices to prove

that the image in FNt∗/(Wf ,•)({κ(ξ)}) of any G-invariant closed subset of X ξ̂
I is

closed. Then, considering the factorization

X ξ̂
I → Y ξ̂ → FNt∗/(Wf ,•)({κ(ξ)})

in which the first map is G-equivariant and proper (hence closed), we see it suffices
to prove that the image under the second map of any G-equivariant closed subset

of Y ξ̂ is closed. We will prove below that this morphism is the quotient morphism

with respect to the action of G on Y ξ̂; in view of [Se, Corollary 2 on p. 2.6.2]

(applied to the natural closed immersion Y ξ̂ ↪→ g∗ ×k FNt∗/(Wf ,•)({κ(ξ)}) and the
reductive group G×kFNt∗/(Wf ,•)({κ(ξ)}) over FNt∗/(Wf ,•)({κ(ξ)})) this will imply
that the image of any G-invariant closed subset is closed, as desired.

To conclude we therefore have to prove that the natural morphism

O(FNt∗/(Wf ,•)({κ(ξ)}))→ O(Y ξ̂)G

is an isomorphism. Since O(t∗) is free over O(t∗/(Wf , •)) by [De], it suffices to
prove this claim after base change along the quotient morphism t∗ → t∗/(Wf , •).
Now, by finiteness we have

t∗ ×t∗/(Wf ,•) FNt∗/(Wf ,•)({κ(ξ)}) ∼= FNt∗({κ−1(κ(ξ))}),
and by commutation of fixed points with flat base change (see [J2, Equation (3)
in §I.2.10]) the base change of our morphism identifies with the natural morphism

O(FNt∗({κ−1(κ(ξ))}))→ O(g∗(1) ×t∗(1)/Wf
FNt∗({κ−1(κ(ξ))}))G.

Using again commutation of fixed points with flat base change, the latter morphism
is obtained from the Chevalley isomorphism g∗(1)/G

∼−→ t∗(1)/Wf by base change
along the composition of flat morphisms

FNt∗({κ−1(κ(ξ))})→ t∗ → t∗(1) → t∗(1)/Wf ,

which finishes the proof. (Here the second morphism is the Artin–Schreier mor-
phism, which is étale hence flat, and the third morphism is flat by [De].) �
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Proof of Lemma 3.5. (1) It is clear that for any λ and n we have

Hom
DbModc(D̃ ξ̂

I )
(D̃ ξ̂

I (λ),M [n]) ∼= Hom
DbCoh(X ξ̂I )

(O
X ξ̂I

(λ),M [n])

∼= Hn(X ξ̂
I ,M ⊗O

X
ξ̂
I

O
X ξ̂I

(−λ)).

Now the line bundle on (G/PI)
(1) defined by −λ is ample if 〈λ, β∨〉 < 0 for any

β ∈ Rs r I (see e.g. [J2, Remark after Proposition II.4.4]), hence in this case
O
X ξ̂I

(−λ) is ample by [SP, Tag 0892]. This implies the desired claim by [SP, Tag

01Q3].
(2) In fact, we will prove this claim for any module M which is G-equivariant as

a coherent sheaf (with respect to the obvious action of G on X ξ̂
I ). Namely, consider

the cone C of our morphism, and assume for a contradiction that C 6= 0. This
cone is easily seen to be a complex of G-equivariant coherent sheaves, hence so are
its cohomology sheaves. Recall the notion of support of a coherent sheaf, and its
characterization in [SP, Tag 056J]. The support of the nonzero cohomology object

of C of highest degree is a G-invariant closed subset in X ξ̂
I . By Lemma 3.6 its

image in FNt∗/(WI ,•)({κI(ξ)}) is closed. This implies that this image contains the
unique closed point, and then that the (derived) pullback of C under the closed
immersion

ıI,ξ : g̃
(1)
I ×t∗(1)/WI

{κI(ξ)} ↪→ g̃
(1)
I ×t∗(1)/WI

FNt∗/(WI ,•)({κI(ξ)}) = X ξ̂
I

is nonzero.
Now, using the general version of the base change theorem (see [Li, Theo-

rem 3.10.3]) and Lemma 3.1 one sees that the composition of the functor L(fξI )∗ ◦
R(fξI )∗ with the pullback functor L(ıI,ξ)

∗ identifies with the composition of the
latter functor with the composition of the equivalence in [BMR2, Equation (5) in
Theorem 1.5.1] and its inverse (see also [BMR2, §1.6]); it follows that L(ıI,ξ)

∗C = 0,
which provides a contradiction. �

Proof of Theorem 3.4(3). In view of Lemma 3.5(1), to prove the desired claim it

suffices to prove that for any M in DbModc(D̃ ξ̂
I ), for any λ ∈ X∗(T) and n ∈ Z

the morphism

Hom(D̃ ξ̂
I (λ), L(fξI )∗ ◦R(fξI )∗(M )[n])→ Hom(D̃ ξ̂

I (λ),M [n])

induced by (3.14) is an isomorphism. Now by Lemma 3.5(2), fully faithfulness of

L(fξI )∗, and adjunction, we have

Hom(D̃ ξ̂
I (λ), L(fξI )∗ ◦R(fξI )∗(M )[n]) ∼=

Hom(L(fξI )∗ ◦R(fξI )∗(D̃
ξ̂
I (λ)), L(fξI )∗ ◦R(fξI )∗(M )[n]) ∼=

Hom(R(fξI )∗(D̃
ξ̂
I (λ)), R(fξI )∗(M )[n]) ∼=

Hom(L(fξI )∗ ◦R(fξI )∗(D̃
ξ̂
I (λ)),M [n]).

We conclude by Lemma 3.5(2) again. �

https://stacks.math.columbia.edu/tag/0892
https://stacks.math.columbia.edu/tag/01Q3
https://stacks.math.columbia.edu/tag/01Q3
https://stacks.math.columbia.edu/tag/056J
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4. Derived localization for Harish-Chandra bimodules

4.1. Steinberg schemes. Our goal in this section is to prove an analogue of The-
orem 3.4 for the categories of (completed) Harish-Chandra bimodules introduced
in §2.4. First we introduce the geometry that will be involved in this theorem.

Given two subsets I, J ⊂ Rs, we will consider the associated “Steinberg scheme”

StI,J = g̃I ×g∗ g̃J .

This scheme is equipped with a diagonal G-action, and with a canonical G-equiva-
riant morphism

StI,J → t∗/WI × t∗/WJ

(for the trivial action on the codomain) given by (3.1) on each factor, which factors
through t∗/WI ×t∗/Wf

t∗/WJ ; we will set

St∧I,J := StI,J ×t∗/WI×t∗/Wf
t∗/WJ

FNt∗/WI×t∗/Wf
t∗/WJ

({(0, 0)}).

In case I = J = ∅, these subsets will usually be omitted from notation.

Remark 4.1. By finiteness of the map t∗/WI ×t∗/Wf
t∗/WJ → t∗/Wf , and since

(0, 0) is the only closed point in the preimage of 0 under this map, the scheme St∧I,J
also identifies with the fiber product

StI,J ×t∗/Wf
FNt∗/Wf

({0}).

We set

ZI,J := t∗/(WI , •)×t∗(1)/Wf
t∗/(WJ , •).

(In case I = J = Rs, this scheme is the scheme Z from §2.4.)4 Consider the fiber
product

(4.1)
(
g̃

(1)
I ×t∗(1)/WI

t∗/(WI , •)
)
×g∗(1)

(
g̃

(1)
J ×t∗(1)/WJ

t∗/(WJ , •)
)

∼= St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
ZI,J ,

where the morphisms to g∗(1) are induced by the natural morphisms g̃I → g∗ and
g̃J → g∗ (see §3.1).

If λ ∈ X∗(T), we will denote by λ̃I , resp. λ̃J , the image of λ in t∗/(WI , •),
resp. t∗/(WJ , •); in the notation of §3.4 we therefore have λ̃I = κI(λ), λ̃J = κJ(λ).
For λ, µ ∈ X∗(T) we also set

Zλ̂,µ̂I,J = FNZI,J ({(λ̃I , µ̃J)}).

Lemma 4.2. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs, and assume that

WI ⊂ Stab(Wf ,•)(λ), WJ ⊂ Stab(Wf ,•)(µ).

Then the projection morphism

St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
ZI,J → St

(1)
I,J

induces an isomorphism of schemes

St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Zλ̂,µ̂I,J

∼−→ St
∧(1)
I,J .

4For most notation used in the paper, omission of a subset I ⊂ Rs in the notation means that
I = ∅. The notation Z is one the only exceptions to this rule.
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Proof. The lemma will follow from the definitions once we prove that the morphism

t∗/(WI , •)→ t∗(1)/WI , resp. t∗/(WJ , •)→ t∗(1)/WJ ,

is étale at λ̃I , resp. µ̃J . The two cases are similar, so we concentrate on the first
one. We consider the composition

t∗ → t∗(1) → t∗(1)/WI ,

where the first morphism is the Artin–Schreier morphism (2.3). This morphism is
the quotient morphism for the natural “dot” action of X∗(T)/`X∗(T)×RWI on t∗

(whereX∗(T)/`X∗(T) acts by translation on t∗ = k⊗ZX
∗(T)). Since the point λ ∈

t∗ is stabilized by the action of WI , whereas its orbit under X∗(T)/`X∗(T) is free,
its stabilizer is exactly WI , so the claim follows from the general criterion [SGA1,
Exp. V, Proposition 2.2]. �

We will denote by

CohG
(1)

N (St
(1)
I,J)

the category of G(1)-equivariant coherent sheaves on St
(1)
I,J set-theoretically sup-

ported on the preimage of the point (0, 0) ∈ t∗(1)/WI ×t∗(1)/Wf
t∗(1)/WJ , or

equivalently set-theoretically supported on the preimage of 0 ∈ t∗(1)/Wf . The
following lemma is an application of the considerations in §A.4.

Lemma 4.3. The obvious functor

DbCohG
(1)

N (St
(1)
I,J)→ DbCohG

(1)

(St
∧(1)
I,J )

is fully faithful; its essential image is the full subcategory whose objects are the
complexes F such that the morphism

O(FNt∗(1)/WI×t∗(1)/Wf
t∗(1)/WJ

({(0, 0)}))→ End(F )

vanishes on a power of the unique maximal ideal.

4.2. Equivariant sheaves of algebras and modules. As in §3.2, consider a
k-scheme X, and a sheaf of algebras A on X endowed with a ring morphism
OX → A which makes A a quasi-coherent OX -module. Assume furthermore that
X is endowed with an action of a smooth affine k-group scheme H, and that the
OX -module A admits a structure of H-equivariant quasi-coherent sheaf such that
the morphism OX → A and the multiplication morphism A ⊗OX A → A are H-
equivariant. In this setting, a weakly H-equivariant A -module is an object M of
Modqc(A ) endowed with a structure of H-equivariant quasi-coherent OX -module
(with respect to the restriction of the A -action to OX) such that the action mor-
phism A ⊗OX M → M is a morphism of H-equivariant quasi-coherent sheaves.
These are naturally objects of an abelian category, which will be denoted

ModHqc(A ),

and we have an obvious faithful exact functor

ForHA : ModHqc(A )→ Modqc(A ).

(We will omit the subscript “A ” in this notation in case it is obvious from the
context.) If A is noetherian, we will denote by

ModHc (A )



42 R. BEZRUKAVNIKOV AND S. RICHE

the full subcategory of ModHqc(A ) whose objects are those M such that ForHA (M )
belongs to Modc(A ).

There is a stronger notion of equivariance in the following setting. Consider
again a smooth affine k-group scheme H acting on a k-scheme X, and let h be the
Lie algebra of H. Recall that if M is an H-equivariant quasi-coherent OX -module,
there exists a canonical Lie algebra morphism LM : h→ Endk(M ); see [Ka, §3.1].5

Assume we are given a sheaf of algebras A as above with an H-equivariant structure
satisfying the properties considered at the beginning of the present subsection, and
a morphism of Lie algebras σ : h→ Γ(X,A ) which is H-equivariant and satisfies

(4.2) LA (x) = [σ(x),−] for any x ∈ h

(where the right-hand side is the commutator in the algebra Γ(X,A )). Then an

object M of ModHqc(A ), with structure morphism αM : A → Endk(M ), is called
a strongly H-equivariant A -module if we have

αM (σ(x)) = LM (x) for any x ∈ h.

(For this notion, see also [BL, §2.16].) We will denote by

Modqc(A , H)

the full subcategory of ModHqc(A ) whose objects are the strongly equivariant mod-
ules, and by

Modc(A , H)

the intersection of the full subcategories Modqc(A , H) and ModHc (A ) in the cate-

gory ModHqc(A ).
The following statement follows from the same arguments as for Lemma 2.3.

Lemma 4.4. If A is noetherian, the obvious functor

DbModc(A , H)→ DbModqc(A , H)

is fully faithful, and identifies the left-hand side with the full subcategory of the
right-hand side whose objects are the complexes all of whose cohomology objects
belong to Modc(A , H).

In particular, if X is a smooth k-variety endowed with an action of a smooth
affine k-group scheme H, the sheaf of algebras DX admits a canonical structure of
H-equivariant quasi-coherent sheaf which satisfies the conditions above, and there
exists a canonical H-equivariant morphism of Lie algebras h → Γ(X,DX) such
that (4.2) is satisfied. We can therefore consider the abelian categories

ModHqc(DX), ModHc (DX), Modqc(DX , H), Modc(DX , H).

As explained in [Ka, Lemma 3.1.4], the category Modqc(DX , H) can also be decribed

as the full subcategory of ModHqc(DX) whose objects are the weakly H-equivariant
DX -modules M such that the isomorphism

a∗XM
∼−→ p∗XM

giving the structure of H-equivariant quasi-coherent sheaf is an isomorphism of
DH×X -modules. (Here, aX , pX : H ×X → X are the action and projection mor-
phisms, respectively.)

5In [Ka] it is assumed that the base field is C; but the considerations used here and below hold
over any base field.
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In terms of the equivalences (3.2), there exists a canonical action of H(1) on
T ∗X(1), which by composition with FrH provides an action of H. The sheaf of
algebras DX admits a canonical structure of H-equivariant quasi-coherent sheaf,
and there exist canonical equivalences

ModHqc(DX)
∼−→ ModHqc(DX), ModHc (DX)

∼−→ ModHc (DX).

We can also consider the morphism h→ Γ(X,DX) = Γ(T ∗X(1),DX), hence the as-
sociated categories Modqc(DX , H) and Modc(DX , H), and we have canonical equiv-
alences

Modqc(DX , H)
∼−→ Modqc(DX , H), Modc(DX , H)

∼−→ Modc(DX , H).

Let us now consider a variant of these constructions in the setting of §3.3. Given

a subset I ⊂ Rs, the OG/PI -module D̃I also admits a natural structure of G-
equivariant quasi-coherent sheaf (with respect to the obvious action of G) which sat-
isfies the conditions of §3.2, and the action of G on G/UI induces a G-equivariant
morphism of Lie algebras

(4.3) g→ Γ(G/PI , D̃I).
We can therefore consider the categories

(4.4) ModGqc(D̃I), ModGc (D̃I), Modqc(D̃I ,G), Modc(D̃I ,G).

Similarly, D̃I has a canonical G-equivariant structure with respect to the pullback

(under FrG) of the action of G(1) on g̃
(1)
I ×t∗(1)/WI

t∗/(WI , •) induced by the

action on g̃
(1)
I , and the right-hand side in (4.3) identifies with Γ

(
g̃

(1)
I ×t∗(1)/WI

t∗/(WI , •), D̃I

)
. We can therefore consider the categories

ModGqc(D̃I), ModGc (D̃I), Modqc(D̃I ,G), Modc(D̃I ,G),

and each of these categories identifies with the corresponding category in (4.4).

Remark 4.5. Consider the action of LI on G/UI as in §3.3. Then the sheaf of
algebras DG/UI

has a canonical structure of LI -equivariant quasi-coherent sheaf,

and we have a canonical equivalence of categories ModLIqc (DG/UI
)
∼−→ Modqc(D̃I).

4.3. Harish-Chandra D-modules. From now on we fix two subsets I, J ⊂ Rs,
and set

D̃I,J := D̃I � D̃op
J , D̃I,J := D̃I � D̃op

J .

Then D̃I,J is a sheaf of algebras on G/PI ×G/PJ , D̃I,J is a sheaf of algebras on

(4.5)
(
g̃

(1)
I ×t∗(1)/WI

t∗/(WI , •)
)
×
(
g̃

(1)
J ×t∗(1)/WJ

t∗/(WJ , •)
)
,

and their pushforwards under the natural maps to (G/PI)
(1)× (G/PJ)(1) coincide

canonically. We will consider the diagonal G-actions on G/PI×G/PJ and on (4.5),
and the composition

g→ g × gop → Γ(G/PI ×G/PJ , D̃I,J) = Γ(D̃I,J)

(where in the right-hand side we omit the scheme (4.5) to save space) where the
first morphism is the antidiagonal embedding and the second one is induced by the
morphisms (4.3). With respect to these structures we can consider the categories

ModGqc(D̃I,J), Modqc(D̃I,J ,G), ModGqc(D̃I,J), Modqc(D̃I,J ,G)
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and their subcategories of coherent modules. We have canonical equivalences

ModGqc(D̃I,J) ∼= ModGqc(D̃I,J), Modqc(D̃I,J ,G) ∼= Modqc(D̃I,J ,G),

and similarly for coherent modules.
Consider the algebra morphism

O(g∗(1) × g∗(1))→ Γ(D̃I,J) = Γ(G/PI ×G/PJ , D̃I,J)

obtained from the natural morphism from (4.5) to g∗(1)×g∗(1). Using this morphism
we can define the sheaf of algebras

DI,J := D̃I,J ⊗O(g∗(1)×g∗(1)) O(∆g∗(1))

on G/PI ×G/PJ , where ∆g∗(1) ⊂ g∗(1) × g∗(1) is the diagonal copy of g∗(1). If
we denote by

DI,J

the pullback of D̃I,J to the closed subscheme (4.1), then we have equivalences

Modqc(DI,J) ∼= Modqc(DI,J), Modc(DI,J) ∼= Modc(DI,J).

We can also consider the categories of weakly or strongly G-equivariant modules
for these sheaves of algebras, and have similar equivalences for the categories of
equivariant modules.

Since a Ug-module obtained by differentiation from a G-module has trivial ac-

tion of the Frobenius center, any strongly G-equivariant D̃I,J -module is scheme-
theoretically supported on (4.1); in other words we have canonical equivalences of
categories

Modqc(D̃I,J ,G) ∼= Modqc(DI,J ,G), Modc(D̃I,J ,G) ∼= Modc(DI,J ,G).

For λ, µ ∈ X∗(T) we will denote by

D
λ̂,µ̂

I,J

the pullback of DI,J to

(4.6) St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Zλ̂,µ̂I,J .

We can also consider the natural morphism

O(ZI,J)→ Γ(DI,J) = Γ(G/PI ×G/PJ ,DI,J),

and then the sheaf of algebras

Dλ̂,µ̂I,J := DI,J ⊗O(ZI,J ) O(Zλ̂,µ̂I,J )

on G/PI ×G/PJ . As above we have canonical equivalences

(4.7) Modqc(Dλ̂,µ̂I,J ) ∼= Modqc(D
λ̂,µ̂

I,J ), Modc(Dλ̂,µ̂I,J ) ∼= Modc(D
λ̂,µ̂

I,J ),

and similarly for the categories of equivariant modules.
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4.4. Localization theorem. From now on we fix λ, µ ∈ X∗(T). Our localization
theorem for completed Harish-Chandra bimodules will be based on (a slight variant
of) Theorem 3.4, applied to the group G×G and the subset I × J ⊂ Rs ×Rs.

To save space we set

X λ̂,µ̂
I,J :=

(
g̃

(1)
I ×t∗(1)/WI

t∗/(WI , •)
)
×
(
g̃

(1)
J ×t∗(1)/WJ

t∗/(WJ , •)
)

×t∗/(WI ,•)×t∗/(WJ ,•) FNt∗/(WI ,•)×t∗/(WJ ,•)({(λ̃I , µ̃J)})
and

Y λ̂,µ̂ :=
(
g∗(1) ×t∗(1)/Wf

t∗/(Wf , •)
)
×
(
g∗(1) ×t∗(1)/Wf

t∗/(Wf , •)
)

×t∗/(Wf ,•)×t∗/(Wf ,•) FNt∗/(Wf ,•)×t∗/(Wf ,•)({(λ̃, µ̃)}).

We have a sheaf of algebra D̃ λ̂,µ̂
I,J on X λ̂,µ̂

I,J (obtained by pullback from the algebra

D̃I,J of §4.3), and a sheaf of algebras on Y λ̂,µ̂ corresponding to the O(Y λ̂,µ̂)-algebra

(Ug ⊗ Ugop)λ̂,µ̂ :=

(Ug ⊗ Ugop)⊗O(t∗/(Wf ,•)×t∗/(Wf ,•)) O(FNt∗/(Wf ,•)×t∗/(Wf ,•)({(λ̃, µ̃)}))

(which will be denoted by the same symbol). We have a canonical morphism of
ringed spaces

fλ,µI,J :
(
X λ̂,µ̂
I,J , D̃

λ̂,µ̂
I,J

)
→
(
Y λ̂,µ̂, (Ug ⊗ Ugop)λ̂,µ̂

)
,

and Theorem 3.4 says that, under the assumption that the stabilizer of λ, resp. µ,
for the (Wf , •)-action on t∗ is contained in WI , resp. WJ , the push/pull functors
associated with this morphism restrict to quasi-inverse equivalences of categories

L(fλ,µI,J )∗ : DbModfg((Ug ⊗ Ugop)λ̂,µ̂)→ DbModc(D̃ λ̂,µ̂
I,J ),

R(fλ,µI,J )∗ : DbModc(D̃ λ̂,µ̂
I,J )→ DbModfg((Ug ⊗ Ugop)λ̂,µ̂).

Remark 4.6. This statement is not exactly an application of Theorem 3.4 for G×G,

since we work with the algebras D̃I�D̃op
J and Ug⊗Ugop instead of D̃I�D̃J and Ug⊗

Ug. However, as in remark 3.3, a slight variant of [BMR2, Lemma 3.0.6] provides

an isomorphism between D̃op
J and the pullback of D̃J under the automorphism of

g̃
(1)
J ×t∗(1)/WJ

t∗/(WJ , •) given by

(gP
(1)
J , ξ;κI(η)) 7→ (gP

(1)
J ,−ξ, κI(−η − 2ρ))

for g ∈ G(1), ξ ∈ g∗(1) and η ∈ t∗. In particular, there exists an equivalence of

categories, compatible with the global sections functors, between Modc(D̃ λ̂,µ̂
I,J ) and

the category of coherent modules for the pullback of D̃I � D̃J to X λ̂,−̂µ−2ρ
I,J . Since

Stab(Wf ,•)(µ) = Stab(Wf ,•)(−µ− 2ρ), this justifies our claim above regarding the

functors L(fλ,µI,J )∗ and R(fλ,µI,J )∗.

Below we will assume that λ and µ satisfy

(4.8) Stab(Waff ,•)(λ) = WI , Stab(Waff ,•)(µ) = WJ

(where we consider the stabilizers for the restriction of the dot-action of W on
X∗(T) to Waff). In view of [BR3, Lemma 3.1(ii)], these conditions imply that
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Stab(Wf ,•)(λ) = WI and Stab(Wf ,•)(µ) = WJ , so that the conditions considered
above are satisfied.

Remark 4.7. (1) Recall the notation of §2.11. If λ, µ ∈ A↓0 and if I = {α ∈ Rs |
〈λ+ ς, α∨〉 = 0}, J = {α ∈ Rs | 〈µ+ ς, α∨〉 = 0}, then the conditions (4.8)
are satisfied, see [J2, §II.6.3].

(2) Recall the extended affine Weyl group W introduced in §2.4. From the
proof of [BR3, Lemma 3.1(ii)] one sees that for any λ ∈ X∗(T) we have
Stab(W,•)(λ) ⊂ Waff , hence Stab(Waff ,•)(λ) = Stab(W,•)(λ). In partic-
ular, if Stab(Waff ,•)(λ) = WI and w ∈ W commutes with WI then
Stab(Waff ,•)(w • λ) = WI .

We have canonical forgetful functors

(4.9) Modqc(D
λ̂,µ̂

I,J ,G)→ Modqc(D̃ λ̂,µ̂
I,J ), H̃C

λ̂,µ̂
→ Mod((Ug ⊗ Ugop)λ̂,µ̂).

The following claims will be proved in §4.5 and §5.4 below, respectively.

Proposition 4.8. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs, and assume that the condi-
tions (4.8) are satisfied.

(1) The category Modqc(D
λ̂,µ̂

I,J ,G) has enough injective objects. Moreover, the

image in Modqc(D̃ λ̂,µ̂
I,J ) of any injective object is acyclic for the functor

(fλ,µI,J )∗.

(2) For any V ∈ Rep∞(G) the image in Mod((Ug⊗Ugop)λ̂,µ̂) of Cλ̂,µ̂(V ⊗Ug)

is acyclic for the functor (fλ,µI,J )∗.

The morphism fλ,µI,J induces a morphism of ringed spaces f
λ,µ

I,J from(
St

(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Zλ̂,µ̂I,J ,D

λ̂,µ̂

I,J

)
to (

g∗(1) ×t∗(1)/Wf
Zλ̂,µ̂,Uλ̂,µ̂

)
,

where once again we still denote by Uλ̂,µ̂ the sheaf of algebras on g∗(1)×t∗(1)/Wf
Zλ̂,µ̂

associated with this O(g∗(1) ×t∗(1)/Wf
Zλ̂,µ̂)-algebra. We have push/pull functors

associated with this morphism, which induce adjoint functors

(f
λ,µ

I,J )∗ : H̃C
λ̂,µ̂
→ Modqc(D

λ̂,µ̂

I,J ,G), (f
λ,µ

I,J )∗ : Modqc(D
λ̂,µ̂

I,J ,G)→ H̃C
λ̂,µ̂
.

These functors are compatible with the functors (fλ,µI,J )∗ and (fλ,µI,J )∗ via the func-

tors (4.9).

Since the category Modqc(D
λ̂,µ̂

I,J ,G) has enough injectives (see Proposition 4.8(1))
we can consider the right derived functor

R(f
λ,µ

I,J )∗ : D+Modqc(D
λ̂,µ̂

I,J ,G)→ D+H̃C
λ̂,µ̂
.

On the other hand, Lemma 2.5 and Proposition 4.8(2) imply that the category

H̃C
λ̂,µ̂

has enough objects whose images are acyclic for the functor (fλ,µI,J )∗. Hence
there is a left derived functor

L(f
λ,µ

I,J )∗ : D−H̃C
λ̂,µ̂
→ D−Modqc(D

λ̂,µ̂

I,J ,G)
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such that the diagram

(4.10)

D−H̃C
λ̂,µ̂ L(f

λ,µ
I,J )∗

//

��

D−Modqc(D
λ̂,µ̂

I,J ,G)

��

D−Mod((Ug ⊗ Ugop)λ̂,µ̂)
L(fλ,µI,J )∗

// D−Modqc(D̃ λ̂,µ̂
I,J )

commutes, where the vertical arrows are induced by the functors in (4.9).
Note that we have fully faithful functors

DbModc(D
λ̂,µ̂

I,J ,G)→ DbModqc(D
λ̂,µ̂

I,J ,G)

(see Lemma 4.4) and

DbHCλ̂,µ̂ → DbH̃C
λ̂,µ̂

(see Lemma 2.3), whose essential images consist of complexes with coherent or
finitely generated cohomology objects, respectively. The following statement is the
promised localization theorem for completed Harish-Chandra bimodules.

Theorem 4.9. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs be such that

Stab(Waff ,•)(λ) = WI , Stab(Waff ,•)(µ) = WJ .

(1) The functor R(f
λ,µ

I,J )∗ restricts to a functor

Γλ,µI,J : DbModc(D
λ̂,µ̂

I,J ,G)→ DbHCλ̂,µ̂.

(2) The functor L(f
λ,µ

I,J )∗ restricts to a functor

Lλ,µI,J : DbHCλ̂,µ̂ → DbModc(D
λ̂,µ̂

I,J ,G).

(3) The functors Γλ,µI,J and Lλ,µI,J are quasi-inverse equivalences of categories.

Proof. (1) The acyclicity statement in Proposition 4.8(1) shows that the diagram

D+Modqc(D
λ̂,µ̂

I,J ,G)

��

R(f
λ,µ
I,J )∗ // D+H̃C

λ̂,µ̂

��
D+Modqc(D̃ λ̂,µ̂

I,J )
R(fλ,µI,J )∗ // D+Mod((Ug ⊗ Ugop)λ̂,µ̂)

commutes, where the vertical arrows are induced by the functors in (4.9). As
explained above, by Theorem 3.4 the lower functor restricts to a functor from

DbModc(D̃ λ̂,µ̂
I,J ) to DbModfg((Ug ⊗ Ugop)λ̂,µ̂), which implies that the restriction of

R(f
λ,µ

I,J )∗ to the full subcategory DbModc(D
λ̂,µ̂

I,J ,G) takes values in the full subcat-

egory DbHCλ̂,µ̂.
(2) The proof is similar to that of (1), using the commutative diagram (4.10).
(3) By general properties of derived functors (see [SP, Tag 0DVC]) the functor

Lλ,µI,J is left adjoint to Γλ,µI,J . We therefore have canonical morphisms of functors

id → Γλ,µI,J ◦ L
λ,µ
I,J and Lλ,µI,J ◦ Γλ,µI,J → id which are related to the similar adjunction

morphisms for fλ,µI,J by the functors induced by (4.9). Using the fact that the

https://stacks.math.columbia.edu/tag/0DVC
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latter morphisms are isomorphisms (as explained above) one easily deduces that
the former morphisms are also isomorphisms, which completes the proof. �

4.5. Proof of Proposition 4.8(2). In this subsection we explain the proof of
Proposition 4.8(2). We therefore fix λ, µ and V as in this statement. If we set

D̃λ̂,µ̂I,J = O(FNt∗/(WI ,•)×t∗/(WJ ,•)({(λ̃I , µ̃J)}))⊗O(t∗/(WI ,•)×t∗/(WJ ,•)) D̃I,J ,

then as in (3.4) we have an equivalence of categories

Modqc(D̃ λ̂,µ̂
I,J ) ∼= Modqc(D̃λ̂,µ̂I,J ),

and under this identification we have

L(fλ,µI,J )∗Cλ̂,µ̂(V ⊗ Ug) ∼= D̃λ̂,µ̂I,J
L
⊗(Ug⊗Ugop)λ̂,µ̂ Cλ̂,µ̂(V ⊗ Ug).

As in (3.6), our assumptions on λ, µ imply that the natural morphism

FNt∗/(WI ,•)×t∗/(WJ ,•)({(λ̃I , µ̃J)})→ FNt∗/(Wf ,•)×t∗/(Wf ,•)({(λ̃, µ̃)})

is an isomorphism, and moreover by exactness of completion we have a canonical
isomorphism

Cλ̂,µ̂(V ⊗ Ug) ∼=

O(FNt∗/(Wf ,•)×t∗/(Wf ,•)({(λ̃, µ̃)}))⊗O(t∗/(Wf ,•)×t∗/(Wf ,•)) (V ⊗ Ug).

We deduce an isomorphism

D̃λ̂,µ̂I,J
L
⊗(Ug⊗Ugop)λ̂,µ̂ Cλ̂,µ̂(V ⊗ Ug) ∼=

O(FNt∗/(WI ,•)×t∗/(WJ ,•)({(λ̃I , µ̃J)}))⊗O(t∗/(WI ,•)×t∗/(WJ ,•))(
D̃I,J

L
⊗Ug⊗Ugop (V ⊗ Ug)

)
,

which shows that to conclude it suffices to prove that the complex

D̃I,J
L
⊗Ug⊗Ugop (V ⊗ Ug)

is concentrated in degree 0. Now, recall the isomorphism(
Ug ⊗ Ugop

)
⊗Ug V

∼−→ V ⊗ Ug

from [BR3, §3.4], where the morphism Ug→ Ug⊗Ugop is the antidiagonal embed-
ding. For this morphism, Ug ⊗ Ugop is free over Ug; we deduce an isomorphism

D̃I,J
L
⊗Ug⊗Ugop (V ⊗ Ug) ∼= D̃I,J

L
⊗Ug V.

To conclude, we therefore only have to show that the right-hand side is concentrated
in degree 0.

Consider the Chevalley–Eilenberg resolution

Ug ⊗
∧
•g→ k

where ∧ag is in degree −a. Tensoring with V we obtain a resolution

Ug ⊗k
∧
•g ⊗ V → V
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where Ug acts diagonally on Ug and V . Writing Vtriv for the vector space V
endowed with the trivial action of Ug, we have a natural isomorphism of Ug-
modules Ug ⊗ V ∼= Ug ⊗ Vtriv, which provides a resolution

Ug ⊗
∧
•g ⊗ Vtriv → V

where now Ug acts only on the first factor (but the differential involves the action

on V ). Computing with this resolution, we obtain that D̃I,J ⊗LUg V is the image of
the complex

(4.11) D̃I,J ⊗
∧
•g ⊗ V,

for a certain Chevalley–Eilenberg type differential. The sheaf of algebras D̃I,J is by
definition the enveloping algebra of a Lie algebroid (see [BMR2, §1.2.1]); it therefore

admits a canonical filtration (F≤n(D̃I,J) : n ∈ Z≥0), whose associated graded is the
pushforward of the structure sheaf of g̃I × g̃J to G/PI ×G/PJ . We consider the
filtration of the complex (4.11) such that

F p≤n

(
D̃I,J ⊗

∧
•g ⊗ V

)
= F≤n+p(D̃I,J)⊗

∧
−pg ⊗ V.

Below we will prove that the associated graded of this filtered complex has coho-
mology only in degree 0, which will conclude the proof.

The associated graded of our complex is of the form

Og̃I×g̃J ⊗
∧
•g ⊗ V,

where we omit the pushforward functor, and where the differential only involves
the first two factors; in fact if e1, · · · , ed is a basis of g, then Og̃I×g̃J ⊗

∧•g with this
differential identifies with the Koszul complex on the images of e1, · · · , er under the
morphism

O(g∗)→ O(g∗ × g∗)→ O(g̃I × g̃J)

(where the first morphism is induced by the map g∗ × g∗ → g∗ given by (ξ, η) 7→
ξ − η) in the sense of [SP, Tag 062L]. Since a regular sequence is Koszul-regular
(see [SP, Tag 062F]), to prove that this complex has cohomology only in degree 0
it suffices to show that these images form a regular sequence in sections over an
affine cover of g̃I × g̃J . By the standard characterization of regular sequences in
terms of dimension of the quotient (see [SP, Tag 02JN]), this fact follows from the
standard observation that dim(g̃I ×g∗ g̃J) = dim(g) = dim(g̃I × g̃J)− dim(g).

Remark 4.10. The last step of this proof can be equivalently formulated as saying
that the fiber product in the definition of StI,J is also a derived fiber product, i.e. a
fiber product in the sense of Derived Algebraic Geometry.

4.6. Variant for a fixed central character. Recall the constructions of §2.8.
Given I, J ⊂ Rs, we consider

St′I,J := StI,J ×t∗/WI×t∗/Wf
t∗/WJ

(t∗/WI ×t∗/Wf
{0}) = StI,J ×t∗/WJ

{0},

where the second fiber product is taken with respect to the composition StI,J →
g̃J → t∗/WJ . The following statement is an analogue of Lemma 4.2, and fol-
lows from the same arguments. (In that statement, the formal neighborhood that
appears is a finite k-scheme.)

https://stacks.math.columbia.edu/tag/062L
https://stacks.math.columbia.edu/tag/062F
https://stacks.math.columbia.edu/tag/02JN
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Lemma 4.11. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs, and assume that we have WI ⊂
Stab(Wf ,•)(λ). Then the projection morphism

St
′(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

{0} (t∗/(WI , •)×t∗(1)/Wf
{µ̃J})→ St

′(1)
I,J

induces an isomorphism of schemes

St
′(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

{0} FNt∗/(WI ,•)×t∗(1)/Wf
{µ̃J}({(λ̃I , µ̃J)}) ∼−→ St

′(1)
I,J .

Let us consider the pullback

D
λ̂,µ

I,J

of DI,J to

(4.12) St
′(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

{0} FNt∗/(WI ,•)×t∗(1)/Wf
{µ̃J}({(λ̃I , µ̃J)})

(a scheme of finite type over k). We have a canonical action of G on this scheme,

and D
λ̂,µ

I,J has a canonical G-equivariant structure. We also have a morphism Ug→

Γ(D
λ̂,µ

I,J ) induced by the diagonal action of G on G/UI × G/UJ , hence we can
consider the categories

ModGc (D
λ̂,µ

I,J ) ⊂ ModGqc(D
λ̂,µ

I,J ), Modc(D
λ̂,µ

I,J ,G) ⊂ Modqc(D
λ̂,µ

I,J ,G).

The scheme (4.12) identifies with a closed subscheme of (4.6), in such a way

that the restriction of D
λ̂,µ̂

I,J identifies with D
λ̂,µ

I,J . We therefore have a natural
pushforward functor

ModGqc(D
λ̂,µ

I,J )→ ModGqc(D
λ̂,µ̂

I,J )

which restricts to an exact functor

(4.13) Modc(D
λ̂,µ

I,J ,G)→ Modc(D
λ̂,µ̂

I,J ,G).

The proof of the following theorem is similar to that of Theorem 4.9; details are
left to the reader. (In this case one does not need the considerations of Section 3;
the results of [BMR1, BMR2] can be used instead.)

Theorem 4.12. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs be such that

Stab(Waff ,•)(λ) = WI , Stab(Waff ,•)(µ) = WJ .

Global sections induce an equivalence of triangulated categories

DbModc(D
λ̂,µ

I,J ,G)
∼−→ DbHCλ̂,µ

such that the following diagram commutes:

DbModc(D
λ̂,µ

I,J ,G) ∼
//

(4.13)
��

DbHCλ̂,µ

(2.22)

��

DbModc(D
λ̂,µ̂

I,J ,G) ∼

Γλ,µI,J // DbHCλ̂,µ̂.
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5. Splitting

5.1. Azumaya property of Ug. Recall that an element ξ ∈ t∗ is called unramified
if for any α ∈ R we have 〈ξ + ς, α∨〉 /∈ F` r {0}, where F` is seen as the prime
subfield of k. We will denote by t∗unr ⊂ t∗ the affine open subscheme of unramified
elements (which is the complement of a union of finitely many affine hyperplanes).
It is clear that this open subscheme is stable under the dot-action of Wf ; in fact
there exists an affine open subscheme of t∗/(Wf , •) whose preimage in t∗ is t∗unr,
namely the complement of the closed subscheme defined by the element∏

α∈R
i∈F`r{0}

(〈(−) + ς, α∨〉 − i) ∈ O(t∗)(Wf ,•).

This open subscheme therefore identifies with t∗unr/(Wf , •). We can then consider
the open affine subscheme

g∗(1) ×t∗(1)/Wf
t∗unr/(Wf , •) ⊂ g∗(1) ×t∗(1)/Wf

t∗/(Wf , •).
We set

Zunr := O(g∗(1) ×t∗(1)/Wf
t∗unr/(Wf , •)),

a localization of Z = O(g∗(1) ×t∗(1)/Wf
t∗/(Wf , •)), and

(Ug)unr := Zunr ⊗Z Ug.

The following statement is due to Brown–Gordon [BG]. (We recall some of the
details of its proof below for the reader’s convenience.)

Proposition 5.1. The Zunr-algebra (Ug)unr is an Azumaya algebra.

Proof. In view of the second characterization of Azumaya algebras recalled in [BR3,
§4.1], to prove the proposition it suffices to prove that for any χ ∈ g∗(1) and any
η ∈ t∗unr/(Wf , •) whose images in t∗(1)/Wf coincide the algebra

k(χ,η) ⊗O(g∗(1)×
t∗(1)/Wf

t∗/(Wf ,•)) Ug

is a simple algebra. (Here, k(χ,η) denotes the 1-dimensional Z-module attached
to the pair (χ, λ). Note that this simple algebra will automatically be a cen-
tral simple algebra by the Wedderburn–Artin theorem, since k is algebraically
closed.) However, by [BG, Theorems 2.5, 2.6 and 3.10] the maximal ideal of
O(g∗(1) ×t∗(1)/Wf

t∗/(Wf , •)) defined by (χ, η) belongs to the Azumaya locus of
Ug, which by definition means that k(χ,η) ⊗O(g∗(1)×

t∗(1)/Wf
t∗/(Wf ,•)) Ug is a simple

algebra. �

As explained in [BR3, §4.1], Proposition 5.1 implies that (Ug)unr is projective
over Zunr, and that the natural morphism

(5.1) (Ug)unr ⊗Zunr
(Ug)op

unr → EndZunr
((Ug)unr)

is an isomorphism.

Recall now the algebra U−̂ς,−̂ς from §2.4, and its central subalgebra isomorphic

to O(g∗(1) ×t∗(1)/Wf
Z−̂ς,−̂ς). By construction, this algebra acts naturally (via left

and right multiplication) on the algebra

(Ug)−̂ς = O(FNt∗/(Wf ,•)({−̃ς}))⊗O(t∗/(Wf ,•)) Ug

considered in §3.4.
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Lemma 5.2. The O(g∗(1) ×t∗(1)/Wf
Z−̂ς,−̂ς)-module (Ug)−̂ς is projective, and the

action morphism

U−̂ς,−̂ς → EndO(g∗(1)×
t∗(1)/Wf

Z−̂ς,−̂ς)((Ug)−̂ς)

is an isomorphism.

Proof. As seen in the course of the proof of Lemma 4.2 (in the special case I = Rs),

the morphism t∗/(Wf , •) → t∗(1)/Wf is étale at −̃ς. It follows that the diagonal
embedding

t∗/(Wf , •)→ t∗/(Wf , •)×t∗(1)/Wf
t∗/(Wf , •) = Z

induces an isomorphism

FNt∗/(Wf ,•)({−̃ς})
∼−→ Z−̂ς,−̂ς ,

hence an isomorphism

U−̂ς,−̂ς = O(Z−̂ς,−̂ς)⊗O(Z) U
∼−→ O(FNt∗/(Wf ,•)({−̃ς}))⊗O(Z) U,

where the right-hand side identifies with

O(FNt∗/(Wf ,•)({−̃ς}))⊗O(t∗/(Wf ,•)) (Ug ⊗Z (Ug)op).

Now since −̃ς belongs to the open subscheme t∗unr/(Wf , •), we have identifications

FNt∗unr/(Wf ,•)({−̃ς})
∼−→ FNt∗/(Wf ,•)({−̃ς})

and

(Ug)−̂ς
∼−→ O(FNt∗unr/(Wf ,•)({−̃ς}))⊗O(t∗unr/(Wf ,•)) (Ug)unr.

Hence the first claim follows from the fact that (Ug)unr is projective over Zunr, and
the second one from the fact that (5.1) is an isomorphism. �

5.2. Relation with D
−̂ς,−̂ς
I,J . Let I, J ⊂ Rs be two subsets, and consider the nat-

ural morphism

ωI,J : St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
ZI,J → g∗(1) ×t∗(1)/Wf

Z.

This morphism induces a morphism

(5.2) St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Z−̂ς,−̂ςI,J → g∗(1) ×t∗(1)/Wf

Z−̂ς,−̂ς ,

which will also be denoted ωI,J . Since U−̂ς,−̂ς is a finite algebra over the structure

sheaf of the affine scheme g∗(1) ×t∗(1)/Wf
Z−̂ς,−̂ς , it defines a coherent sheaf of

algebras on this scheme, which will also be denoted U−̂ς,−̂ς .

Lemma 5.3. For any I, J , there exists a canonical isomorphism of coherent sheaves
of O

St
(1)
I,J×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Z−̂ς,−̂ςI,J

-algebras

D
−̂ς,−̂ς
I,J

∼−→ (ωI,J)∗U−̂ς,−̂ς .

Proof. Consider the natural morphism

ωI : g̃
(1)
I ×t∗(1)/WI

t∗/(WI , •)→ g∗(1) ×t∗(1)/Wf
t∗/(Wf , •).
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Then by [BMR2, Proposition 1.2.3(d)] (see also [BMR1, Proposition 5.2.1(b)] for
the case I = ∅) there exists a canonical isomorphism

D̃I |g̃(1)
I ×t∗(1)/WI

t∗unr/(WI ,•)
∼−→ (ωI)

∗(Ug)unr,

where we still denote by (Ug)unr the coherent sheaf of OZunr -algebras defined by

(Ug)unr, and by ωI the restriction of this morphism to g̃
(1)
I ×t∗(1)/WI

t∗unr/(WI , •).
Of course the same isomorphism holds for J , and we deduce an isomorphism

DI,J |St(1)I,J×t∗(1)/WI×t∗(1)/Wf
t∗(1)/WJ

t∗unr/(WI ,•)×t∗(1)/Wf
t∗unr/(WJ ,•)

∼−→

(ωI,J)∗U|g∗(1)×
t∗(1)/Wf

t∗unr/(Wf ,•)×t∗(1)/Wf
t∗unr/(Wf ,•),

where we use the same notational conventions as above. Now, as in the proof of
Lemma 5.2 we have an identification

Z−̂ς,−̂ςI,J = FNt∗unr/(WI ,•)×t∗(1)/Wf
t∗unr/(WJ ,•)({(−̃ςI , −̃ςJ)})

and similarly for Z−̂ς,−̂ς . Hence the desired isomorphism follows using pullback to

St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Z−̂ς,−̂ςI,J . �

5.3. D-modules and coherent sheaves. By Lemma 5.2, (Ug)−̂ς defines a vector

bundle on g∗(1)×t∗(1)/Wf
Z−̂ς,−̂ς , whose pullback under the morphism (5.2) will be

denoted M −̂ς,−̂ς
I,J . Then Lemma 5.2 and Lemma 5.3 imply that there exists a

canonical isomorphism

(5.3) D
−̂ς,−̂ς
I,J

∼−→ EndO
St

(1)
I,J
×

t∗(1)/WI×t∗(1)/Wf
t∗(1)/WJ

Z
−̂ς,−̂ς
I,J

(M −̂ς,−̂ς
I,J ).

Now, fix I, J ⊂ Rs, and let λ, µ ∈ X∗(T) be weights which satisfy

WI ⊂ Stab(Waff ,•)(λ), WJ ⊂ Stab(Waff ,•)(µ).

By the comments in Remark 3.3, setting

M λ̂,µ̂
I,J = OG/PI×G/PJ (λ+ ς,−µ− ς)⊗OG/PI×G/PJ

M −̂ς,−̂ς
I,J

we define a vector bundle on St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Zλ̂,µ̂I,J with a canonical

action of D
λ̂,µ̂

I,J , such that the action morphism

D
λ̂,µ̂

I,J → EndO
St

(1)
I,J
×

t∗(1)/WI×t∗(1)/Wf
t∗(1)/WJ

Z
λ̂,µ̂
I,J

(M λ̂,µ̂
I,J )

is an isomorphism. In particular, the functor

M λ̂,µ̂
I,J ⊗O

St
(1)
I,J
×

t∗(1)/WI×t∗(1)/Wf
t∗(1)/WJ

Z
λ̂,µ̂
I,J

(−)

defines an equivalence of categories

ModGc (D
λ̂,µ̂

I,J ) ∼= CohG(St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Zλ̂,µ̂I,J ).
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Arguing as in [BR3, Corollary 4.8], one checks that this equivalence restricts to an
equivalence

(5.4) Modc(D
λ̂,µ̂

I,J ,G) ∼= CohG
(1)

(St
(1)
I,J ×t∗(1)/WI×t∗(1)/Wf

t∗(1)/WJ
Zλ̂,µ̂I,J ).

Combining these considerations with Lemma 4.2 we deduce the following claim.

Proposition 5.4. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs which satisfy

WI ⊂ Stab(Waff ,•)(λ), WJ ⊂ Stab(Waff ,•)(µ).

Then we have canonical equivalences of categories

ModGc (D
λ̂,µ̂

I,J ) ∼= CohG(St
∧(1)
I,J ), Modc(D

λ̂,µ̂

I,J ,G) ∼= CohG
(1)

(St
∧(1)
I,J )

under which the embedding

Modc(D
λ̂,µ̂

I,J ,G)→ ModGc (D
λ̂,µ̂

I,J )

corresponds to the natural pullback functor

CohG
(1)

(St
∧(1)
I,J )→ CohG(St

∧(1)
I,J ).

Finally, combining Proposition 5.4 with Theorem 4.9, for λ, µ ∈ X∗(T) and
I, J ⊂ Rs which satisfy

Stab(Waff ,•)(λ) = WI , Stab(Waff ,•)(µ) = WJ ,

we obtain equivalences of triangulated categories

(5.5) DbHCλ̂,µ̂
Lλ,µI,J−−−→
∼

DbModc(D
λ̂,µ̂

I,J ,G)
∼−→ DbCohG

(1)

(St
∧(1)
I,J )

whose composition will be denoted Φλ̂,µ̂.

Remark 5.5. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs be such that Stab(Waff ,•)(λ) = WI ,
Stab(Waff ,•)(µ) = WJ . Let also λ′, µ′ ∈ X∗(T) which satisfy 〈λ′, α∨〉 = 0 for any
α ∈ I and 〈µ′, α∨〉 = 0 for any α ∈ J . Then the pair (−λ′, µ′) defines a line bundle

O(G/PI×G/PJ )(1)(−λ′, µ′) on (G/PI ×G/PJ)(1), whose pullback to St
∧(1)
I,J will be

denoted O
St
∧(1)
I,J

(−λ′, µ′). On the other hand, we also have

Stab(Waff ,•)(λ+ `λ′) = WI , Stab(Waff ,•)(µ+ `µ′) = WJ

(see Remark 4.7(2)), and HCλ̂,µ̂ = HCλ̂+`λ′,µ̂+`µ′ . In this setting we have a functo-
rial isomorphism

(5.6) Φλ̂+`λ′,µ̂+`µ′(M) = O
St
∧(1)
I,J

(−λ′, µ′)⊗O
St
∧(1)
I,J

Φλ̂,µ̂(M)

for any M in DbHCλ̂,µ̂.
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5.4. Proof of Proposition 4.8(1). For simplicity we have stated Proposition 5.4
for coherent modules only, but it is clear that the same considerations provide an
equivalence of categories

Modqc(D
λ̂,µ̂

I,J ,G) ∼= QCohG
(1)

(St
∧(1)
I,J ).

It is a standard fact that the right-hand side has enough injective objects (see
e.g. [MR1, §A.2]), and we deduce that the left-hand side also does.

Next, we have to prove that the image in Modqc(D̃ λ̂,µ̂
I,J ) of any injective object

in Modqc(D
λ̂,µ̂

I,J ,G) is acyclic for the functor (fλ,µI,J )∗. For that, we remark that
the equivalences above also hold in the non-equivariant setting, so that we have a
commutative diagram where all the horizontal arrows are equivalences:

(5.7)

Modqc(D
λ̂,µ̂

I,J ,G)

For1 ��

∼ // QCohG
(1)

(St
∧(1)
I,J )

For2
��

ModGqc(D
λ̂,µ̂

I,J )
∼ //

ForG ��

QCohG(St
∧(1)
I,J )

ForG
��

Modqc(D
λ̂,µ̂

I,J )
∼ // QCoh(St

∧(1)
I,J ).

We also set ForG(1) = ForG ◦ For2.

We claim that for any injective object F ∈ QCohG
(1)

(St
∧(1)
I,J ) there exists an

injective object G ∈ QCohG(St
∧(1)
I,J ) such that ForG(1)(F ) is a direct summand in

ForG(G ). In fact, recall that the functor ForG(1) has a right adjoint

AvG(1) : QCoh(St
∧(1)
I,J )→ QCohG

(1)

(St
∧(1)
I,J )

which can be described as AvG(1) = a∗p
∗ where a, p : G(1)×St

∧(1)
I,J → St

∧(1)
I,J are the

action and projection maps respectively (see once again [MR1, §A.2]). Similarly,
the functor ForG has a right adjoint

AvG : QCoh(St
∧(1)
I,J )→ QCohG(St

∧(1)
I,J )

which can be described as AvG = a′∗(p
′)∗ where a′, p′ : G × St

∧(1)
I,J → St

∧(1)
I,J are

the action and projection maps respectively. If FrG : G → G(1) is the Frobenius
morphism, then we have

a′ = a ◦ (FrG × id), p′ = p ◦ (FrG × id).

Using adjunction it is easy to see that any injective object in QCohG
(1)

(St
∧(1)
I,J ) is a

direct summand of an object of the form AvG(1)(F ′) where F ′ ∈ QCoh(St
∧(1)
I,J ) is

injective. Hence we can assume that F is of this form. In this case we will prove
that ForG(1)(F ) is a direct summand in ForG(AvG(F ′)), which will complete the

proof of the claim since AvG(F ′) is injective in QCohG(St
∧(1)
I,J ) by adjunction. In

fact we have

ForG(AvG(F ′)) = a′∗(p
′)∗F ′ = a∗(FrG × id)∗(FrG × id)∗p∗F ′.
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Using the projection formula (in the form of [Li, Proposition 3.9.4]) and the fact
that FrG is affine and flat, we deduce an isomorphism

ForG(AvG(F ′)) ∼= a∗
(
(p∗F ′)⊗O

G(1)×St
∧(1)
I,J

(FrG × id)∗OG×St∧(1)I,J

)
.

Now since G is a smooth affine variety, OG(1) is a direct summand in (FrG)∗OG

by [BK, Proposition 1.1.6], hence O
G(1)×St∧(1)I,J

is a direct summand in (FrG ×
id)∗OG×St∧(1)I,J

, which proves our claim since ForG(1)(AvG(1)(F ′)) = a∗p
∗F ′.

Using the diagram (5.7), the claim we have just proven says that for any injective

object F in Modqc(D
λ̂,µ̂

I,J ,G) there exists an injective object G in ModGqc(D
λ̂,µ̂

I,J )
such that ForG ◦ For1(F ) is a direct summand in ForG(F ). Hence, to conclude

the proof it suffices to prove that the image in Modqc(D̃ λ̂,µ̂
I,J ) of any injective object

in ModGqc(D
λ̂,µ̂

I,J ) is acyclic for the functor (fλ,µI,J )∗. The latter fact can be checked

as in [MR1, Lemma A.9], since D
λ̂,µ̂

I,J is a G-equivariant quasi-coherent sheaf of
algebras.

5.5. Variant for a fixed Harish-Chandra character. The same considerations
as above apply in the setting considered in §4.6, using in particular Lemma 4.11.
We obtain the following result.

Proposition 5.6. Let λ, µ ∈ X∗(T) and I, J ⊂ Rs which satisfy

WI ⊂ Stab(Waff ,•)(λ), WJ ⊂ Stab(Waff ,•)(µ).

Then we have canonical equivalences of categories

ModGc (D
λ̂,µ

I,J ) ∼= CohG(St
′(1)
I,J ), Modc(D

λ̂,µ

I,J ,G) ∼= CohG
(1)

(St
′(1)
I,J )

under which the embedding

Modc(D
λ̂,µ

I,J ,G)→ ModGc (D
λ̂,µ

I,J )

corresponds to the natural pullback functor

CohG
(1)

(St
′(1)
I,J )→ CohG(St

′(1)
I,J ).

Combining Proposition 5.6 with Theorem 4.12, for λ, µ ∈ X∗(T) and I, J ⊂ Rs

which satisfy
Stab(Waff ,•)(λ) = WI , Stab(Waff ,•)(µ) = WJ

we obtain equivalences of triangulated categories

(5.8) DbHCλ̂,µ
∼−→ DbModc(D

λ̂,µ

I,J ,G)
∼−→ DbCohG

(1)

(St
′(1)
I,J ).

It is easily seen that the following diagram commutes, where the right vertical

arrows are the push/pull functors associated with the closed embedding St
′(1)
I,J ↪→

St
∧(1)
I,J :

DbHCλ̂,µ̂
Φλ̂,µ̂ //

Spλ,µ

��

DbCohG
(1)

(St
∧(1)
I,J )

��

DbHCλ̂,µ
(5.8) //

(2.22)

OO

DbCohG
(1)

(St
′(1)
I,J ).

OO
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6. Convolution

From now on, in addition to the conditions of §2.1, we assume that ` ≥ h. We
also fix a weight λ ∈ A0 ∩X∗(T). Below we will mainly consider the constructions
of the preceding sections in case I = J = ∅, and for the pair of weights (λ, λ).

6.1. Convolution bifunctors for coherent sheaves. We have a natural action
of the group G×Gm on g̃ where G acts as in §3.1 and z ∈ Gm acts by dilation by
z2 on the fibers of the projection g̃ → G/B. (Our conventions here follow those
of [BR1].) From this action we deduce a diagonal action of (G × Gm)(1) on any
product of copies of g̃(1). Consider the natural morphisms

pi,j : g̃(1) × g̃(1) × g̃(1) → g̃(1) × g̃(1)

of projection to the i-th and j-th factors, where i, j ∈ {1, 2, 3}. Then it is a classical
fact that we have a monoidal structure on the derived category

DbCoh
(G×Gm)(1)

St(1)
(g̃(1) × g̃(1))

of equivariant coherent sheaves set-theoretically supported on St(1), with monoidal
product given by

F ? G = R(p1,3)∗

(
L(p1,2)∗F

L
⊗O

g̃(1)×g̃(1)×g̃(1)
L(p2,3)∗G

)
and unit object the structure sheaf O∆g̃(1) of the diagonal copy ∆g̃(1) ⊂ g̃(1)× g̃(1).
Considering the Springer resolution

Ñ := g̃ ×t∗ {0},

we also have a canonical action of the category DbCoh
(G×Gm)(1)

St(1)
(g̃(1) × g̃(1)) on

the category DbCoh
(G×Gm)(1)

St′(1)
(g̃(1) × Ñ (1)), defined by a similar formula as above.

Similar comments apply to categories of G(1)-equivariant coherent sheaves, or G-
equivariant coherent sheaves (where G acts via the Frobenius morphism G→ G(1)),
or nonequivariant coherent sheaves.

Now we consider the schemes St = g̃×g∗ g̃ and St∧. The latter scheme can also
be described as a fiber product of the same form. Namely, set

g̃∧ = g̃ ×t∗/Wf
FNt∗/Wf

({0}) ∼= g̃ ×t∗ FNt∗({0}),
g∗∧ = g∗ ×t∗/Wf

FNt∗/Wf
({0}).

Then Remark 4.1 implies that we have a canonical identification

(6.1) St∧ = g̃∧ ×g∗∧ g̃∧.

A similar construction as above provides monoidal products on the categories

DbCoh(G×Gm)(1)(St(1)) and DbCohG
(1)

(St∧(1))

(and appropriate variants with different equivariance conditions, such that the ob-
vious forgetful functors are monoidal) such that the natural pushforward functor

DbCoh(G×Gm)(1)(St(1))→ DbCohG
(1)

St(1)(g̃
(1) × g̃(1))

and the natural pullback functor

(6.2) DbCohG
(1)

(St(1))→ DbCohG
(1)

(St∧(1))
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admit canonical monoidal structures. The monoidal products on these categories
will also be denoted ?. For this product, the image of the fully faithful functor
of Lemma 4.3 is an ideal; in particular, this endows its domain with a canoni-

cal monoidal structure. We also have a canonical action of DbCohG
(1)

(St(1)) on

DbCohG
(1)

(St′(1)), which factors through an action of DbCohG
(1)

(St∧(1)).
This construction requires the use of concepts from Derived Algebraic Geometry;

here we only sketch how it proceeds (more details will appear in [DR]). In fact,
the fiber products defining St and St∧ are isomorphic to the corresponding derived
fiber products (see e.g. Remark 4.10), which are therefore “honnest” schemes. But
this is not the case for the triple products

Stconv := g̃
R
×g∗ g̃

R
×g∗ g̃ and St∧conv := g̃∧

R
×g∗∧ g̃∧

R
×g∗∧ g̃∧

which are involved in the definition of the product, which should be defined using
the formula

F ? G = R(q1,3)∗

(
L(q1,2)∗F

L
⊗O L(q2,3)∗G

)
where qi,j is the projection on the i-th and j-th factors from St(1)

conv or St∧(1)
conv. This

formula is initially defined on the ∞-category of (nonequivariant) quasi-coherent
sheaves on these derived schemes; it defines a monoidal structure (in the sense of
∞-categories) because it can be interpreted as composition of “convolution ker-
nels;” see [BFN, Corollary 4.10 and §5.2]. Then one obtains monoidal structures
on∞-categories of equivariant quasi-coherent sheaves (equivalently, quasi-coherent
sheaves on the associated quotient derived stacks) by taking categorical invariants
under the appropriate weak actions (see [Ber, §§2.2.7–2.2.8]).6 Passing to homotopy
categories we deduce a monoidal structure on the (unbounded) derived categories
of equivariant quasi-coherent sheaves.

It remains finally to explain why these convolution products restrict to bounded
derived categories of coherent sheaves; here equivariance plays no role, hence it can

be forgotten for simplicity. For the case of St(1), this can be justified using the

compatibility with the monoidal product on DbCohG
(1)

St(1)(g̃
(1) × g̃(1)). For the case

of St∧(1) one can proceed similarly using compatibility with the bifunctor on the

derived category DbCohG
(1)

St∧(1)((g̃ × g̃)∧(1)), where

(g̃ × g̃)∧ = (g̃ × g̃)×t∗×t∗ FNt∗×t∗({(0, 0)}),
defined using formulas similar to those above for the morphisms from

(g̃ × g̃ × g̃)∧ := (g̃ × g̃ × g̃)×t∗×t∗×t∗ FNt∗×t∗×t∗({(0, 0, 0)})
to (g̃×g̃)∧ induced by the obvious projections. (We do not claim, and do not expect,
that this bifunctor defines a monoidal structure.) This bifunctor respect bounded
complexes of coherent sheaves because these maps are flat, proper on the support
of the complexes under consideration, and because their domain is smooth over a
regular scheme, hence regular, of finite dimension. (Flatness can be justified by fac-
toring this map via (g̃×g̃)×t∗×t∗FNt∗×t∗({(0, 0)})×g̃, where the first morphism is
induced by the natural map FNt∗×t∗×t∗({(0, 0, 0)})→ FNt∗×t∗({(0, 0)})×t∗, which
is flat since O(FNt∗×t∗×t∗({(0, 0, 0)})) is a completion of O(FNt∗×t∗({(0, 0)})×t∗).)

6The results of [BFN] apply to derived stacks, but only when they are perfect. Quotient stacks

over fields of positive characteristic are not perfect in general, so that these results cannot be

applied directly, which justifies our need for a second step.
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6.2. Monoidality. The following is the main result of this section

Theorem 6.1. (1) The composition

(6.3) DbCohG
(1)

(St∧(1))
(Φλ̂,λ̂)−1

−−−−−−→
∼

DbHCλ̂,λ̂ → D−HCλ̂,λ̂

(where the second functor is the obvious one) admits a canonical monoidal
structure, where the monoidal product on the domain is as discussed in §6.1,
and the one on the codomain is the structure considered in §2.6.

(2) The composition

DbCohG
(1)

(St′(1))
(5.8)−−−→
∼

DbHCλ̂,λ → D−HCλ̂,λ

is compatible in the obvious sense with the action of DbCohG
(1)

(St∧(1)) on

its domain (see §6.1) and of D−HCλ̂,λ̂ on its codomain (see §2.8).

Let us remark that these results imply that the subcategoryDbHCλ̂,λ̂ ⊂ D−HCλ̂,λ̂
is stable under the monoidal product (hence a monoidal category), and that its ac-

tion on D−HCλ̂,λ stabilizes DbHCλ̂,λ.
Below we give a sketch of proof of (1), which can easily be adapted for the proof

of (2). A detailed treatment of these questions requires the use of Derived Algebraic
Geometry, and will appear in [DR].

Sketch of proof of Theorem 6.1(1). The functor (Φλ̂,λ̂)−1 is a composition

(6.4) DbCohG
(1)

(St∧(1))
∼−→ DbModc(D

λ̂,λ̂
,G)

∼−→ DbHCλ̂,λ̂.

We first note that the bounded above derived category D−Modc(D
λ̂,λ̂
,G) admits

a monoidal structure, constructed as follows. Recall the sheaf of algebras D̃ λ̂,λ̂,
which we regard here as living on (g̃ × g̃)∧(1). One can consider the category of
strongly G-equivariant coherent modules for this sheaf of algebras, which identifies

with Modc(D
λ̂,λ̂
,G). (This is similar to the situation for Ug-modules considered

in §2.3.) Denoting by

ri,j : (g̃ × g̃ × g̃)∧(1) → (g̃ × g̃)∧(1)

the morphism induced by projection on the i-th and j-th components, we have a
canonical bifunctor

D−Modc(D̃ λ̂,λ̂,G)×D−Modc(D̃ λ̂,λ̂,G)→ D−Modc(r∗1,3D̃
λ̂,λ̂,G)

sending a pair (F ,G ) to the derived tensor product of Lr∗1,2F and Lr∗2,3G over the

pullback of D̃ λ̂ under the morphism (g̃× g̃× g̃)∧(1) → g̃∧(1) induced by projection
on the second component. Composing with pushforward along r1,3 we deduce the
desired bifunctor defining the monoidal product.

Next, we claim that the second equivalence in (6.4) “extends” to an equivalence
of triangulated categories

(6.5) D−Modc(D
λ̂,λ̂
,G)

∼−→ D−HCλ̂,λ̂.

In fact the functors in both directions naturally extend to bounded above derived
categories, and these extentions are still adjoint to each other. Let us write L for

the left adjoint (given by a pullback functor from D−HCλ̂,λ̂ to D−Modc(D
λ̂,λ̂
,G))
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and R for the right adjoint (given by global sections). By the same argument as for
bounded derived categories the adjunction morphism id→ RL is an isomorphism;
to conclude the proof it therefore suffices to prove that R does not kill any nonzero

object. However if F ∈ D−Modc(D
λ̂,λ̂
,G) is a nonzero complex, consider the

highest degree N in which F is nonzero. For M > 0 we can consider the truncation
triangle

τ<N−MF → F → τ≥N−MF
[1]−→,

where the third term is a bounded complex. If M � 0, the complex R(τ<N−MF )
vanishes in degrees ≥ N , so that to conclude it suffices to show that R(τ≥N−MF )
has nonzero cohomology in some degree ≥ N . But R and L are inverse equivalences
on bounded complexes, so that F ∼= LR(τ≥N−MF ). Since L is right t-exact (for
the tautological t-structures) and F is nonzero in degree N , this implies the desired
claim and finishes the proof.

Next, we claim that (6.5) has a natural monoidal structure. In fact, to construct
such a structure, using the notation above it suffices to construct an isomorphism
of functors

R(L(M) ? L(N))
∼−→M ?N

for all M,N ∈ D−HCλ̂,λ̂, where we denote both monoidal products by ?. This
isomorphism can be deduced from the projection formula, realizing the monoidal

structures in terms of tensor product with the pullback of D̃ λ̂� D̃ λ̂� D̃ λ̂ under the
natural morphism

(g̃ × g̃ × g̃)∧(1) → g̃∧(1) × g̃∧(1) × g̃∧(1),

resp. with

(Ug ⊗k Ug ⊗k Ug)⊗O((t∗/(W,•))3) O(FN(t∗/(W,•))3({(0, 0, 0)})),

and using (3.8).
Finally, to conclude it remains to construct a monoidal structure on the functor

DbCohG
(1)

(St∧(1))→ D−Modc(D
λ̂,λ̂
,G).

Now we have a canonical equivalence of categories

Modc(D
λ̂,λ̂
,G)

∼−→ Modc(D
−̂ς,−̂ς

,G).

The same considerations as above provide a monoidal structure on the bounded
above derived category of the right-hand side, such that the induced equivalence
between bounded above derived categories is monoidal. This reduces the proof to
the construction of a monoidal structure on the similarly defined functor

DbCohG
(1)

(St∧(1))→ D−Modc(D
−̂ς,−̂ς

,G),

which is easy because the sheaf of algebras D̃−̂ς is the pullback of an Azumaya
algebra on g∗∧(1). �
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6.3. Bott–Samelson and Soergel type complexes of coherent sheaves. Re-
call the notation introduced in §2.11. For any s ∈ Saff , resp. ω ∈ Ω, we set

Rs := Φλ̂,λ̂(Rs), resp. Rω := Φλ̂,λ̂(Rω).

(It can be deduced from Proposition 7.2 below that these objects do not depend
on the choice of λ up to isomorphism, so that it is legitimate not to indicate this
weight in the notation.) It follows from Lemma 2.20 and the monoidality of the
functor (6.3) that for s ∈ Saff and ω, ω′ ∈ Ω we have

(6.6) Rω ?Rs ?Rω−1
∼= Rωsω−1 , Rω ?Rω′

∼= Rωω′ .

We then define the category

BSCohG
(1)

(St∧(1))

as the strictly full subcategory of DbCohG
(1)

(St∧(1)) generated under the monoidal
product ? by the unit object and the objects Rs (s ∈ Saff) and Rω (ω ∈ Ω).
By (6.6), any object in this category is isomorphic to an object

Rs1 ? · · · ?Rsr ?Rω

where s1, · · · , sr ∈ Saff and ω ∈ Ω. We will also denote by

SCohG
(1)

(St∧(1))

the karoubian envelope of the additive hull of BSCohG
(1)

(St∧(1)).

By construction, the functor Φλ̂,λ̂ restricts to equivalences of monoidal categories

(6.7) BSHCλ̂,λ̂
∼−→ BSCohG

(1)

(St∧(1)), SHCλ̂,λ̂
∼−→ SCohG

(1)

(St∧(1)).

Proposition 6.2. For any F ,G in SCohG
(1)

(St∧(1)) and n ∈ Z r {0} we have

Hom
DbCohG

(1)
(St∧(1))

(F ,G [n]) = 0.

Proof. Using the equivalence Φλ̂,λ̂ one sees that the claim follows from Proposi-
tion 2.6. �

6.4. Some kernels. For s ∈ Sf we consider the (G × Gm)(1)-stable closed sub-

scheme g̃(1) ×
g̃
(1)
s

g̃(1) ⊂ St(1), and set

Xs := Og̃(1)×
g̃
(1)
s

g̃(1) ∈ DbCoh(G×Gm)(1)(St(1)).

As explained in [BR1, §1.10] the scheme g̃(1) ×
g̃
(1)
s

g̃(1) is reduced, with two irre-

ductible components. One is the diagonal copy ∆g̃(1) of g̃(1), and the pushforward
of the structure sheaf of the other one will be denoted Zs. Then, there exist exact
sequences of equivariant coherent sheaves

(6.8) O∆g̃(1)〈−2〉 ↪→Xs � Zs, Zs(−ς, ς − αs) ↪→Xs � O∆g̃∅ .

Here Zs(−ς, ς − αs) is the twist of Zs by the pullback of the line bundle on
(G(1)/B(1))2 attached to the pair of weights (−ς, ς − αs), and for n ∈ Z we denote

by 〈n〉 the functor of tensoring with the 1-dimensional G(1)
m -module of weight n.

Recall the braid group BrW introduced in §2.12. For λ ∈ X∗(T), we will denote

by O∆g̃(1)(λ) the pushforward to St(1) of the pullback to ∆g̃(1) of the line bundle on

G(1)/B(1) naturally associated with λ. It follows from [BR1, Theorem 1.3.1] that
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there exists a unique group morphism from (BrW)op to the group of isomorphism
classes of invertible elements in the monoidal category

(6.9)
(
DbCoh(G×Gm)(1)(St(1)), ?

)
which sends Ts to Zs〈1〉 for any s ∈ Sf , and θλ to O∆g̃(1)(λ) for any λ ∈ X∗(T).
The image of an element b ∈ BrW will be denoted Ib. For any s ∈ Sf we have

IT−1
s

= Zs(−ς, ς − αs)〈1〉.

Remark 6.3. We insist that for b, c ∈ BrW we have Ib ? Ic
∼= Icb. Our normal-

ization is therefore different from that in [BR1], and rather follows that considered
in [MR1]; see [MR1, §3.3] for comments.

Consider now some element s ∈ Saff r Sf . As explained in [R1, Lemma 6.2]
or [BM, Lemma 2.1.1], there exist b ∈ BrW and t ∈ Sf such that Ts = bTtb

−1. We
fix such elements once and for all (for every s as above) and set

Xs := Ib−1 ?Xt ?Ib.

(Note the change of orders of the factors, which is intentional.) In view of (6.8),
for any s ∈ Saff we have distinguished triangles

(6.10) O∆g̃(1)〈−1〉 →Xs〈1〉 → ITs

[1]−→, IT−1
s
→Xs〈1〉 → O∆g̃(1)〈1〉

[1]−→

in DbCoh(G×Gm)(1)(St(1)).
Recall that we have identified X∗(T(1)) with X∗(T). In particular, for any

λ ∈ X∗(T)+ we have an indecomposable tilting G(1)-module T(1)(λ) of highest
weight λ.

Lemma 6.4. For any λ ∈ X∗(T)+, there exist n ∈ Z, ω ∈ Ω and s1, · · · , sr ∈ Saff

such that the object

T(1)(λ)⊗ OSt(1)

is a direct summand of the object

OSt(1) ?ITω ?Xs1 ? · · · ?Xsr 〈n〉

in DbCoh(G×Gm)(1)(St(1)).

Proof. Consider the projections

p1, p2 : St(1) → g̃(1)

on the first and second factor respectively. To any F ∈ DbCoh(G×Gm)(1)(St(1)) we
can associate a Fourier–Mukai transform

(−) ?F : DbCohG×Gm(g̃(1))→ DbCohG×Gm(g̃(1))

defined by

G ?F := R(p2)∗
(
L(p1)∗G

L
⊗O

St(1)
F
)
.

(This functor can also be expressed in terms of a similar formula involving the
smooth scheme g̃(1) × g̃(1), which justifies that it indeed takes values in bounded
complexes.) By standard considerations involving the flat base change theorem
and the projection formula, this assignment defines a right action of the monoidal
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category (6.9) on DbCoh(G×Gm)(1)(g̃(1)), which justifies our notation. For any F ,G
as above we have a canonical isomorphism

(6.11) L(p2)∗(G ?F ) ∼=
(
L(p2)∗G

)
?F .

By [MR2, Lemma 6.7], there exist n, ω, and s1, · · · , sr as in the statement such
that T(1)(λ)⊗ Og̃(1) is a direct summand of

Og̃(1) ?ITω ?Xs1 ? · · · ?Xsr 〈n〉

in DbCoh(G×Gm)(1)(g̃(1)). Applying the functor L(p2)∗ and using (6.11), we deduce
the desired claim. �

7. Study of braid objects

We continue with the setting of Section 6 (hence, in particular, with our fixed
weight λ ∈ X∗(T) ∩A0).

7.1. Translation functors and D-modules. Recall the “translation bimodules”
of §2.11. The following statement is an analogue of [BMR1, Lemma 6.1.2] (see
also [BMR2, Lemma 2.2.3]). (In (2) we consider the standard order on X∗(T)
determined by our choice of R+.)

Lemma 7.1. Let µ1, µ2, µ3 ∈ X∗(T) and J ⊂ Rs which satisfy

Stab(Waff ,•)(µ1) = ∅ and Stab(Waff ,•)(µ3) = WJ .

(1) Assume that µ2 belongs to the closure of the alcove of µ1. For any F in

DbModc(D
µ̂1,µ̂3

∅,J ,G) there exists a canonical isomorphism

Pµ̂2,µ̂1 ? Γµ1,µ3

∅,J (F ) ∼= R(f
µ2,µ3

∅,J )∗(OG/B×G/PJ (µ2 − µ1, 0)⊗OG/B×G/PJ
F ).

(2) Assume that µ2 lies on a wall of the alcove of µ1, and denote by µ′1 the image
of µ1 under the reflection in Waff whose fixed-point hyperplane contains

that wall. If µ′1 < µ1, then for any F in DbModc(D
µ̂2,µ̂3

∅,J ,G) there exists
a distinguished triangle

Γ
µ′1,µ3

∅,J (OG/B×G/PJ (µ′1 − µ2, 0)⊗OG/B×G/PJ
F )→ Pµ̂1,µ̂2 ? R(f

µ2,µ3

∅,J )∗(F )

→ Γµ1,µ3

∅,J (OG/B×G/PJ (µ1 − µ2, 0)⊗OG/B×G/PJ
F )

[1]−→

in DbHCµ̂1,µ̂3 .

Proof. (1) Let ν be the unique dominant weight in Wf(µ2 − µ1). By definition of

convolution, for any M in DbHCµ̂1,µ̂3 , the complex Pµ̂2,µ̂1 ? M is the component
corresponding to (µ2, µ3) of the complex

C∧(L(ν)⊗ Ug) ? M

in the decomposition induced by (2.10). Now by Remark 2.4 we have C∧(L(ν) ⊗
Ug) ∼= L(ν)⊗ (Ug)∧, so that

C∧(L(ν)⊗ Ug) ? M ∼= L(ν)⊗M.

The rest of the proof is similar to that of [BMR1, Lemma 6.1.2(a)] (see also [BR3,
Lemma 5.5] for similar considerations).

(2) The proof is similar, and parallel to that of [BMR1, Lemma 6.1.2(b)]. �
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7.2. Geometric description of translation functors. Let us consider three
weights µ1, µ2, µ3 ∈ X∗(T) and two subsets J,K ⊂ Rs which satisfy the following
conditions:

(1) Stab(Waff ,•)(µ1) = ∅;
(2) Stab(Waff ,•)(µ2) = WJ ;
(3) Stab(Waff ,•)(µ3) = WK ;
(4) µ2 belongs to the closure of the alcove of µ1.

Then we have a natural morphism g̃→ g̃J , which induces a morphism

qJ,K : St
∧(1)
∅,K → St

∧(1)
J,K .

We also have equivalences of categories

Φµ̂1,µ̂3 : DbHCµ̂1,µ̂3 ∼−→ DbCohG
(1)

(St
∧(1)
∅,K),

Φµ̂2,µ̂3 : DbHCµ̂2,µ̂3 ∼−→ DbCohG
(1)

(St
∧(1)
J,K ),

see (5.5), and “translation bimodules” Pµ̂1,µ̂2 ∈ HCµ̂1,µ̂2 , Pµ̂2,µ̂1 ∈ HCµ̂2,µ̂1 .

Proposition 7.2. The following diagrams commute up to isomorphism:

DbHCµ̂1,µ̂3

∼
Φµ̂1,µ̂3 //

Pµ̂2,µ̂1 ?̂(−)

��

DbCohG
(1)

(St
∧(1)
∅,K)

R(qJ,K)∗

��

DbHCµ̂2,µ̂3

∼
Φµ̂2,µ̂3 // DbCohG

(1)

(St
∧(1)
J,K ),

DbHCµ̂1,µ̂3

∼
Φµ̂1,µ̂3 // DbCohG

(1)

(St
∧(1)
∅,K)

DbHCµ̂2,µ̂3

∼
Φµ̂2,µ̂3 //

Pµ̂1,µ̂2 ?̂(−)

OO

DbCohG
(1)

(St
∧(1)
J,K ).

L(qJ,K)∗

OO

Proof. The proof of commutativity of the left diagram is similar to that in [BMR2,
§2.2.5], based on Lemma 7.1(1). The commutativity of the right triangle follows,
by adjunction (see the comments after Lemma 2.18.) �

Let us note the following consequence. Here, for s ∈ Saff we denote by X ∧
s the

image of Xs under the pullback functor (6.2) (for H = (G×Gm)(1)).

Corollary 7.3. For any s ∈ Sf , we have Rs
∼= X ∧

s .

Proof. We apply Proposition 7.2 in the special case µ1 = µ3 = λ, µ2 = µs (in the
notation of §2.11), J = {s}, K = ∅, and for the object O∆g̃(1) . Using the classical
fact that the cartesian diagram

g̃ ×g̃s g̃ //

��

g̃

��
g̃ // g̃s

is tor-independent in the sense of [Li, Definition 3.10.2] (which follows from the
same considerations as in Remark 4.10) we see that

Xs = L(π′{s},∅)∗ ◦R(π′{s},∅)∗O∆g̃(1) ,
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where π′{s},∅ : St→ St{s},∅ is the morphism from which q{s},∅ is obtained by base

change. The desired claim follows, in view of the definition of Rs. �

7.3. Localization of braid bimodules. Recall the objects (Dw : w ∈ W) in

DbHCλ̂,λ̂ introduced in §2.12.
Since the stabilizer of λ in W is trivial (see Remark 4.7), the orbit W•λ identifies

naturally with W. Via this identification the right action of W on itself given by
multiplication on the right defines an action on W • λ, which we will denote by
(µ,w) 7→ µ ∗ w. Given µ ∈ W • λ and w ∈ W, we will say that w decreases µ
if there exists a reduced expression w = ωs1 · · · sr for some s1, · · · , sr ∈ Saff and
ω ∈ Ω such that

µ ∗ ω > µ ∗ (ωs1) > · · · > µ ∗ (ωs1 · · · sr−1) > µ ∗ (ωs1 · · · sr)
(for the standard order on X∗(T) determined by our choice of R+).

Lemma 7.4. For any w ∈W and µ ∈W • λ such that w−1 decreases µ we have

Φµ̂∗w
−1,µ̂(Dw) ∼= O∆g̃∧(1) .

Proof. We proceed by induction on `(w). If `(w) = 0 we have

Dw = Rw = Pλ̂,ŵ•λ = Pµ̂∗w
−1,µ̂

(where we use Remark 2.19). By Lemma 7.1(1) and our choice of splitting bundles
we have

Pµ̂∗w
−1,µ̂ ? (Φµ̂,µ̂)−1(O∆g̃∧(1)) ∼= (Φµ̂∗w

−1,µ̂)−1(O∆g̃∧(1)).

By monoidality, the object (Φµ̂,µ̂)−1(O∆g̃∧(1)) is the unit object for convolution,
from which we deduce the desired isomorphism.

Now let w ∈W be an element of positive length, and assume the isomorphism is
known for elements of length strictly smaller that `(w). Since w−1 decreases µ, there
exists s ∈ Saff such that `(sw) = `(w)−1, w−1s decreases µ and µ∗w−1 < µ∗(w−1s).
Then Dw ∼= Ds ? Dsw, and by induction we have

Φ
̂µ∗(w−1s),µ̂(Dsw) ∼= O∆g̃∧(1) .

By Lemma 7.1 and our choice of splitting bundles there exists a distinguished
triangle

(Φµ̂∗w
−1,µ̂)−1(O∆g̃∧(1))→ Rs ? (Φ

̂µ∗(w−1s),µ̂)−1(O∆g̃∧(1))

→ (Φ
̂µ∗(w−1s),µ̂)−1(O∆g̃∧(1))

[1]−→

in DbHCλ̂,λ̂, which can be rewritten as

(Φµ̂∗w
−1,µ̂)−1(O∆g̃∧(1))→ Rs ? Dsw → Dsw

[1]−→ .

Consider the image of this triangle by right multiplication with Nw−1s (i.e. the
inverse of Dsw):

(Φµ̂∗w
−1,µ̂)−1(O∆g̃∧(1)) ? Nw−1s → Rs → (Ug)λ̂

[1]−→ .

We claim that the second morphism in this triangle is a generator of the space of

morphisms from Rs to (Ug)λ̂; this will imply that its cocone identifies with Ds,
hence that

(Φµ̂∗w
−1,µ̂)−1(O∆g̃∧(1)) ∼= Ds ? Dsw ∼= Dw,
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which will conclude the proof.
The proof of this claim will use the constructions of [BR3]. Namely, in [BR3,

§3.9] we have constructed an exact functor of “restriction to a Kostant section”

on HCλ̂,λ̂, and in [BR3, Proposition 3.7] we have proved that this functor is fully

faithful on HCλ̂,λ̂diag. To conclude, it suffices to prove that the image under this

functor of our morphism Rs → (Ug)λ̂ is surjective, or in other words that the

image of the complex (Φµ̂∗w
−1,µ̂)−1(O∆g̃∧(1))?Nw−1s is concentrated in nonpositive

degrees. Here Nw−1s is itself concentrated in nonpositive degrees by construction;

since our functor intertwines convolution in DbHCλ̂,λ̂ with a derived version of the
convolution considered in [BR3, §3.9], it therefore suffices to prove that the image

of the complex (Φµ̂∗w
−1,µ̂)−1(O∆g̃∧(1)) is concentrated in nonpositive degrees. In

fact this complex is concentrated in degree 0, as follows from the general form of
the base change theorem (see [Li, Theorem 3.10.3]) using the fact that if S∗ is as
in [BR3, §3.8] the fiber product g̃ ×g∗ S∗ is tor-independent in the sense of [Li,
Definition 3.10.2] and an affine scheme. Here the second property follows from the

fact that the natural morphism g̃→ t∗ restricts to an isomorphism g̃×g∗ S∗
∼−→ t∗,

see e.g. [R2, Proposition 3.5.5], and the first one follows from a standard dimension
argument (as e.g. in Remark 4.10). �

7.4. Study of the realization functors. Consider the composition of natural
functors

(7.1) KbSHCλ̂,λ̂ → KbHCλ̂,λ̂ → DbHCλ̂,λ̂.

This functor is easily seen to be monoidal, and Corollary 2.7 shows that it is fully
faithful. Consider also the functor

(7.2) KbSCohG
(1)

(St∧(1))→ DbCohG
(1)

(St∧(1))

defined so that the following diagram commutes, where the upper horizontal arrow

is induced by the restriction of Φλ̂,λ̂, see (6.7):

(7.3)

KbSHCλ̂,λ̂
∼ //

(7.1)

��

KbSCohG
(1)

(St∧(1))

(7.2)

��

DbHCλ̂,λ̂
Φλ̂,λ̂

∼
// DbCohG

(1)

(St∧(1)).

This functor is also monoidal and fully faithful.
Our next goal is to prove the following result.

Proposition 7.5. The functors (7.1) and (7.2) are equivalences of categories.

The proof of Proposition 7.5 will use two preliminary lemmas.

Lemma 7.6. Let D be a triangulated category. Assume we are given:

• triangulated categories D0,D1, · · · ,Dr with D0 = 0 and Dr = D;
• triangulated functors Fi : Di → Di+1 (i ∈ {0, · · · , r − 1});
• for each i ∈ {1, · · · , r}, a set Ai and a collection (Xi

a : a ∈ Ai) of objects
of Di whose images generate the Verdier quotient Di/〈Fi−1〉 as a triangu-
lated category, where 〈Fi−1〉 is the triangulated subcategory generated by the
essential image of Fi−1.



ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 67

Then the collection(
Fr−1 ◦ · · · ◦ Fi(Xi

a) : i ∈ {1, · · · , r}, a ∈ Ai
)

generates D as a triangulated category.

Proof. Arguing by induction, we can assume that r = 2. So we are given a tri-
angulated functor F1 : D1 → D, a collection (Xa : a ∈ A) of objects of D1 which
generates D1 as a triangulated category, and a collection (Yb : b ∈ A′) of objects
of D whose images generate D/〈F1〉. Let D′ be the triangulated subcategory of D
generated by the objects (F1(Xa) : a ∈ A) and (Yb : b ∈ A′). This subcategory
contains 〈F1〉, so that we can consider D′/〈F1〉 and the natural triangulated functor
D′/〈F1〉 → D/〈F1〉. Using the fact that D′ is triangulated we see that this func-
tor is fully faithful. Its essential image is therefore a triangulated subcategory of
D/〈F1〉; since it contains a generating family of objects it coincides with the whole
of D/〈F1〉.

If now X is an object of D, its image in D/〈F1〉 is isomorphic to the image of an
object Y of D′. This means that we have a diagram

X
f←− Z g−→ Y

where the cones of both f and g belong to 〈F1〉. Then Z belongs to D′, and X
therefore also does. �

Given w ∈ Wf , we will write wB, resp. wu, for the conjugate of B, resp. u, by
any lift of w in NG(T). The following lemma is similar to [AHR, Lemma 4.1]; we
leave it to the reader to adapt the proof.

Lemma 7.7. For any w ∈Wf , the triangulated category

DbCohB∩
wB
(
(g/(u + wu))∗ ×t∗ FNt∗({0})

)
is generated by the objects O(g/(u+wu))∗×t∗FNt∗ ({0}) ⊗k kB∩wB(ν) for ν ∈ X∗(T).

We can finally give the proof of Proposition 7.5.

Proof of Proposition 7.5. We have already explained that our functors are fully
faithful; it follows that their essential images are triangulated subcategories, so that

to conclude it suffices to show that the category DbHCλ̂,λ̂, resp. DbCohG
(1)

(St∧(1)),

is generated as a triangulated by the subcategory SHCλ̂,λ̂, resp. SCohG
(1)

(St∧(1)).

In view of the equivalence Φλ̂,λ̂ (see §5.3) the two cases are equivalent, so we
concentrate on (7.2).

Let us denote by C the triangulated subcategory of DbCohG
(1)

(St∧(1)) generated

by SCohG
(1)

(St∧(1)). Note that C is a monoidal subcategory in DbCohG
(1)

(St∧(1)).
Recall that G(1) has finitely many orbits for the diagonal action on (G/B×G/B)(1).
Choose a numbering of these orbits which refines the order given by closure inclu-
sions, and consider the associated filtration

∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xr−1 ⊂ Xr = (G/B×G/B)(1)

where eachXi is closed and reduced and eachXirXi−1 is a single G-orbit. Consider
also the pullback

∅ = Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · ⊂ Yr−1 ⊂ Yr = St∧(1)
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of this filtration to St∧(1). Then each Yi r Yi−1 is of the form(
G×B∩wiB ((g/(u + wiu))∗ ×t∗ FNt∗({0})

))(1)

for some wi ∈Wf .
If η ∈ X∗(T)+, the element t−η decreases the weight λ + `η = tη • λ. By

Lemma 7.4, we deduce that

Φλ̂,λ̂+`η(Dtη ) ∼= O∆g̃∧(1) .

On the other hand, by (5.6) we have

Φλ̂,λ̂+`η(Dtη ) ∼= OSt∧(1)(0, η)⊗O
St∧(1)

Φλ̂,λ̂(Dtη ),

which implies that

(7.4) Φλ̂,λ̂(Dtη ) ∼= O∆g̃∧(1)(−η).

By construction of Dtη , Φλ̂,λ̂(Dtη ) belongs to C, hence so does O∆g̃∧(1)(−η). By
monoidality, C then contains all objects O∆g̃∧(1)(ν) with ν ∈ X∗(T).

Now let i ∈ {1, · · · , r}, consider the element wi ∈ Wf , and fix a reduced ex-
pression wi = s1 · · · sr. Then using Lemma 7.3 one sees that the object Ai :=
Rsr ? · · · ? Rs1 is the pushforward of a complex on Yi, and that its restriction to
Yi r Yi−1 is the structure sheaf. Using Lemma 7.7 we deduce that the images in

DbCohG
(1)

(Yi r Yi−1) of the objects

O∆g̃∧(1)(ν) ?Ai

for ν ∈ X∗(T) generate this category.
Consider now, for any i, the pushforward functor

DbCohG
(1)

(Yi−1)→ DbCohG
(1)

(Yi).

By [AriB, Remark after Lemma 2.12], the quotient of the target category by
the subcategory generated by the essential image of this functor identifies with

DbCohG
(1)

(Yi r Yi−1). We are therefore in the setting of Lemma 7.6, and this
result shows that the objects O∆g̃∧(1)(ν)?Ai for ν ∈ X∗(T) and i ∈ {1, · · · , r} gen-

erate DbCohG
(1)

(St∧(1)) as a triangulated category. Since these objects all belong

to C, this shows that C is the whole of DbCohG
(1)

(St∧(1)), and therefore finishes
the proof. �

7.5. Image of braid objects. For b ∈ BrW we will denote by I ∧b the image of
Ib under the monoidal functor (6.2). Then we have

I ∧b ?I ∧c
∼= I ∧cb

for any b, c ∈ BrW. Recall also the objects (X ∧
s : s ∈ Saff) introduced in §7.2, and

the objects (Nb : b ∈ BrW) introduced in §2.12.
Consider the group anti-automorphism ı of BrW which satisfies ı(Tw) = Tw−1

for any w ∈W. (This map is clearly an involution.)

Lemma 7.8. For any b ∈ BrW we have Φλ̂,λ̂(Nb) ∼= I ∧ı(b).
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Proof. It suffices to prove the isomorphism for b in a generating subset of BrW; in
practice we will use the subset {Ts : s ∈ Sf} ∪ {Tt−ν : ν ∈ X∗(T)+}.

First, consider the case b = Ts for some s ∈ Sf . By Corollary 7.3 we have

Φλ̂,λ̂(Rs) ∼= X ∧
s , hence a distinguished triangle

Og̃∧(1) →X ∧
s → Φλ̂,λ̂(Ns)

[1]−→
in which the first morphism is a generator of the space of morphisms from Og̃∧(1) to
X ∧
s . Comparing this triangle with the image of the left triangle in (6.8) we deduce

an isomorphism

Φλ̂,λ̂(Ns) ∼= I ∧Ts ,

as desired. If ν ∈ X∗(T)+, by (7.4) we have Φλ̂,λ̂(Dtν ) ∼= O∆g̃∧(1)(−ν), hence
(passing to inverses)

Φλ̂,λ̂(Nt−ν ) ∼= O∆g̃∧(1)(ν) ∼= I ∧Ttν ,

which concludes the proof. �

In particular, for ω ∈ Ω, applying Lemma 7.8 with b = Tω we obtain that

Φλ̂,λ̂(Nω) ∼= I ∧Tω−1
, hence that

(7.5) Rω
∼= I ∧Tω−1

.

Similarly, for s ∈ Saff , using Lemma 7.8 in case b ∈ {Ts, T−1
s } and applying the

functor Φλ̂,λ̂ to the triangles in (2.27) we obtain distinguished triangles

(7.6) Og̃∧(1) → Rs → I ∧Ts
[1]−→, I ∧

T−1
s
→ Rs → Og̃∧(1)

[1]−→ .

In fact one can also deduce a generalization of Corollary 7.3.

Corollary 7.9. For any s ∈ Saff , we have Rs
∼= X ∧

s .

Proof. The case s ∈ Sf has been treated in Corollary 7.3, hence we can assume that
s ∈ Saff r Sf . In this case, to define Xs we have fixed b ∈ BrW and t ∈ Sf such
that Ts = bTtb

−1, and set Xs = Ib−1 ?Xt ?Ib (see §6.4); we then have

(7.7) X ∧
s = I ∧b−1 ?X ∧

t ?I ∧b .

Using Lemma 7.8 and the case of t which we have already treated we deduce that

(Φλ̂,λ̂)−1(X ∧
s ) ∼= Nı(b)−1 ? Rt ? Nı(b).

Here Ts = ı(b)−1Ttı(b), hence by Lemma 2.24 the right-hand side is isomorphic to
Rs, which finishes the proof. �

Let us note the following consequence for later use.

Lemma 7.10. For any V ∈ Tilt(G(1)), the object V ⊗ OSt∧(1) belongs to the sub-

category SCohG
(1)

(St∧(1)).

Proof. First we consider the case when V = k is the trivial module. By Proposi-
tion 7.2 (applied with µ1 = µ3 = λ, µ2 = −ς, J = Rs and K = ∅) and Remark 4.10
we have

OSt∧(1) = Φλ̂,λ̂(Pλ̂,−̂ς ?̂ P−̂ς,λ̂).

By Lemma 2.22 the object Pλ̂,−̂ς ?̂ P−̂ς,λ̂ belongs to SHCλ̂,λ̂. Hence OSt∧(1) indeed

belongs to SCohG
(1)

(St∧(1)).
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To conclude the proof it then suffices to observe that for any indecomposable
V ∈ Tilt(G(1)) there exist s1, · · · , sr ∈ Saff and ω ∈ Ω such that V ⊗ OSt∧(1) is a
direct summand in the complex

OSt∧(1) ?Rω ?Rs1 ? · · · ?Rsr .

In fact, this claim follows from Lemma 6.4, using (7.5) and Corollary 7.9. �

8. Restriction to a Steinberg section

We continue with the setting of Sections 6–7. In this section we introduce a
functor of “restriction to a Steinberg section” and show that it allows to identify the

category SHCλ̂,λ̂ with a suitable category of “Soergel bimodules.” This construction
is similar to one considered in [BR3], but slightly different: in [BR3] we worked with
a Kostant section (section to the adjoint quotient for g) while here we work with
a Steinberg section (section to the adjoint quotient for G). All the results in this
section have analogues involving sheaves on varieties attached to the Lie algebra
rather than the group and a Kostant section rather than a Steinberg section, which
are in a sense more natural. But here we need to work on the group versions in
order to make a connection with the constructions of [BR4].

8.1. Pseudo-logarithm. We first explain how one can compare the geometry of
some schemes attached to G with that of schemes similarly attached to g or g∗.
For that we will assume that there exists a “pseudo-logarithm,” i.e. a G-equivariant
morphism

ϕ′ : G→ g

which sends 1 ∈ G to 0 ∈ g and is étale at 1, and we fix such data.

Remark 8.1. The condition above is satisfied at least if one of the following condi-
tions are satisfied:

• G = GLn(k);
• G is semisimple and simply connected and ` is very good for G.

In fact, in the former case one can take for ϕ′ the morphism given by X 7→ X − In.
For the latter case the claim clearly reduces to the case G is quasi-simple. In this

case, if G = SLn one can take X 7→ X − tr(X)
n In, and if G is not of type A this

is a standard consequence of results of Springer–Steinberg (see e.g. [AR1, §5.3] for
references).

Composing ϕ with our fixed G-equivariant isomorphism g
∼−→ g∗ we obtain a

G-equivariant morphism ϕ : G → g∗. For I ⊂ Rs we consider the smooth scheme

G̃I defined by

G̃I = {(g, hPI) ∈ G×G/PI | g ∈ hPIh
−1}.

(Here the natural morphism G̃I → G/PI is Zariski locally trivial, with fibers
isomorphic to PI , which justifies smoothness.) This scheme is equipped with a
natural morphism to G, and we have an identification

(8.1) G̃I = G×PI PI

where PI acts on itself by conjugation. In particular, from the composition

PI → LI → LI/LI ∼= T/WI ,
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which is PI -equivariant for the trivial action on T/WI , we deduce a morphism

(8.2) G̃I → T/WI .

As usual, when I = ∅ the subscript will often be omitted from notation.
We claim that the morphism ϕ× idG/PI restricts to a morphism

ϕ̃I : G̃I → g̃I .

In fact, since we work with reduced schemes it suffices to check this at the level
of k-points. Now, for any parabolic subgroup P ⊂ G there exists a 1-parameter
subgroup χ : Gm → G such that P, resp. Lie(P), is the attractor for the action of
Gm on G, resp. g, by conjugation via χ, see e.g. [CGP, Proposition 2.2.9]. Since ϕ

is G-equivariant it commutes with these actions of Gm, hence sends G̃I into g̃I .
Note also that the morphism G/G→ g∗/G (where in both cases we consider the

(co)adjoint quotients) is étale at the image of 1 by [BaR, Theorem 4.1]; it therefore
induces an isomorphism of schemes

(8.3) FNG/G({1}) ∼−→ FNg∗/G({0}).
Here, as in §2.2, the Chevalley isomorphism identifies g∗/G with t∗/Wf , and the
adjoint quotient G/G identifies naturally with T/Wf , see [BR4, §2.2]. Hence we
can interpret the isomorphism above as an isomorphism of schemes

FNT/Wf
({1}) ∼−→ FNt∗/Wf

({0}).

Lemma 8.2. For any I ⊂ Rs, the morphism ϕ̃I induces an isomorphism of
schemes

FNG/G({1})×G/G G̃I
∼−→ FNg∗/G({0})×g∗/G g̃I .

Proof. The claim follows from (the positive-characteristic version of) Luna’s étale
slice theorem. More specifically one can proceed as follows. By [BaR, Theorem 6.2],
there exists f ∈ O(g∗/G) = O(g∗)G with value 1 at 0 and such that ϕ induces
a (surjective) étale morphism (G/G)f◦ϕ → (g∗/G)f and an isomorphism of affine
varieties

Gf◦ϕ
∼−→ (G/G)f◦ϕ ×(g∗/G)f (g∗)f ,

where the subscripts mean the open subschemes defined by the given function.
Consider the induced isomorphism

Gf◦ϕ ×G/PI
∼−→ (G/G)f◦ϕ ×(g∗/G)f

(
(g∗)f ×G/PI

)
.

We claim that the preimage of the closed subscheme

(G/G)f◦ϕ ×g∗/G g̃I = (G/G)f◦ϕ ×(g∗/G)f ((g∗/G)f ×g∗/G g̃I)

⊂ (G/G)f◦ϕ ×(g∗/G)f

(
(g∗)f ×G/PI

)
is the closed subscheme

(G/G)f◦ϕ ×G/G G̃I ⊂ Gf◦ϕ ×G/PI .

In fact, all the schemes under consideration are smooth (note that the scheme
(G/G)f◦ϕ ×(g∗/G)f g̃I admits an étale morphism to the smooth scheme g̃I , hence
is smooth), in particular reduced, so that this claim can be checked at the level of k-
points. Then it follows from the same considerations as above involving attractors.

From this claim we deduce that ϕ̃I induces an isomorphism

(8.4) (G/G)f◦ϕ ×G/G G̃I
∼−→ (G/G)f◦ϕ ×g∗/G g̃I .
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Now we observe that the natural projection

FNG/G({1})×G/G (G/G)f◦ϕ → FNG/G({1})

is an isomorphism; in fact the ring of functions on FNG/G({1}) ×G/G (G/G)f◦ϕ
identifies with the localization of O(FNG/G({1})) with respect to the multiplicative
subset generated by the image of f ◦ϕ, but this element is already invertible. Using
this claim, from the isomorphism (8.4) we deduce an isomorphism

FNG/G({1})×G/G G̃I
∼−→ FNG/G({1})×g∗/G g̃I .

Composing with the isomorphism induced by the isomorphism in (8.3) we deduce
the desired isomorphism. �

Remark 8.3. In case I = Rs, the isomorphism of Lemma 8.2 reads

FNG/G({1})×G/G G
∼−→ FNg∗/G({0})×g∗/G g∗.

8.2. The multiplicative Steinberg variety. We set

Stm := G̃×G G̃, St∧m := Stm ×G/G FNG/G({1}).

As in remark 4.1 we have a canonical isomorphism

St∧m := Stm ×T(1)×
T(1)/Wf

T(1) FNT(1)×
T(1)/Wf

T(1)({(1, 1)})

We consider these schemes as “multiplicative versions” of the schemes St and St∧;
they are endowed with natural (diagonal) actions of G. We will more specifically
consider the bounded derived categories

DbCohG
(1)

(St(1)
m ), DbCohG

(1)

(St∧(1)
m )

of G(1)-equivariant coherent sheaves on St(1)
m and St∧(1)

m respectively. We will
denote by U ⊂ G(1) the unipotent cone, i.e. the preimage of the image of 1 under the

quotient morphism G(1) → G(1)/G(1), and by CohG
(1)

U (St(1)
m ) the full subcategory

of CohG
(1)

(St(1)
m ) whose objects are the coherent sheaves supported set-theoretically

on U .
The following statement is an analogue of Lemma 4.3, and admits the same

proof.

Lemma 8.4. The obvious functor

DbCohG
(1)

U (St(1)
m )→ DbCohG

(1)

(St∧(1)
m )

is fully faithful; its essential image is the full subcategory whose objects are the
complexes F such that the morphism

O(FNT(1)×
T(1)/Wf

T(1)({(1, 1)}))→ End(F )

vanishes on a power of the unique maximal ideal.

As in (6.1) we have a natural identification

St∧m = (G̃×G/G FNG/G({1}))×G×G/GFNG/G({1}) (G̃×G/G FNG/G({1})),

Lemma 8.2 therefore implies that we have a G-equivariant isomorphism

(8.5) St∧m
∼−→ St∧,
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which induces an equivalence of triangulated categories

(8.6) DbCohG
(1)

(St∧(1)
m )

∼−→ DbCohG
(1)

(St∧(1)).

The same constructions as in Section 6 allow to define a natural convolution product

on the category DbCohG
(1)

(St∧(1)
m ) (which will once again be denoted ?), and this

equivalence has a canonical monoidal structure. We will denote by

Ψλ̂,λ̂ : DbHCλ̂,λ̂
∼−→ DbCohG

(1)

(St∧(1)
m )

the composition of Φλ̂,λ̂ (see §5.3) with the inverse of this equivalence. We will

denote by ∆G̃∧ ⊂ St∧m the diagonal copy of G̃×G/G FNG/G({1}) in St∧m, so that

the monoidal unit in DbCohG
(1)

(St∧(1)
m ) is O∆G̃∧(1)

For any s ∈ Saff , resp. ω ∈ Ω, we will denote by Ss, resp. Sω, the inverse image
of Rs, resp. Rω, under (8.6). Then for s ∈ Saff and ω, ω′ ∈ Ω we have

Sω ?Ss ?Sω−1
∼= Sωsω−1 , Sω ?Sω′

∼= Sωω′ .

We define the category

BSCohG
(1)

(St∧(1)
m )

as the strictly full subcategory of DbCohG
(1)

(St∧(1)
m ) generated under the monoidal

product ? by the unit object and the objects Ss (s ∈ Saff) and Sω (ω ∈ Ω).
Any object in this category is isomorphic to an object Ss1 ? · · · ?Ssr ?Sω where
s1, · · · , sr ∈ Saff and ω ∈ Ω. We will also denote by

SCohG
(1)

(St∧(1)
m )

the karoubian envelope of the additive hull of BSCohG
(1)

(St∧(1)
m ). Then (8.6) in-

duces equivalences of categories

BSCohG
(1)

(St∧(1)
m )

∼−→ BSCohG
(1)

(St∧(1)),(8.7)

SCohG
(1)

(St∧(1)
m )

∼−→ SCohG
(1)

(St∧(1)).(8.8)

Proposition 7.5 also implies that we have an equivalence of monoidal categories

(8.9) KbSCohG
(1)

(St∧(1)
m )

∼−→ DbCohG
(1)

(St∧(1)
m ).

8.3. Restriction to a Steinberg section. Let Σ ⊂ G be a Steinberg section
as in [BR4, §2.2]. Then we have the universal centralizer JΣ, a smooth affine
group scheme over Σ equipped with a canonical closed immersion of group schemes
JΣ ↪→ G× Σ, see [BR4, §2.8]. The composition

Σ ↪→ G→ G/G ∼= T/Wf

is an isomorphism, where the second morphism is the adjoint quotient. In particular
there exists a canonical morphism

FNT(1)×
T(1)/Wf

T(1)({(1, 1)})→ Σ(1),

and we will denote by I∧Σ the pullback of J(1)
Σ to FNT(1)×

T(1)/Wf
T(1)({(1, 1)}). Then

we can consider the category Rep(I∧Σ) of coherent representations of this group
scheme.

By [BR4, Lemma 3.3] we have a canonical identification

FNT(1)×
T(1)/Wf

T(1)({(1, 1)}) ∼= FNT(1)({1})×FN
T(1)/Wf

({1}) FNT(1)({1}),



74 R. BEZRUKAVNIKOV AND S. RICHE

so that a representation of I∧Σ is a bimodule over the regular ring O(FNT(1)({1}))
with some extra structure. As a consequence, the derived tensor product of bimod-
ules induces a monoidal structure on the derived category

DbRep(I∧Σ).

In [BR4, §3.3] we have considered a full subcategory

SRep(I∧Σ)

of Rep(I∧Σ), which is stable under the convolution product on DbRep(I∧Σ). (This
category is denoted SRep(J∧D) in [BR4].) This category contains some distinguished
objects (B∧s : s ∈ Saff) and (M∧

w : w ∈W), which satisfy in particular

(8.10) M∧
y ?M∧

w
∼= M∧

yw for any y, w ∈W.

It follows from [BR4, Proposition 2.13] that the natural morphism G̃ → T

restricts to an isomorphism G̃ ×G Σ
∼−→ T. In particular we deduce a natural

closed immersion

T×T/Wf
T ↪→ Stm,

and then a closed immersion

(8.11) FNT(1)×
T(1)/Wf

T(1)({(1, 1)})→ St∧(1)
m .

It follows also from [BR4, Proposition 2.13] that the restriction to the closed sub-
scheme FNT(1)×

T(1)/Wf
T(1)({(1, 1)}) of the universal stabilizer for the action of G(1)

on St∧(1)
m identifies canonically with I∧Σ. Using the general construction spelled out

e.g. in [MR2, §2.2], we deduce that there exists a natural functor

(8.12) CohG
(1)

(St∧(1)
m )→ Rep(I∧Σ)

which is exact. (In fact, in the noncompleted setting, this functor identifies, via the
third equivalence in [BR4, Proposition 2.20], with restriction to an open subscheme.
The completed case can be treated similarly.) It therefore induces a functor

(8.13) DbCohG
(1)

(St∧(1)
m )→ DbRep(I∧Σ),

which is easily seen to be monoidal.
Our goal in the rest of this section is to prove the following claim.

Proposition 8.5. The functor (8.13) restricts to an equivalence of monoidal cat-
egories

SCohG
(1)

(St∧(1)
m )

∼−→ SRep(I∧Σ).

8.4. Restriction of Harish-Chandra bimodules to the Steinberg section.
For any µ, ν ∈ X∗(T) we have the algebra Uµ̂,ν̂ , which can be considered as a
coherent sheaf of algebras on the scheme

g∗(1) ×t∗(1)/Wf
FNt∗/(Wf ,•)×t∗(1)/Wf

t∗/(Wf ,•)({(µ̃, ν̃)}).

Now this scheme identifies with

(g∗(1) ×t∗(1)/Wf
FNt∗(1)/Wf

({0}))×FN
t∗(1)/Wf

({0})

FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(µ̃, ν̃)}),



ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 75

which by Remark 8.3 identifies with

(G(1) ×T(1)/Wf
FNT(1)/Wf

({1}))×FN
t∗(1)/Wf

({0})

FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(µ̃, ν̃)}).

We will denote by Uµ̂,ν̂Σ the restriction of Uµ̂,ν̂ to the (affine) closed subscheme

(Σ(1) ×T(1)/Wf
FNT(1)/Wf

({1}))×FN
t∗(1)/Wf

({0})

FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(µ̃, ν̃)})

(which identifies with FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(µ̃, ν̃)})). If we set

MΣ := J(1)
Σ ×G(1)×Σ(1) (G× Σ(1))

(where the morphism G × Σ(1) → G(1) × Σ(1) is FrG × id), then this algebra is
endowed with a natural action of the group scheme

Mµ̂,ν̂
Σ := (MΣ ×T(1)/Wf

FNT(1)/Wf
({1}))×FN

t∗(1)/Wf
({0})

FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(µ̃, ν̃)}).

We will denote by ModMfg(Uµ̂,ν̂Σ ) the abelian category of equivariant finitely gener-

ated modules over Uµ̂,ν̂Σ , and by HCµ̂,ν̂Σ its subcategory of Harish-Chandra bimodules,

i.e. objects such that the restriction of the action of Mµ̂,ν̂
Σ to the subgroup

G1 × FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(µ̃, ν̃)})

coincides with the restriction of the action of Uµ̂,ν̂Σ via the natural morphism Ug→
Uµ̂,ν̂Σ . Then we have a natural (exact) restriction functor

ModGfg(Uµ̂,ν̂)→ ModMfg(Uµ̂,ν̂Σ ),

which restricts to an exact functor

(8.14) HCµ̂,ν̂ → HCµ̂,ν̂Σ .

The following statement is an analogue of [BR3, Proposition 3.7].

Proposition 8.6. For any µ, ν ∈ X∗(T), the functor (8.14) is fully faithful on the

subcategory HCµ̂,ν̂diag.

Proof. The proof is similar to that of [BR3, Proposition 3.7]. Namely, we can
consider U∧ as a sheaf of algebras on the scheme

(g∗(1) ×t∗(1)/Wf
FNt∗(1)/Wf

({0}))×FN
t∗(1)/Wf

({0})

t∗/(Wf , •)×t∗(1)/Wf
t∗/(Wf , •),

which by Remark 8.3 identifies with

(G(1) ×T(1)/Wf
FNT(1)/Wf

({1}))×FN
t∗(1)/Wf

({0})

t∗/(Wf , •)×t∗(1)/Wf
t∗/(Wf , •).

One can then follow exactly the same arguments as in [BR3], replacing everywhere
the algebra Ug by its pullback to the scheme G(1) ×t∗(1)/Wf

t∗/(Wf , •). �
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8.5. Localization over the Steinberg section. Recall from §4.3 the sheaf of

algebras D
λ̂,λ̂

∅,∅ over the scheme

St(1) ×t∗(1)×
t∗(1)/Wf

t∗(1) FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}),

which by Lemma 8.2 identifies with

St∧(1)
m ×FN

t∗(1)×
t∗(1)/Wf

t∗(1) ({(0,0)}) FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}).

We will denote by D
λ̂,λ̂

Σ the restriction of D
λ̂,λ̂

∅,∅ along the closed immersion of

FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}) into this scheme induced by (8.11). This

algebra admits a canonical action of the group scheme Mλ̂,λ̂
Σ ; we can therefore

consider the category ModMc (D
λ̂,λ̂

Σ ) of (weakly) equivariant modules for this sheaf

of algebras, and its subcategory Modc(D
λ̂,λ̂

Σ ,M) of modules on which the action

of the subgroup scheme G1×FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}) coincides with

the action coming from that of D
λ̂,λ̂

Σ . We then have restriction functors

(8.15) ModGc (D
λ̂,λ̂

∅,∅)→ ModMc (D
λ̂,λ̂

Σ ), Modc(D
λ̂,λ̂

∅,∅,G)→ Modc(D
λ̂,λ̂

Σ ,M).

In §5.3 we have constructed a splitting bundle for D
λ̂,λ̂

∅,∅, which by restriction pro-

vides a splitting bundle for D
λ̂,λ̂

Σ . Using this splitting bundle we obtain equivalences
of categories

ModMfg(D
λ̂,λ̂

Σ )
∼−→ Rep(Mλ̂,λ̂

Σ ), Modc(D
λ̂,λ̂

Σ ,M)
∼−→ Rep(Iλ̂,λ̂Σ ),

where Iλ̂,λ̂Σ is the pullback of J(1)
Σ along the natural morphism

FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)})→ Σ(1),

i.e. the quotient of Mλ̂,λ̂
Σ by the normal subgroup scheme

G1 × FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}).

Now we have an identification

FNT(1)×
T(1)/Wf

T(1)({(1, 1)}) ∼= FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}),

and the pullback of Iλ̂,λ̂Σ along this isomorphism is I∧Σ. We therefore finally obtain
an equivalence of categories

Modc(D
λ̂,λ̂

Σ ,M)
∼−→ Rep(I∧Σ)

such that the diagram

Modc(D
λ̂,λ̂

∅,∅,G)

(8.15)

��

∼ // CohG
(1)

(St∧(1)
m )

(8.12)

��
Modc(D

λ̂,λ̂

Σ ,M)
∼ // Rep(I∧Σ)
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commutes, where the upper horizontal arrow is the composition of the equivalence
of Proposition 5.4 with (the restriction of) (8.6).

Now the scheme FNt∗/(Wf ,•)×t∗(1)/Wf
t∗/(Wf ,•)({(λ̃, λ̃)}) is affine, and using the

computation of the derived global sections of D̃∅ (see [BMR1, Proposition 3.4.1])
and the general form of the base change theorem (see [Li, Theorem 3.10.3]) one

checks that the global sections of D
λ̂,λ̂

Σ identify canonically with Uλ̂,λ̂Σ . We deduce
equivalences of categories

ModMfg(D
λ̂,λ̂

Σ )
∼−→ ModMfg(Uλ̂,λ̂Σ ), Modc(D

λ̂,λ̂

Σ ,M)
∼−→ HCλ̂,λ̂Σ

such that the following diagram commutes:

DbModc(D
λ̂,λ̂

∅,∅,G)

(8.15)

��

Γλ,λ∅,∅

∼
// DbHCλ̂,λ̂

(8.14)

��

DbModc(D
λ̂,λ̂

Σ ,M)
∼ // DbHCλ̂,λ̂Σ .

Combining the above informations, we therefore obtain an equivalence of cate-
gories

HCλ̂,λ̂Σ
∼−→ Rep(I∧Σ)

such that the following diagram commutes:

DbHCλ̂,λ̂

(8.14)

��

Ψλ̂,λ̂

∼
// DbCohG

(1)

(St∧(1)
m )

(8.13)

��
DbHCλ̂,λ̂Σ

∼ // DbRep(I∧Σ).

From this commutative diagram and Proposition 8.6 we deduce the following.

Corollary 8.7. The functor (8.13) is fully faithful on SCohG
(1)

(St∧(1)
m ).

8.6. Image of Soergel-type coherent sheaves. In view of Corollary 8.7, to
conclude the proof of Proposition 8.5 it remains to describe the essential image of

SCohG
(1)

(St∧(1)
m ). In fact, by construction of this subcategory, it will be enough to

prove that for any s ∈ Saff , resp. ω ∈ Ω, this functor sends the object Ss, resp. Sω,
to B∧s , resp. B∧ω .

Recall the objects (X ∧
s : s ∈ Saff) in DbCohG

(1)

(St∧(1)) considered in §7.2.
By Corollary 7.9, for any s ∈ Saff , Ss is isomorphic to the image of X ∧

s in

DbCohG
(1)

(St∧(1)
m ).

In case s ∈ Sf , this image is the structure sheaf of the closed subscheme

(G̃(1) ×
G̃

(1)
s

G̃(1))×G(1)/G(1) FNG(1)/G(1)({1}) ⊂ St∧(1)
m ,

where we write G̃s for G̃{s}. Now the preimage of Σ in G̃s identifies (via (8.2))
with T/{1, s}. Hence the image of Ss under (8.13) is the structure sheaf of the
closed subscheme

FNT(1)×
T(1)/{1,s}T

(1)({(1, 1)}) ⊂ FNT(1)×
T(1)/Wf

T(1)({(1, 1)}).

Looking at the definition of B∧s in this case, we deduce the following.
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Lemma 8.8. For any s ∈ Sf , the functor (8.13) sends Ss to B∧s .

Recall now the objects (I ∧b : b ∈ BrW) considered in §7.5. For any b ∈ BrW we

will denote by J ∧
b the image of I ∧b in DbCohG

(1)

(St∧(1)
m ), and by J Σ

b the image
of J ∧

b in DbRep(I∧Σ). We will also denote by  : BrW → W the canonical group
morphism, such that (Tw) = w for any w ∈W.

Lemma 8.9. For any b ∈ BrW, we have J Σ
b
∼= M∧

◦ı(b).

Proof. In view of (8.10), it suffices to prove the isomorphism for b in a generating
subset of BrW. Here we will use the subset (2.31).

If s ∈ Sf , using the identification of the image of X ∧
s discussed above, from the

exact sequences (6.8) we obtain exact sequences

J Σ
e ↪→ B∧s � J Σ

Ts , J Σ
T−1
s

↪→ B∧s � J Σ
e .

Comparing with the exact sequences appearing in [BR4, §3.2], we deduce isomor-
phisms

J Σ
Ts
∼= M∧

s
∼= J Σ

T−1
s
.

On the other hand, for µ ∈ X∗(T), the object J ∧
θµ

is the pushforward under the

diagonal embedding

G̃×G/G FNG/G({1})→ St∧m
of the pullback of the line bundle on G/B associated with µ. By [BR4, Lemma 2.21],
the image of this object in Rep(I∧Σ) is M∧

tµ , which concludes the proof. �

We can now conclude the proof of Proposition 8.5. In fact, for ω ∈ Ω we have
Sω
∼= J ∧

Tω−1
by (7.5), so that its image in SRep(I∧Σ) in J Σ

Tω−1
, which is isomorphic

to M∧
ω by Lemma 8.9. For s ∈ Sf , we have already proved that the image of Ss is

B∧s in Lemma 8.8. Finally, in case s ∈ Saff r Sf , recall the elements b ∈ BrW and
t ∈ Sf such that Ts = bTtb

−1, see §6.4. In view of (7.7), Lemma 8.8 and Lemma 8.9,
the image of Ss is then

M∧
◦ı(b)−1 ?B∧t ?M∧

◦ı(b).

Here we have s =  ◦ ı(b)−1 · t ·  ◦ ı(b), hence by [BR4, Lemma 3.5] the right-hand
side is isomorphic to B∧s , which concludes the proof.

9. Equivalences

We continue with the setting of Section 8, hence in particular with the assump-
tion introduced in §8.1. In order to apply the results of [BR4], we also assume from
now on that ` 6= 19, resp. ` 6= 31, if R contains a component of type E7, resp. E8.
We also consider our fixed element λ ∈ A0 ∩X∗(T).

9.1. Relation with constructible sheaves. Consider now a reductive group G
over an algebraically closed field F of positive characteristic p 6= ` such that G∨k =

G(1) (where G∨k is the Langlands dual reductive group provided by the geometric
Satake equivalence of [MV]). We consider the category D∧Iu,Iu and its subcategory

T∧Iu,Iu from [BR4] for the reductive group G; the latter category contains some

distinguished objects (Ξ∧s,! : s ∈ Saff) labelled by Saff , and two families (∇∧w : w ∈
W) and (∆∧w : w ∈ W) of objects labelled by W. Here, Ξ∧s,! belongs to T∧Iu,Iu for

any s ∈ Saff , and for ω ∈ Ω we have ∆∧ω = ∇∧ω and this object also belongs to
T∧Iu,Iu .
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The category D∧Iu,Iu admits a monoidal product ?̂, and T∧Iu,Iu is a monoidal sub-
category. We also have a monoidal equivalence of categories

(9.1) KbT∧Iu,Iu
∼−→ D∧Iu,Iu ,

see [BR4, Equation (6.11)].
Using the notation of §8.3, in [BR4, Theorem 11.2] we have constructed an

equivalence of monoidal categories

(9.2) T∧Iu,Iu
∼−→ SRep(I∧Σ)

which sends Ξ∧s to B∧s for any s ∈ Saff and ∆∧ω to M∧
ω for any ω ∈ Ω.

Combining the equivalences (9.2), (8.8) and (6.7) with that of Proposition 8.5
we deduce equivalences of monoidal categories

(9.3) T∧Iu,Iu
∼−→ SCohG

(1)

(St∧(1)
m )

∼−→ SCohG
(1)

(St∧(1))
∼−→ SHCλ̂,λ̂

which, for s ∈ Saff and ω ∈ Ω, match our distinguished objects in the following
way:

Ξ∧s,! ↔ Ss ↔ Rs ↔ Rs, ∆∧ω ↔ Sω ↔ Rω ↔ Rω.

We finally obtain the following theorem, which is the main result of this paper.

Theorem 9.1. There exist equivalences of monoidal triangulated categories

D∧Iu,Iu
Θλ̂,λ̂−−−→
∼

DbCohG
(1)

(St∧(1)
m )

∼−→ DbCohG
(1)

(St∧(1))
Φλ̂,λ̂←−−−
∼

DbHCλ̂,λ̂.

Proof. The first equivalence is obtained from the first equivalence in (9.3) by passing
to homotopy categories and conjugating by the equivalences (9.1) and (8.9). The
second equivalence is (8.6). Finally, the equivalence in the right-hand side was
constructed in §5.3. �

Remark 9.2. For s ∈ Saff , comparing the triangles (2.27) with similar triangles in

D∧Iu,Iu one sees that under the equivalence D∧Iu,Iu
∼−→ DbHCλ̂,λ̂ of Theorem 9.1 the

object ∆∧s , resp. ∇∧s , corresponds to Ds, resp. Ns. By monoidality it then follows
that, for any w ∈ W , the object ∆∧w, resp. ∇∧w, corresponds to Dw, resp. Nw. By

Lemma 7.8, the object in DbCohG
(1)

(St∧(1)) corresponding to ∆∧w and Dw, resp. to
∇∧w and Nw, is I ∧

T−1
w

, resp. I ∧Tw−1
.

Once the equivalences in Theorem 9.1 are established we can “forget about com-
pletions” in the following sense. Recall the category DIu,Iu and its monoidal product
?Iu considered in [BR4, §5.1].

Theorem 9.3. The equivalences of Theorem 9.1 restrict to equivalences of monoidal
categories

DIu,Iu

Θλ̂,λ̂nil−−−→
∼

DbCohG
(1)

U (St(1)
m )

∼−→ DbCohG
(1)

N (St(1))
Φλ̂,λ̂nil←−−−
∼

DbHCλ̂,λ̂nil .

Proof. The equivalences in Theorem 9.1 are linear for the actions of the local ring

O(Zλ̂,λ̂) ∼= O(FNt∗(1)×
t∗(1)/Wf

t∗(1)({(0, 0)})) ∼= O(FNT(1)×
T(1)/Wf

T(1)({(1, 1)}));

they therefore restrict to equivalences between the full subcategories of objects
on which the action of the maximal ideal of this ring is nilpotent. In the case
of D∧Iu,Iu , this subcategory has been identified with DIu,Iu in [BR4, Lemma 6.2].

For DbHCλ̂,λ̂, this subcategory has been identified with DbHCλ̂,λ̂nil in Lemma 2.12.
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Finally, for DbCohG
(1)

(St∧(1)), resp. DbCohG
(1)

(St∧(1)
m ), this subcategory has been

identified with DbCohG
(1)

N (St(1)), resp. DbCohG
(1)

U (St(1)
m ), in Lemma 4.3, resp. in

Lemma 8.4. �

9.2. Some objects associated with tilting G(1)-modules. Recall from [BR4,
Proposition 7.9] that for any V ∈ Tilt(G(1)) we have a tilting perverse sheaf

Z ∧(V ) ?̂ Ξ∧! ∈ T∧Iu,Iu .

(Here Ξ∧! is the “big tilting pro-object” on the basic affine space of G, and Z ∧ is
the pro-monodromic version of Gaitsgory’s central functor; see [BR4] for details.)
On the other hand, we can consider the equivariant coherent sheaf

V ⊗ O
St
∧(1)
m

∈ DbCohG
(1)

(St∧(1)
m ),

which by Lemma 7.10 belongs to SCohG
(1)

(St∧(1)
m ). Recall also that we have a

canonical isomorphism

O(FNT(1)×
T(1)/Wf

T(1)({(1, 1)})) ∼−→ EndT∧Iu,Iu
(Ξ∧)

induced by left and right monodromy operations (this is the main result of [BR2];
see also [BR4, Equation (8.7)]). On the other hand, the projection morphism

St∧(1)
m → FNT(1)×

T(1)/Wf
T(1)({(1, 1)})

induces a canonical algebra morphism

O(FNT(1)×
T(1)/Wf

T(1)({(1, 1)}))→ End
CohG

(1)
(St
∧(1)
m )

(O
St
∧(1)
m

).

Proposition 9.4. For any V ∈ Tilt(G(1)) there exists a functorial (in V ) isomor-
phism

Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! ) ∼= V ⊗ O
St
∧(1)
m

,

which moreover has the property that for any r ∈ O(FNT(1)×
T(1)/Wf

T(1)({(1, 1)}))
with images f ∈ End(Ξ∧! ) and g ∈ End(O

St
∧(1)
m

) the following diagram commutes:

Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! )
∼ //

Θλ̂,λ̂(id?̂f)

��

V ⊗ O
St
∧(1)
m

id⊗g

��
Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! )

∼ // V ⊗ O
St
∧(1)
m

.

Proof. By construction of Θλ̂,λ̂, to construct an isomorphism as in the proposition
it suffices to construct a canonical isomorphism between the images of Z ∧(V ) ?̂Ξ∧!
and V ⊗ O

St
∧(1)
m

in Rep(I∧Σ). In [BR4, Theorem 11.2] we have identified the image

of Z ∧(V ) ?̂ Ξ∧! with

V ⊗ OFN
T(1)×

T(1)/Wf
T(1) ({(1,1)}),

with the action coming from the embedding

I∧Σ ⊂ G(1) × FNT(1)×
T(1)/Wf

T(1)({(1, 1)}).

It is clear that this object is also the image of V ⊗O
St
∧(1)
m

, which provides the desired

isomorphism. The commutativity of the lemma is clear from construction. �
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9.3. Variant for a fixed central character. Recall the categories considered
in §2.8 and §5.5, and the category DIu,I of [BR3, §4.2]. Set also

St′m := Stm ×T(1)×
T(1)/Wf

T(1) T(1) ×T(1)/Wf
{1}.

Then the isomorphism (8.5) restricts to an isomorphism

(9.4) St′m
∼−→ St′.

The following statement is the analogue of Theorems 9.1 and 9.3 in the present
context.

Theorem 9.5. There exist equivalences of triangulated categories

DIu,I
∼−→ DbCohG

(1)

(St′(1)
m )

∼−→ DbCohG
(1)

(St′(1))
∼−→ DbHCλ̂,λ.

These equivalences are compatible with those of Theorem 9.1 in the sense that they
are equivalence of module categories over the monoidal categories appearing in the
latter statement, and also that the diagrams involving the various push/pull functors
relating these categories are commutative.

Proof. The second equivalence is induced by the (G-equivariant) isomorphism (9.4),
while the third one is proved in §5.5. The compatibilities of these equivalences with
the operations considered in the statement are either obvious or discussed in §5.5
and Section 6. It remains to explain the construction of the equivalence

(9.5) DIu,I
∼−→ DbHCλ̂,λ

with appropriate compatibility properties.
We have the additive subcategory TIu,I ⊂ DIu,I of tilting perverse sheaves, and

an equivalence of categories

(9.6) KbTIu,I
∼−→ DIu,I.

We have a natural functor

π† : T∧Iu,Iu → TIu,I.

Let us denote by BST∧Iu,Iu , resp. BSTIu,I the full subcategory of T∧Iu,Iu , resp. TIu,I,
whose objects are the tilting perverse sheaves isomorphic to an object of the form

∆∧ω ?̂ Ξ∧s1,! ?̂ · · · ?̂ Ξ∧sr,!, resp. π†(∆
∧
ω ?̂ Ξ∧s1,! ?̂ · · · ?̂ Ξ∧sr,!),

with ω ∈ Ω and s1, · · · , sr ∈ Saff . Then π† restricts to an essentially surjective
functor BST∧Iu,Iu → BSTIu,I, which has the property that for any M,N ∈ BST∧Iu,Iu
it induces an isomorphism

k⊗O(FN
T(1) ({1})) HomT∧Iu,Iu

(M,N)
∼−→ HomTIu,I

(π†M,π†N),

see [BR2, Lemma 5.9]. Moreover the category T∧Iu,Iu , resp. TIu,I, identifies with the

karoubian closure of the additive hull of BST∧Iu,Iu , resp. BSTIu,I.
On the other hand, recall the functor Spλ,λ introduced in §2.8. Consider the full

subcategory BSHCλ̂,λ ⊂ HCλ̂,λ whose objects are the images under this functor of
the bimodules

Rω ? Rs1 ? · · · ? Rsr
with ω ∈ Ω and s1, · · · , sr ∈ Saff , and denote by SHCλ̂,λ the karoubian envelope

of the additive hull of BSHCλ̂,λ. Then Spλ,λ restricts to an essentially surjective
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functor BSHCλ̂,λ̂ → BSHCλ̂,λ, which has the property that for any M,N ∈ BSHCλ̂,λ

it induces an isomorphism

kµ ⊗O(FNt∗/(Wf ,•)({λ̃}))
Hom

HCλ̂,λ̂
(M,N)

∼−→ Hom
HCλ̂,λ

(Spλ,λ(M),Spλ,λ(N)),

see Proposition 2.16. Arguing as in §7.1 (and using the second part in Proposi-
tion 2.16), one also checks that the natural functor

(9.7) KbSHCλ̂,λ → DbHCλ̂,λ

is an equivalence of monoidal categories.

It is clear that the equivalence D∧Iu,Iu
∼−→ DbHCλ̂,λ̂ restricts to an equivalence of

categories

BST∧Iu,Iu
∼−→ BSHCλ̂,λ̂.

The comments above show that this equivalence in turn induces an equivalence of
categories

BSTIu,I
∼−→ BSHCλ̂,λ.

Passing to bounded homotopy categories of the karoubian closure of the additive
hull, and finally conjugating by the equivalences (9.6) and (9.7), we deduce the
wished-for equivalence (9.5).

It is easily seen from the construction that this equivalence is compatible in the

required sense with the convolution actions of D∧Iu,Iu and DbHCλ̂,λ̂, and that it
matches the functor π† with Spλ,λ. The other compatibility follows by adjunction.

�

9.4. Discussion of our assumptions. Let us summarize the assumptions we have
made for the proof of the main results of the paper (Theorems 9.1, 9.3 and 9.5). In
this process we start with the connected reductive group G over an algebraically
closed field F of characteristic p > 0, its Borel subgroup B, and its maximal torus T .
Then we choose a field k which is an algebraic closure of a finite field of characteristic
` 6= p, and the geometric Satake equivalence provides us with the dual group G∨k ,
its Borel subgroup B∨k and maximal torus T∨k . Since this dual group is canonically
the base-change to k of a reductive group scheme over Z`, there is a canonical group
G with G(1) = G∨k . We have to assume that this group satisfies the assumptions
of §2.1, Section 6, §8.1 and §9.1; in concrete terms this means that:

(1) the quotient of X∗(T ) by the root lattice of (G,T ) is free;7

(2) the quotient of X∗(T ) by the coroot lattice of (G,T ) has no `-torsion;
(3) there exists a G-equivariant morphism G→ g sending 1 to 0 and étale at

1;
(4) g admits a nondegenerate G-invariant bilinear form;
(5) ` is odd, ` ≥ h, and if R contains a component of type E7, resp. E8, then

` 6= 19, resp. ` 6= 31 (see §9.1).

The assumptions on the group G can be relaxed a posteriori by using the follow-
ing observation. Assume we are given a connected reductive group G′ over F and
a central isogeny G′ → G such that the dual central isogeny G∨k → (G′)∨k is étale.
Then equivalences as in Theorems 9.1, 9.3 and 9.5 for the group G′ can be deduced
from similar equivalences for G, as we explain below. Note that, given a connected

7This assumption means that the derived subgroup of G∨
k is simply connected, or equivalently

that the center of G is a torus.
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reductive group G′ and a field k as above, if ` is strictly larger than the bound of
Figure 1.1 for any component of the root of system of G′, then a central isogeny
G′ → G with G satisfying the conditions (1)–(5) above automatically exists. (This
follows from the considerations in [J2, §II.1.18], using Remarks 2.1 and 8.1 and the
fact that ` is automatically very good for G; one can e.g. take for G a product of
the adjoint quotient of G′ with a torus.) This remark justifies the presentation of
our results in Section 1.

Let us now sketch a justification of the assertion above about Theorem 9.1; the
other cases can be treated similarly. So, we consider groups G, G′ as above, and the
associated étale isogeny G→ G′ obtained from the dual groups. What happens is
that each of the categories considered in Theorem 9.1 for the groupG′ identifies with
a direct summand of the corresponding category for G, and the equivalences for G
restrict to equivalences between these direct summands. On the constructible side,
it is a classical fact that (possibly up to a universal homeomorphism) the affine flag
variety of G′ identifies with a union of connected components of that of G, which
implies the desired claim. For the categories associated with G and G′, we consider
the kernel K of the isogeny G→ G′, a smooth finite diagonalizable group scheme.
The isogeny identifies the Lie algebras g and g′ of G and G′, together with most
the associated structures (in particular, the finite Weyl groups and Grothendieck

resolutions). Any complex in DbCohG
(1)

(St∧(1)) or DbHCλ̂,λ̂ admits a canonical
decomposition according to the action of K(1), parametrized by the action of this
group scheme, and the corresponding categories attached to G′ identify with the
subcategories of objects whose summands associated with nontrivial characters van-

ish. Finally, the morphism relating the multiplicative Grothendieck resolutions G̃

and G̃′ is not an isomorphism, but arguing as in Lemma 8.2 one sees that it induces

an isomorphism of schemes FNG/G({1})×G/GG̃
∼−→ FNG′/G′({1})×G′/G′ G̃

′. One
therefore obtains an identification between the associated “completed versions” of
the multiplicative Steinberg varieties, and can conclude as before.

10. t-structures

In this section we continue with our running assumptions that conditions (1)–
(5) in §9.4 are satisfied. (Here again, all the statements in this statements in this
sections can a posteriori be generalized to more general reductive groups using the
procedure in §9.4.)

10.1. Unicity of t-structures. Consider the nilpotent cone N ⊂ g∗(1), i.e. the
preimage of the image of 0 under the quotient morphism g∗(1) → g∗(1)/G(1) ∼=
t∗(1)/Wf . We then consider the derived category

DbCohG
(1)

N (g∗(1))

of G(1)-equivariant coherent sheaves on the scheme g∗(1) supported set-theoretically

on N , see §A.1. If we denote by q : St(1) → g∗(1) the natural (proper) morphism,
then we can consider the natural functor

(10.1) Rq∗ : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (g∗(1)).

Recall from Lemma 4.3 the fully faithful functor

DbCohG
(1)

N (St(1))→ DbCohG
(1)

(St∧(1)).
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As explained in §6.1, the essential image of this functor is a two-sided ideal in the

monoidal category DbCohG
(1)

(St∧(1)).
Consider the braid group BrW from §2.12. We will denote by Br+

W the sub-
semigroup of BrW generated by the elements Tw with w ∈ W. Any element
b ∈ Br+

W can be written as b = Ts1 · · ·Tsr ·Tω for some s1, · · · , sr ∈ Saff and ω ∈ Ω.
We will denote by `(b) the minimal r such that such an expression exists.

Lemma 10.1. For any nonzero F in DbCohG
(1)

N (St(1)), there exist b, c ∈ Br+
W

such that Rq∗(I ∧b ?F ?I ∧c ) 6= 0.

Proof. Fix F as in the statement. As explained already in the course of the proof
of Lemma 3.5, for any strictly dominant weights ν, ν′ ∈ X∗(T) the line bundle
O(G/B)(1)(ν) � O(G/B)(1)(ν

′) is ample (see [J2, Proposition II.4.4]). Since the mor-

phism St(1) → (G/B)(1) × (G/B)(1) is affine, its pullback OSt(1)(ν, ν
′) to St(1) is

also ample, see [SP, Tag 0892]. Hence, by standard considerations (based on [SP,
Tag 0B5U] and [SP, Tag 01PR]) there exist ν, ν′ ∈ X∗(T)+ such that

RΓ(St(1),F ⊗O
St(1)

OSt(1)(ν, ν
′)) 6= 0.

Now we have

F ⊗O
St(1)

OSt(1)(ν, ν
′) = I ∧Ttν ?F ?I ∧Tt

ν′
,

so that this implies the desired claim. �

We will say that a t-structure on the category DbCohG
(1)

N (St(1)) is braid positive
if for any b, c ∈ Br+

W the functor

I ∧b ? (−) ?I ∧c : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (St(1))

is right t-exact.

Lemma 10.2. Assume we are given a braid positive t-structure on the triangulated

category DbCohG
(1)

N (St(1)).

(1) For any b, c ∈ Br+
W the functor

I ∧b−1 ? (−) ?I ∧c−1 : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (St(1))

is left t-exact.
(2) For any s ∈ Saff the functors

Rs ? (−), (−) ?Rs : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (St(1))

are t-exact.

Proof. Statement (1) follows from the fact that a right adjoint of a right t-exact
functor is left t-exact. Then (2) follows using the triangles (7.6). �

The following statement closely resembles a “unicity of t-structure” result en-
countered in [BM].

Proposition 10.3. Given any t-structure (D≤0
g∗ ,D

≥0
g∗ ) on DbCohG

(1)

N (g∗(1)), there

exists at most one bounded t-structure (D≤0
St ,D

≥0
St ) on DbCohG

(1)

N (St(1)) which is
braid positive and such that the functor (10.1) is t-exact for the t-structures

(D≤0
St ,D

≥0
St ) and (D≤0

g∗ ,D
≥0
g∗ ).

https://stacks.math.columbia.edu/tag/0892
https://stacks.math.columbia.edu/tag/0B5U
https://stacks.math.columbia.edu/tag/01PR
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If this t-structure exists, then its nonpositive part is given by

(10.2) D≤0
St = {F ∈ DbCohG

(1)

N (St(1)) | ∀b, c ∈ Br+
W, Rq∗(I

∧
b ?F ?I ∧c ) ∈ D≤0

g∗ }.

Proof. It is enough to show that any t-structure (D≤0
St ,D

≥0
St ) as in the lemma satis-

fies (10.2), since a t-structure is determined by its nonpositive part. Let us there-

fore assume we are given a bounded t-structure (D≤0
St ,D

≥0
St ) on DbCohG

(1)

N (St(1))
which is braid positive and such that the functor Rq∗ is t-exact for the t-structures
(D≤0

St ,D
≥0
St ) and (D≤0

g∗ ,D
≥0
g∗ ). It is clear that any object F in D≤0

St will then satisfy

Rq∗(I
∧
b ?F ?I ∧c ) ∈ D≤0

g∗

for any b, c ∈ Br+
W.

Reciprocally, let us fix an object F such that Rq∗(I ∧b ? F ? I ∧c ) ∈ D≤0
g∗ for

any b, c ∈ Br+
W. Since the t-structure is bounded, there exists i ∈ Z such that

F ∈ D≤iSt but F /∈ D≤i−1
St ; to conclude we need to show that i ≤ 0. Assume for a

contradiction that i > 0, and set F ′ := τ>0(F ) where τ>0 is the truncation functor
(in positive degrees) associated with our t-structure. From the truncation triangle

τ≤0F → F → F ′
[1]−→

and the inclusion proven above we see that F ′ also satisfies

Rq∗(I
∧
b ?F ′ ?I ∧c ) ∈ D≤0

g∗

for any b, c ∈ Br+
W. By Lemma 10.1, there exist b, c ∈ Br+

W such that

Rq∗(I
∧
b ?F ′ ?I ∧c ) 6= 0.

Let us choose b and c which satisfy this property and such that `(b)+`(c) is minimal
among elements satisfying it. Write b = Ts1 · · ·Ts`(b)Tω and c = Ts′1 · · ·Ts′`(c)Tω′ for

some s1, · · · , s`(b), s′1, · · · , s′`(c) ∈ Saff and ω, ω′ ∈ Ω. Using the triangles (6.10) and

minimality we obtain that

Rq∗(I
∧
b ?F ′ ?I ∧c ) ∼= Rq∗(X

∧
s1 ? · · · ?X ∧

s`(b)
?I ∧Tω ?F ′ ?X ∧

s′1
? · · · ?X ∧

s′
`(c)

?I ∧Tω′ ).

Now the right-hand side belongs to D≥1
g∗ by Lemma 10.2(2). (Note that the functors

I ∧Tω ? (−) and (−)?I ∧Tω′ are left t-exact by by Lemma 10.2(1).) We have therefore

produced a nonzero object in D≤0
g∗ ∩ D≥1

g∗ , a contradiction. �

10.2. The perverse coherent t-structure on coherent sheaves. We now con-
sider the action of G on g∗(1) obtained by pullback of the coadjoint action of G(1)

by the Frobenius morphism FrG, and the derived category

DbCohGN (g∗(1))

of G-equivariant coherent sheaves on g∗(1) supported set-theoretically on N . For
any n ≥ 1 we consider the n-th infinitesimal neighborhood N [n] of N in g∗(1); then
the action of G on g∗(1) induces an action on N [n], and by Lemma A.4 we have an
equivalence of triangulated categories

(10.3) colimn≥1D
bCohG(N [n])

∼−→ DbCohGN (g∗(1)).

For any n ≥ 1 we can consider the perverse coherent t-structure on the category
DbCohG(N [n]) as in [AriB] (see also [Be1]). More precisely, as in [AriB, Exam-
ple 4.15], points of the stack N [n]/G correspond to G(1)-orbits on N . The “middle
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perversity” is defined by p(x) = −dim(Ox)
2 where Ox is the orbit corresponding to x,

and the procedure in [AriB, Definition 3.7] using this function produces a bounded
t-structure whose heart is noetherian and artinian, see [AriB, Corollary 4.13]. For
our purposes we will apply a global shift to this t-structure, and say that a complex

F belongs to the heart of the perverse coherent t-structure iff F [dim(N )
2 ] belongs to

the heart of the t-structure of [AriB] associated with the middle perversity. (Note
that dim(N ) ∈ 2Z, so that this definition makes sense.) With this convention, the
restriction to the regular orbit of any object in the heart of the perverse coherent
t-structure is concentrated in degree 0 (for the tautological t-structure).

For any n ≥ 1 the pushforward functor

DbCohG(N [n])→ DbCohG(N [n+1])

is t-exact for the perverse coherent t-structures, see [AriB, Lemma 3.3(c)]. In fact
since this functor does not kill any nonzero object, it “detects the t-structure” in the
sense that an object F in DbCohG(N [n]) belongs to the non-negative, resp. non-

positive, part of the perverse coherent t-structure on DbCohG(N [n]) iff its image
belongs to the non-negative, resp. non-positive, part of the perverse coherent t-
structure on DbCohG(N [n+1]). We therefore obtain a t-structure on the categories
in (10.3) such that each pushforward functor

DbCohG(N [n])→ DbCohGN (g∗(1))

is t-exact (and, in fact, “detects the t-structure” in the same sense as above).
The cohomology functors for the perverse coherent t-structure on the triangu-

lated category DbCohGN (g∗(1)) will be denoted (pcH n : n ∈ Z).

Remark 10.4. Consider the full subcategory

(10.4) DbCohG0 (g∗(1)) ⊂ DbCohGN (g∗(1))

whose objects are the complexes which are set-theoretically supported on the zero-
orbit {0}. By definition of the perverse coherent t-structure the embedding (10.4) is

t-exact if the left-hand side is endowed with the shift by dim(N )
2 of the tautological

t-structure and the right-hand side with the perverse coherent t-structure; in other
words, for any F in DbCohG0 (g∗(1)) we have

pcH n(F ) = H n+
dim(N)

2 (F )

for any n ∈ Z. In particular, if δ denotes the skyscraper sheaf at 0, then δ[−dim(N )
2 ]

belongs to the heart of the perverse coherent t-structure; in fact it is easily seen to
be a simple object therein.

The same procedure also produces a t-structure on the categoryDbCohG
(1)

N (g∗(1))
considered in §10.1, such that the obvious pullback functor

DbCohG
(1)

N (g∗(1))→ DbCohGN (g∗(1))

is t-exact. This t-structure will also be called the perverse coherent t-structure.

10.3. The perverse coherent t-structure on Harish-Chandra bimodules.
For any µ, ν ∈ X∗(T), restriction of the action to ZFr defines a natural functor

(10.5) DbHCµ̂,ν̂nil → DbCohGN (g∗(1)).
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Lemma 10.5. There exists a unique t-structure on DbHCµ̂,ν̂nil such that the func-
tor (10.5) is t-exact with respect to the perverse coherent t-structure on the category

DbCohGN (g∗(1)); moreover this t-structure is bounded.

Proof. Unicity is clear from the fact that the functor (10.5) does not kill any nonzero
object: if the t-structure exists, its nonpositive, resp. nonnegative, part must consist
of complexes whose image is in the nonpositive, resp. nonnegative, part of the
perverse coherent t-structure on DbCohGN (g∗(1)).

To show existence, we will in fact construct a bounded t-structure on the category
DbHC∧nil (see §2.7) such that the forgetful functor

DbHC∧nil → DbCohGN (g∗(1))

is t-exact with respect to the perverse coherent t-structure. By (2.21) we have a
decomposition as a sum of triangulated categories

DbHC∧nil =
⊕

µ,ν∈X∗(T)/(W,•)

DbHCµ̂,ν̂ ,

hence the t-structure will restrict to a t-structure with the appropriate property on
each factor DbHCµ̂,ν̂ . As in the proof of Lemma 2.13, restriction to the left action
defines an equivalence of categories between HC∧nil and the category of G-equivariant
finitely generated Ug-modules such that the maximal ideal n ⊂ O(t∗(1)/Wf) =
ZHC ∩ ZFr acts nilpotently. The ZFr-algebra Ug defines a G-equivariant coherent
sheaf of Og∗(1)-algebras on g∗(1), and restricting this algebra to N [n] produces a

sheaf of algebras (Ug)[n]. Then by Lemma A.4 we therefore have a canonical
equivalence of triangulated categories

DbHC∧nil
∼= colimn≥1D

bCohG(N [n], (Ug)[n]).

The construction in [AriB, Be1] applies more generally to categories of coherent
sheaves of modules for a coherent sheaf of algebras; in particular, for any n ≥ 1 it
provides a bounded t-structure on DbCohG(N [n], (Ug)[n]) such that the forgetful
functor

DbCohG(N [n], (Ug)[n])→ DbCohG(N [n])

is t-exact. Then each embedding

DbCohG(N [n], (Ug)[n])→ DbCohG(N [n+1], (Ug)[n+1])

is t-exact, and we obtain a t-structure on the colimit which solves our problem. �

The t-structure of Lemma 10.5 on the triangulated category DbHCµ̂,ν̂nil will also
be called the perverse coherent t-structure, and its cohomology functors will also
be denoted (pcH n : n ∈ Z).

Lemma 10.6. For any µ, ν, η ∈ X∗(T), the functors

Pµ̂,ν̂ ? (−) : DbHCν̂,η̂nil → DbHCµ̂,η̂nil and (−) ? Pµ̂,ν̂ : DbHCη̂,µ̂nil → DbHCη̂,ν̂nil

are t-exact for the perverse coherent t-structures.

Proof. Using (2.15) one sees that the functors under consideration are obtained
from a functor of the form

V ⊗ (−) : DbHC∧nil → DbHC∧nil
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with V ∈ Rep(G) by restriction to a direct summand and projection to a(nother)
direct summand. Since the functor of tensoring by V is clearly t-exact for the
perverse coherent t-structure on DbCohGN (g∗(1)), we deduce the desired claim. �

10.4. Compatibility. The main result of this section is following.

Theorem 10.7. The equivalence DIu,Iu
∼−→ DbHCλ̂,λ̂nil of Theorem 9.3 is t-exact with

respect to the perverse t-structure on DIu,Iu and the perverse coherent t-structure

on DbHCλ̂,λ̂nil .

Our strategy will be the following. By Proposition 10.3, there exists at most

one bounded t-structure on DbCohG
(1)

N (St(1)) which is braid positive and such
that the functor (10.1) is t-exact, where the target category is equipped with
the perverse coherent t-structure. We will prove in §10.5 that the image un-

der the equivalence DIu,Iu
∼−→ DbCohG

(1)

N (St(1)) of the perverse t-structure on
DIu,Iu satisfies these properties, and in §10.6 that the image under the equivalence

DbHCλ̂,λ̂nil
∼−→ DbCohG

(1)

N (St(1)) of the perverse coherent t-structure on DbHCλ̂,λ̂nil

also satisfies these properties. This will imply Theorem 10.7.

10.5. Image of the perverse t-structure.

Proposition 10.8. The image of the perverse t-structure on DIu,Iu under the equiv-

alence DIu,Iu
∼−→ DbCohG

(1)

N (St(1)) of Theorem 9.3 is braid positive and such that
the functor (10.1) is t-exact with respect to the perverse coherent t-structure on

DbCohG
(1)

N (g∗(1)).

Proof. In this proof we will use the categories DIu,I and DI,I, the functors π† :

DIu,I → DIu,Iu and ForIIu : DI,I → DIu,I, and the objects (∆I
w : w ∈ W) and

(∇I
w : w ∈ W) from [BR4]. Then the nonpositive, resp. nonnegative, part of the

perverse t-structure on DIu,Iu is generated under extensions by the objects

(π†ForIIu(∆I
w)[n] : w ∈W, n ∈ Z≥0), resp. (π†ForIIu(∇I

w)[n] : w ∈W, n ∈ Z≤0).

It is a standard fact that the functors of left and right convolution with ob-
jects ∇∧w on DIu,Iu are right t-exact for the perverse t-structure; in fact, for left
convolution this follows from the observation that if y, w ∈W the complex

∇∧w ?̂ π†For
I
Iu(∆I

y) ∼= π†ForIIu(∇I
w ?

I ∆I
y)

is perverse (see e.g. [AR2, Lemma 4.1.7]). By Remark 9.2, this implies that the
t-structure under consideration is braid positive.

Now, consider the composition

(10.6) DIu,Iu
∼−→ DbCohG

(1)

N (St(1))
Rq∗−−→ DbCohG

(1)

N (g∗(1)).

To conclude we have to prove that this functor is t-exact, which will follow if we
prove that it sends any object π†ForIIu(∆I

w) or π†ForIIu(∆I
w) (w ∈W) to an object

in the heart of the perverse coherent t-structure.
Recall the simple objects (ICw : w ∈ W) in the heart of the perverse t-

structure on DI,I. We claim that the image under (10.6) of any object of the

from π†ForIIu(ICw) where w in not minimal in WfwWf vanishes. In fact, let us



ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 89

denote this image by Fw. Since g∗(1) is an affine scheme, to prove that Fw = 0 it
suffices to prove that RΓ(g∗(1),Fw) = 0, which will follow if we prove that

ExtnG(1)(V,RΓ(g∗(1),Fw)) = 0

for any V ∈ Tilt(G(1)) and n ∈ Z, i.e. that

Hom
DbCohG

(1)
(St∧(1))

(V ⊗ OSt∧(1) ,Fw[n]) = 0

for any V ∈ Tilt(G(1)) and n ∈ Z. Transferring this condition in D∧Iu,Iu and using
Proposition 9.4, this amounts to proving that

HomD∧Iu,Iu
(Z ∧(V ) ?̂ Ξ∧! , π

†ForIIu(ICw)[n]) = 0

for any V ∈ Tilt(G(1)) and n ∈ Z. Recall that if w is not minimal in WfwWf , then
it is not minimal either in Wfw or in wWf . If w is not minimal in wWf , then ICw
is obtained by pullback from a partial affine flag variety associated with a subset
of Rs, and the claim follows from adjunction using the fact that the pushforward
of π†(Ξ

∧
! ) to this partial flag variety vanishes. The case when w is not minimal in

Wfw is similar, using the centrality of Z ∧(V ).
By standard arguments (see e.g. [Be3, Lemma 3(a)]), the claim we have proved

above implies that the image under (10.6) of the object

π†ForIIu(∆I
w), resp. π†ForIIu(∆I

w),

only depends on the coset WfwWf . Now, any such coset contains the translation
associated with a dominant weight, and the translation associated with an antidom-
inant weight. If µ ∈ X∗(T)+, then by Remark 9.2 the image of ∇∧t−µ under the
equivalence

D∧Iu,Iu
∼−→ DbCohG

(1)

(St∧(1))

of Theorem 9.1 is O∆g̃∧(1)(µ), which by linearity for the right action of the ring

O(FNt∗(1)({0})) implies that the image of π†ForIIu(∇I
t−µ) under the equivalence we

consider here is O∆Ñ (1)(µ). (Here Ñ = g̃ ×t∗ {0} is the Springer resolution.) It is
a standard fact that the object Rq∗O∆Ñ (1)(µ) belongs to the heart of the perverse
coherent t-structure (see [Be3, §2.2] or [Ac, §2.3]), which implies the desired claim

for costandard objects. Similarly, for any µ ∈ X∗(T)+ the image of π†ForIIu(∇I
tµ)

is O∆Ñ (1)(−µ). Since Rq∗O∆Ñ (1)(−µ) also belongs to the heart of the perverse
coherent t-structure also in this case (see again [Be3, §2.2] or [Ac, §2.3]), this proves
the desired property for standard objects and finishes the proof. �

10.6. Image of the perverse coherent t-structure on Harish-Chandra bi-
modules.

Proposition 10.9. The image of the perverse coherent t-structure on DbHCλ̂,λ̂nil

under the equivalence

Φλ̂,λ̂nil : DbHCλ̂,λ̂nil
∼−→ DbCohG

(1)

N (St(1))

is braid positive and such that the functor (10.1) is t-exact with respect to the

perverse coherent t-structure on DbCohG
(1)

N (g∗(1)).
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Proof. To prove braid positivity, we have to prove that for b ∈ {Tω : ω ∈ Ω}∪ {Ts :
s ∈ Saff} the functors

I ∧b ? (−) : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (St∧(1)),

(−) ?I ∧b : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (St∧(1))

are right t-exact with respect to our given t-structure. By (7.5) and monoidality,
for any ω ∈ Ω we have a commutative diagram

DbHCλ̂,λ̂nil

Φλ̂,λ̂nil
o
��

Rω−1?(−) // DbHCλ̂,λ̂nil

Φλ̂,λ̂nil
o
��

DbCohG
(1)

N (St(1))
I∧Tω?(−)

// DbCohG
(1)

N (St(1)).

By Lemma 10.6 the upper arrow is t-exact for the perverse coherent t-structure,
which implies that the lower horizontal arrow is t-exact for the t-structure we
consider. Similar arguments apply to the functor (−) ?I ∧Tω .

By similar arguments one sees that, for any s ∈ Saff , the functors

Rs ? (−), (−) ?Rs : DbCohG
(1)

N (St(1))→ DbCohG
(1)

N (St(1))

are t-exact for our t-structure. Using the left triangle in (7.6) we deduce that the
functors I ∧Ts ?(−) and (−)?I ∧Ts are right t-exact for our t-structure, which finishes
the proof of braid positivity.

Now we will prove that the functor Rq∗ is t-exact. Recall the weight ς fixed
in §2.1. Then we have an equivalence

Φ−̂ς,−̂ς : DbHC−̂ς,−̂ς
∼−→ DbCohG

(1)

(St
∧(1)
Rs,Rs

),

see §5.3, which as in Theorem 9.3 restricts to an equivalence

Φ−̂ς,−̂ςnil : DbHC−̂ς,−̂ςnil
∼−→ DbCohG

(1)

N (St
(1)
Rs,Rs

),

and moreover StRs,Rs
= g∗. Since Φ−̂ς,−̂ςnil is given by tensoring with a vector

bundle, it is t-exact for the perverse coherent t-structures on both sides. By Propo-
sition 7.2 (and an analogue for convolution on the right) we have a commutative
diagram

DbHCλ̂,λ̂nil

Φλ̂,λ̂nil
o
��

P−̂ς,λ̂?(−)?Pλ̂,−̂ς // DbHC−̂ς,−̂ςnil

Φ−̂ς,−̂ςnil
o
��

DbCohG
(1)

N (St(1))
Rq∗ // DbCohG

(1)

N (g∗(1)).

By Lemma 10.6 the upper line is t-exact for the perverse coherent t-structures; we
deduce the desired exactness property for the lower line. �

11. Application to the Finkelberg–Mirković conjecture

We continue with the assumptions of Section 10, replacing the condition that
` ≥ h by the condition ` > h.
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11.1. Image of the trivial bimodule. Recall the “trivial Harish-Chandra bi-
module” considered in §2.9. The following statement is analogous to [BeLo2,
Lemma 6.7].

Proposition 11.1. The shifted trivial Harish-Chandra bimodule

k
[
−dim(N )

2

]
∈ DbHC0̂,0̂

is the image of the simple perverse sheaf

π†(ICw◦) ∈ DIu,Iu

under the equivalence of Theorem 9.3.

Proof. As explained in Remark 10.4, the object k[−dim(N )
2 ] is a simple object in the

heart of the perverse coherent t-structure. By Theorem 10.7 its image is therefore
a simple perverse sheaf in DIu,Iu , hence is of the form π†(F ) for some simple
I-equivariant perverse sheaf F on Fl = LG/I. For any s ∈ Sf , by using the
comparison with translation functors for G-modules (see [BR3, Lemma 6.1]) we
see that

Rs ? k = 0,

hence that

Ξ∧s ?̂ π
†(F ) = 0,

which implies that F is L+G-equivariant. By symmetry we also have k ? Rs = 0
for s ∈ Sf , which implies that F is the pullback of a simple perverse sheaf G in the
Satake category PL+G,L+G (see [BR4, §4.3] or §11.3 below).

Now, we claim that each cohomology object of the complex k ? k (for the tauto-
logical t-structure) is a direct sum of copies of the trivial module k. In fact, clearly
the left and right actions of Ug on these cohomology objects are trivial, so it only
remains to show that the action of G is trivial too. The convolution k ? k can be
computed using the Chevalley–Eilenberg resolution of the trivial g-module (which
is a resolution as a G-equivariant Ug-module, hence can be seen as a resolution as
Harish-Chandra bimodule, see (2.5)); we see that it coincides with the cohomology
of the complex

∧•
g, endowed with the differential given by

d(x1 ∧ · · · ∧ xr) =
∑
i<j

(−1)i+j [xi, xj ] ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xr.

As explained above the action of G1 on this cohomology is trivial; in particular the
action of T1 is trivial. Hence the cohomology under consideration is also the coho-
mology of the complex (

∧•
g)T1 . By [J2, Lemma II.12.10], under our assumptions

on ` the action of T on (
∧•

g)T1 is trivial; hence the action of T on our cohomology
is trivial too. This implies that the action of G is trivial.

From this claim and Remark 10.4, we see that each cohomology object of the
complex

k
[
−dim(N )

2

]
? k
[
−dim(N )

2

]
for the perverse coherent t-structure is a direct sum of copies of k

[
−dim(N )

2

]
. Hence

each perverse cohomology object of π†(F ) ?̂ π†(F ) is isomorphic to a sum of copies
of π†(F ). This is only possible if G is the sky-scraper perverse sheaf, i.e. if F =
ICw◦ . �
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11.2. Statement of the Finkelberg–Mirković conjecture. Recall the extended
principal block Rep〈0〉(G) ⊂ Rep(G) considered in §2.1. Recall also the extended

affine Weyl group W introduced in §2.4, and denote by fW ⊂W the subset con-
sisting of elements w which are of minimal length in Wfw. Then it is a standard
fact that the map w 7→ w • 0 induces a bijection

fW
∼−→ (W • 0) ∩X∗(T)+.

The simple objects in the category Rep〈0〉(G) are therefore in a canonical bijec-

tion with fW. It is well known also that this category admits a highest weight
structure with weight poset fW endowed with the restriction of the Bruhat order,8

and standard, resp. costandard, objects given by the Weyl, resp. induced, modules.
Steinberg’s tensor product formula implies that the action of Rep(G(1)) on Rep(G)
given by

(V, V ′) 7→ Fr∗(V )⊗ V ′

for V ∈ Rep(G(1)) and V ′ ∈ Rep(G) (where Fr : G → G(1) is the Frobenius
morphism) stabilizes the subcategory Rep〈0〉(G).

Consider now the affine Grassmannian

Gr = LG/L+G

for the group G, and the action of L+G by multiplication on the left. We will
denote by DL+G,L+G the L+G-equivariant derived category of constructible k-
sheaves on Gr, and by PL+G,L+G its full subcategory of perverse sheaves. The

category DL+G,L+G admits a canonical monoidal product ?L+G which is t-exact on
each side for the perverse t-structure. We therefore obtain a monoidal category

(PL+G,L+G, ?
L+G). The geometric Satake equivalence provides an equivalence of

monoidal categories

Sat : (PL+G,L+G, ?
L+G)

∼−→ (Rep(G(1)),⊗),

see [MV].
On the other hand, consider the “twisted” version

Gr′ = L+G\LG,

and the action of Iu by multiplication on the right. Let us denote by DL+G,Iu the

Iu-equivariant derived category of constructible k-sheaves on Gr′, and by PL+G,Iu

its full subcategory of perverse sheaves. Since the Iu-orbits on Gr′ are isomorphic to
affine spaces, the category PL+G,Iu admits a canonical structure of highest weight

category, see [BGS, §§3.2–3.3]. Namely, the Iu-orbits on Gr′ are naturally labelled
by fW, and the order given by inclusions of closures of strata is the restriction
of the Bruhat order on W. The weight poset for this highest weight structure
is therefore fW endowed with the Bruhat order. The standard, resp. costandard,
object associated with an element w ∈ fW is the !-extension, resp. ∗-extension, of
the perversely shifted constant sheaf on the orbit corresponding to w. The simple
object in PL+G,Iu associated to w ∈ fW will be denoted Lw; it is the intersection
cohomology complex of the orbit associated with w.

8Here the Bruhat order on W is the order such that for y, y′ ∈Waff and ω, ω′ ∈ Ω we have
yω ≤ y′ω′ iff ω = ω′ and y ≤ y′ for the Bruhat order on Waff constructed from the Coxeter

system (Waff ,Saff).
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We also have a convolution bifunctor

(11.1) ?L+G : DL+G,L+G × DL+G,Iu → DL+G,Iu

which is also t-exact on both sides for the perverse t-structures, hence induces an

action of the monoidal category (PL+G,L+G, ?
L+G) on PL+G,Iu .

The main result of this section is the following theorem, which was conjectured
by Finkelberg–Mirković, see [FM].

Theorem 11.2. There exists an equivalence of highest weight categories

Φ : PL+G,Iu
∼= Rep〈0〉(G)

which satisfies
Φ(Lw) ∼= L(w • 0)

for any w ∈ fW, and which is an equivalence of module categories for PL+G,L+G and

Rep(G(1)), where the latter two categories are identified via the geometric Satake
equivalence Sat.

11.3. Proof of the Finkelberg–Mirković conjecture. Before giving the proof
of Theorem 11.2, we need to study some objects associated with representations of
G(1). Namely, for any V ∈ Rep(G(1)), the action of Ug on Fr∗(V ) is trivial. We
therefore have an exact functor

HCλ̂,λ̂ → HCλ̂,λ̂

which sends an object M to V ⊗M , where the action of G is diagonal and the left
and right actions of Ug are induced by the actions on M . This functor identifies

with left and right convolution with the object Cλ̂,λ̂(V ⊗ Ug). Similarly we have
functors

DbCohG
(1)

(St∧(1)
m )→ DbCohG

(1)

(St∧(1)
m ),

DbCohG
(1)

(St∧(1))→ DbCohG
(1)

(St∧(1))

of tensoring with V , which identify with convolution with the objects V ⊗O∆G̃∧(1)

and V ⊗O∆g̃∧(1) respectively. It is clear that these functors and objects correspond
under the relevant equivalences of Theorem 9.1.

The identification of the corresponding functors on D∧Iu,Iu (in case V is tilting)
is the subject of the following lemma.

Lemma 11.3. There exists an isomorphism

Θλ̂,λ̂ ◦Z ∧(−) ∼= (−)⊗ O∆G̃∧(1)

of monoidal functors from Tilt(G(1)) to DbCohG
(1)

(St∧(1)
m ).

Proof. It is known that the O(FNT(1)({1}))-modules

HomP∧Iu,Iu
(Ξ∧! , δ

∧) and HomP∧Iu,Iu
(δ∧,Ξ∧! )

are free of rank one, that any generator of the first, resp. second, module is surjec-
tive, resp. injective, and that these morphisms remain so after application of the
functor π† : D∧Iu,Iu → D∧Iu,I. Let us fix generators f1 : Ξ∧! → δ∧ and f2 : δ∧ → Ξ∧! of

these spaces, and set f = f2 ◦ f1. Consider also g1 = Θλ̂,λ̂(f1), g2 = Θλ̂,λ̂(f2) and

g = Θλ̂,λ̂(f) = g2 ◦g1. Then by Proposition 9.4 there exist canonical identifications

Θλ̂,λ̂(δ∧) ∼= OG̃∧(1) , Θλ̂,λ̂(Ξ∧) ∼= O
St
∧(1)
m
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(so that g1 can be considered as a morphism from O
St
∧(1)
m

to OG̃∧(1) , and similarly

for g2 and g) and, for any V ∈ Tilt(G(1)), an identification

Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧) ∼= V ⊗ O
St
∧(1)
m

such that the following diagram commutes:

Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! )

o
��

Θλ̂,λ̂(id?̂f) // Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! )

o
��

V ⊗ O
St
∧(1)
m

id⊗g // V ⊗ O
St
∧(1)
m

.

We claim that there exists a unique morphism

(11.2) Θλ̂,λ̂ ◦Z ∧(V )→ V ⊗ O∆G̃∧(1)

such that the following diagram commutes:

Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! )

o
��

Θλ̂,λ̂(id?̂f1) // Θλ̂,λ̂(Z ∧(V ))

(11.2)

��

Θλ̂,λ̂(id?̂f2) // Θλ̂,λ̂(Z ∧(V ) ?̂ Ξ∧! )

o
��

V ⊗ O
St
∧(1)
m

id⊗g1 // V ⊗ O∆G̃∧(1)
id⊗g2 // V ⊗ O

St
∧(1)
m

,

and that this morphism is an isomorphism. In fact, the functor of convolution with
Z ∧(V ) is t-exact for the perverse t-structure by [BR4, Theorem 7.8(5)], so that

Θλ̂,λ̂(Z ∧(V )) is the image of the morphism Θλ̂,λ̂(id ?̂ f), for the t-structure on

DbCohG
(1)

(St∧(1)
m ) obtained by transporting the perverse t-structure along Θλ̂,λ̂.

On the other hand, by Theorem 9.5 the functor π†π† corresponds, under the equiv-

alence Θλ̂,λ̂, to the composition Li∗ ◦ i∗ where i : St′(1) ↪→ St∧(1) is the natural
embedding. Using the analogous properties for f1 and f2, we deduce that the
latter functor sends the cocone of g1 and the cone of g2 to objects in the heart
of the t-structure. By Theorem 10.7 this t-structure restricts to a t-structure

on DbCohG
(1)

U (St(1)
m ), which moreover is the transport of the perverse coherent

t-structure along the equivalence

DbCohG
(1)

U (St(1)
m )

∼−→ DbHCλ̂,λ̂nil

of Theorem 9.3. The latter equivalence commutes with the functors of tensor-
ing with V on both sides, and this functor is t-exact for the perverse coherent
t-structure. From these remarks we deduce that the image under Li∗ ◦ i∗ of the
cocone of id⊗g1 and of the cone of id⊗g2 are in the heart of our t-structure. Using
standard properties of the perverse t-structure in completed categories (see [BR2,
Lemma 5.3]) it follows that these objects themselves belong to the heart of the
t-structure. Hence V ⊗O∆G̃∧(1) identifies with the image in this t-structure of the
morphism id⊗ g, which implies our claim.

Note that the isomorphism (11.2) does not depend on the choice of f1 and
f2, by compatibility of our constructions with right multiplication by elements in
O(FNT(1)({1})). The functoriality and monoidality of these isomorphisms can be
checked using the characterization in terms of the commutative diagram above. �
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Proof of Theorem 11.2. Recall the category DbCohG0 (g∗(1)) of Remark 10.4. If we
denote by

DbHC0̂,0̂
0

the preimage of DbCohG0 (g∗(1)) under the functor (10.5), we deduce from that

remark that for any M in DbHC0̂,0̂
0 and n ∈ Z we have

Hn+
dim(N)

2 (M) = pcH n(M),

where in the left-hand side we consider cohomology with respect to the tautological

t-structure. Any object of the form k ? M with M ∈ DbHC0̂,0̂ clearly belongs to

DbHC0̂,0̂
0 ; these comments and Lemma 2.17 therefore imply that Rep〈0〉(G) identifies

with the full subcategory of DbHC0̂,0̂
nil whose objects are the complexes of the form

pcH n(k ? M) with M ∈ DbHC0̂,0̂ and n ∈ Z.
On the other hand, it is clear that PL+G,Iu identifies with the full subcategory

of DIu,Iu whose objects are the perverse sheaves of the form

pH n(π†(ICw◦) ?̂F )

for n ∈ Z and F ∈ D∧Iu,Iu . In view of Theorem 10.7, Proposition 11.1 and monoidal-
ity, the equivalence Φ can therefore be obtained by restriction of the equivalence

DIu,Iu
∼−→ DbHC0̂,0̂

nil of Theorem 9.3.
The description of images of simple objects follows from a standard support ar-

gument using the fact that convolution with the object Ξ∧s,! on PL+G,Iu corresponds

to the wall-crossing functor attached to s on Rep〈0〉(G), for any s ∈ Saff .

Finally, we consider compatibility with the actions of Rep(G(1)). Using central-
ity of the functor Z ∧ (see [BR4, Theorem 7.8(4)]), standard properties of convo-
lution, the compatibility of Z ∧ with Gaitsgory’s central functor (see [BR4, Theo-
rem 7.8(1)]), and the fact that the composition of the latter functor with pushfor-
ward to Gr coincides with the equivalence Sat, we see that, for any V ∈ Rep(G(1)),
the functor of right convolution with Z ∧(V ) stabilizes the image of PL+G,Iu , and
identifies with convolution on the left with Sat(V ) in the sense of the bifunc-
tor (11.1). In view of Lemma 11.3, this shows that the diagram

TL+G,L+G × PL+G,Iu

��

// PL+G,Iu

��
Tilt(G(1))× Rep〈0〉(G) // Rep〈0〉(G)

commutes, where the horizontal arrows are the action bifunctors, and the vertical
arrows are induced by Sat and Φ. (Here, TL+G,L+G is the category of tilting objects
in the highest weight category PL+G,L+G.) To “extend” this isomorphism to the

whole of Rep(G(1)) one can proceed as follows. For a fixed F ∈ PIu,L+G, the
commutativity above provides an isomorphism between the functors

KbTL+G,L+G → DbRep〈0〉(G)

obtained on the one hand by applying Sat and tensoring with Φ(F ), and on the
other hand by convolving with F and then applying Db(Φ). (In this discussion
we omit the natural functors from the homotopy category to the derived category.)
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Now by general properties of highest weight categories there exists a canonical
equivalence of monoidal categories

KbTL+G,L+G
∼−→ DbPL+G,L+G;

composing the functors above with the inverse equivalence, and then restricting to
PL+G,L+G we obtain the desired extension. �

Appendix A. Coherent sheaves supported on a subscheme

In this appendix we prove a general statement on coherent sheaves that gener-
alizes [BMR1, Lemma in §3.1.7] and is used in various settings in several places of
the paper.

A.1. Statement. Let k be a commutative ring. Let X be a noetherian k-scheme,
let H be a flat affine group scheme over k acting on X, and let A be an H-
equivariant coherent sheaf of OX -algebras. In other words, A is a (not necessarily
commutative) sheaf of rings on X endowed with a morphism of sheaves of rings
OX → A which takes values in the center of A and makes A a coherent OX -
module, and with a structure of H-equivariant quasi-coherent sheaf (see [MR1,
Appendix] for the definition and references) such that the multiplication morphism
A ⊗OX A → A is a morphism of H-equivariant quasi-coherent sheaves. We can

then consider the abelian category QCohH(X,A ) of H-equivariant quasi-coherent
sheaves on X endowed with a compatible left action of A , and its full abelian
subcategory CohH(X,A ) whose objects are coherent as OX -modules.

Let now Y ⊂ X be an H-stable closed subscheme, corresponding to a quasi-
coherent ideal I ⊂ OX . Recall that a quasi-coherent sheaf F on X is said to be
set-theoretically supported on Y if its restriction to X rY vanishes, or equivalently
if each local section of F is annihilated by a power of I . In particular, a coherent
sheaf F on X is set-theoretically supported on Y iff the multiplication morphism
I n ⊗OX F → F vanishes for n� 0. We will denote by

QCohHY (X,A ) ⊂ QCohH(X,A ), CohHY (X,A ) ⊂ CohH(X,A )

the Serre subcategories of sheaves set-theoretically supported on Y .
Our goal in this section is to prove the following.

Proposition A.1. The obvious functors

DbCohHY (X,A )→ DbCohH(X,A ) and DbQCohHY (X,A )→ DbQCohH(X,A )

are fully faithful; their essential images consist of complexes all of whose cohomology
objects are set-theoretically supported on Y . For the first functor, the essential
image can also be described as the full subcategory whose objects are the complexes
F such that there exists n ≥ 0 such that for any open subscheme U ⊂ X the natural
morphism

Γ(U,I n)→ EndDbCoh(U)(F|U )

vanishes.
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A.2. Preliminaries. First we consider the categories QCohY (X,A ), QCoh(X,A )
as above for the trivial group scheme (which we omit from notation).

Lemma A.2. For any F in QCohY (X,A ), there exists G in QCohY (X,A ) which
is injective in QCoh(X,A ) and an embedding F ↪→ G in QCohY (X,A ).

Proof. This lemma is the main ingredient of the proof in [BMR1, Lemma in §3.1.7].
We repeat its proof for the reader’s convenience.

First, assume that X = Spec(R) is affine (with R a noetherian k-algebra), and
set I := Γ(X,I ) ⊂ R. Then A := Γ(X,A ) is an R-algebra, QCoh(X,A ) identifies
with the category Mod(A) of A-modules, and an object is set-theoretically sup-
ported on Y iff it is I-power torsion as an R-module in the sense of [SP, Tag 05E6].
We will use the notation of [SP, Tag 0ALX] and, for an R-module M , denote by
M [I∞] its maximal I-power torsion submodule, i.e. the submodule consisting of
elements annihilated by a power of I.

Consider the natural forgetful functor

Mod(A)→ Mod(R).

This functor is exact, and admits as right adjoint the “coinduction” functor CoindA
defined by

CoindA(M) = HomR(A,M),

where A acts on HomR(A,M) via right multiplication on A. This coinduction func-
tor therefore sends injective R-modules to injective A-modules. By construction,
it sends R-modules which are I-power torsion to objects of Mod(A) which are I-
power torsion as R-modules. (This claim uses our assumption that A is coherent,
i.e. that A is a finite R-module.) Moreover, if M ∈ Mod(A) and M ′ ∈ Mod(R), the
adjunction isomorphism

HomR(M,M ′)
∼−→ HomA(M,CoindA(M ′))

sends injective morphisms to injective morphisms.
Let M be an A-module which is I-power torsion as an R-module. Consider

an injective R-module Q and an embedding M ↪→ Q. Then if Q′ := Q[I∞], the
morphism M ↪→ Q factors through an embedding M ↪→ Q′, and Q′ is an injective
R-module which is I-power torsion by [SP, Tag 08XW]. By adjunction, from the
morphism M → Q′ we deduce a morphism of A-modules M → CoindA(Q′) which
is injective, and the right-hand side is injective in Mod(A) and I-power torsion as
an R-module; this proves the lemma in this case.

For the general case, we consider a finite affine covering X =
⋃
a Ua. For any a

we denote by ja : Ua → X the embedding; then the (exact) restriction functor

QCoh(X,A )→ QCoh(Ua,A|Ua)

admits as right adjoint the pushforward functor (ja)∗; the latter functor therefore
sends injective objects to injective objects. (Here Ua is a noetherian scheme, see [SP,
Tag 02IK], hence ja is quasi-compact, see [SP, Tag 01P0]. This morphism is also
separated since Ua is affine, see [SP, Tag 01KN]. Hence the functor (ja)∗ sends quasi-
coherent sheaves to quasi-coherent sheaves by [SP, Tag 01LC].) By the case treated
above, there exists Ga ∈ QCoh(Ua,A|Ua) which is set-theoretically supported on
Y ∩ Ua and an embedding F|Ua ↪→ Ga, which by adjunction provides a morphism

https://stacks.math.columbia.edu/tag/05E6
https://stacks.math.columbia.edu/tag/0ALX
https://stacks.math.columbia.edu/tag/08XW
https://stacks.math.columbia.edu/tag/02IK
https://stacks.math.columbia.edu/tag/01P0
https://stacks.math.columbia.edu/tag/01KN
https://stacks.math.columbia.edu/tag/01LC
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F → (ja)∗Ga. Here both sheaves are supported set-theoretically on Y , the direct
sum

F →
⊕
a

(ja)∗Ga

is injective, and the right-hand side is an injective object in QCoh(X,A ). �

Next we generalize Lemma A.2 to the equivariant setting.

Lemma A.3. For any F in QCohHY (X,A ), there exists G in QCohHY (X,A ) which

is injective in QCohH(X,A ) and an embedding F ↪→ G in QCohHY (X,A ).

Proof. Consider the action and projection morphisms

a, p : H ×k X → X.

Then the pullback functor p∗ sends quasi-coherent sheaves to quasi-coherent sheaves
by [SP, Tag 01BG], and so does the functor a∗ by [SP, Tag 01LC]. (Here a is affine,
being the composition of an isomorphism with the affine morphism p; hence it is
quasi-compact and separated by [SP, Tag 01S7].)

The structure we have on A provides an isomorphism of OH×kX -algebras a∗A ∼=
p∗A . The functor p∗ provides an equivalence of categories

QCoh(X,A )
∼−→ QCohH(H ×k X, p∗A ),

and we have a natural pushforward functor

a∗ : QCohH(H ×k X, a∗A )→ QCohH(X,A ).

Standard arguments show that the composition

AvH := a∗ ◦ p∗ : QCoh(X,A )→ QCohH(X,A )

is right adjoint to the (exact) forgetful functor

ForH : QCohH(X,A )→ QCoh(X,A );

this functor therefore sends injective objects in QCoh(X,A ) to injective objects

in QCohH(X,A ). It is also easily seen that AvH sends sheaves set-theoretically
supported on Y to sheaves set-theoretically supported on Y , and that for F in
QCohH(X) and G in QCoh(X) the adjunction isomorphism

HomQCoh(X)(ForH(F ),G ) ∼= HomQCohH(X)(F ,AvH(G ))

sends injective morphisms to injective morphisms. Now by Lemma A.2 there
exists G ′ in QCohY (X,A ) which is injective in QCoh(X,A ) and an embedding
ForH(F ) ↪→ G ′ in QCohY (X,A ). By adjunction we deduce an injective morphism
F ↪→ AvH(G ′), where AvH(G ′) is set-theoretically supported on Y and injective in

QCohH(X,A ). �

A.3. Proof of Proposition A.1. Lemma A.3 and standard arguments (see [Ha,
Chap. I, Proposition 4.8]) imply that the canonical functor

D+QCohHY (X,A )→ D+QCohH(X,A )

is fully faithful. Restricting this functor to complexes with bounded cohomology,
we deduce that the natural functor

DbQCohHY (X,A )→ DbQCohH(X,A )

https://stacks.math.columbia.edu/tag/01BG
https://stacks.math.columbia.edu/tag/01LC
https://stacks.math.columbia.edu/tag/01S7
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is fully faithful. Using the fact that A is a coherent sheaf on the noetherian scheme
X, standard arguments (see e.g. [AriB, §2.2]) show that the natural functors

DbCohH(X,A )→ DbQCohH(X,A ) and DbCohHY (X,A )→ DbQCohHY (X,A )

are fully faithful. We therefore have a diagram

DbCohHY (X,A ) //

��

DbQCohHY (X,A )

��
DbCohH(X,A ) // DbQCohH(X,A )

in which the horizontal and right vertical arrows are fully faithful, which implies
that the left vertical arrow is fully faithful hence finishes the proof of the first claim.

Now that we know that our functors are fully faithful, we deduce that their essen-
tial images are triangulated subcategories. As a consequence, the essential image
of the first, resp. second, functor is the full triangulated subcategory generated by
CohHY (X,A ), resp. QCohHY (X,A ), which clearly coincides with the full subcate-
gory whose objects are the complexes all of whose cohomology objects belong to
CohHY (X,A ), resp. QCohHY (X,A ).

Finally we consider the case of coherent sheaves. Any complex in the essential
image of the functor DbCohHY (X,A ) → DbCohH(X,A ) can be represented by a
bounded complex of coherent sheaves set-theoretically supported on Y , so that for
n large enough the morphism Γ(U,I n)→ EndDbCoh(U)(F|U ) vanishes for any open
subscheme U . On the other hand, if a complex satisfies this condition, then all of
its cohomology sheaves are set-theoretically supported on Y , so that the complex
belongs to the essential image of DbCohHY (X,A ) by the first description of this
essential image.

A.4. A special case. The setting we encounter in the body of the paper is the
following. Let k be a noetherian commutative ring and H a flat affine group scheme
over Spec(k). Let X be a k-scheme of finite type endowed with an action of H;
then X is noetherian by [SP, Tag 01T6]. Let also A be an H-equivariant coherent
sheaf of OX -algebras.

We fix an ideal J ⊂ k, and denote by k∧ the completion of k with respect to J
(a noetherian ring, see [SP, Tag 05GH]). We set

X∧ := X ×Spec(k) Spec(k∧), H∧ := H ×Spec(k) Spec(k∧);

then H∧ is a flat group scheme over Spec(k∧), it acts naturally on X∧, and f
induces a morphism of finite type X∧ → Spec(k∧) (see [SP, Tag 01T4]), so that
again X∧ is a noetherian scheme. We also denote by A ∧ the pullback of A to X∧

(an H∧-equivariant coherent sheaf of OX∧-algebras). Let J∧ be the completion of
the R-module J with respect to J ; then J∧ identifies with the ideal in k∧ generated
by J , see [SP, Tag 031C]. Let also Y ⊂ X, resp. Y ∧ ⊂ X∧, be the pullback of the
closed subscheme in Spec(k), resp. Spec(k∧), defined by J , resp. J∧. We can then
consider the categories

CohHY (X,A ) and CohH
∧

Y ∧ (X∧,A ∧).

Here CohHY (X,A ), resp. CohH
∧

Y ∧ (X∧,A ∧), identifies with the full subcategory of

CohH(X,A ), resp. CohH
∧

(X∧,A ∧), whose objects are the sheaves which are an-
nihilated by a power of J , resp. J∧. Since, for any n ≥ 0, the natural morphism

https://stacks.math.columbia.edu/tag/01T6
https://stacks.math.columbia.edu/tag/05GH
https://stacks.math.columbia.edu/tag/01T4
https://stacks.math.columbia.edu/tag/031C
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k/Jn → k∧/(J∧)n is an isomorphism (see [SP, Tag 031C]), we deduce that the
projection morphism X∧ → X induces an equivalence of categories

CohH
∧

Y ∧ (X∧,A ∧)
∼−→ CohHY (X,A ).

In this setting, Proposition A.1 therefore provides a fully faithful functor

DbCohHY (X,A )→ DbCohH
∧

(X∧,A ∧)

whose essential image is the full subcategory whose objects are the complexes F

all of whose cohomology objects belong to CohH
∧

Y ∧ (X∧,A ∧), or equivalently such
that there exists n ≥ 0 such that the morphism

In → EndDbCohH
∧

(X∧,A ∧)(F )

vanishes.

A.5. Description in terms of a colimit of categories. We come back to the
general setting of §A.1. In the body of the paper we will also require a different de-
scription of the category DbCohHY (X,A ), as follows. For any n ≥ 1 we can consider
the closed subscheme Y [n] ⊂ X determined by the ideal I n; in other words, Y [n]

is the n-th infinitesimal neighborhood of Y in X. The action of H on X restricts
to an action on Y [n], so that we can consider the category CohH(Y [n],A|Y [n]) of

H-equivariant modules over the restriction A|Y [n] of A to Y [n] which are coherent

as OY [n]-modules. For any n ≥ 1 we have a closed immersion Y [n] → Y [n+1], and
the associated pushforward functor

DbCohH(Y [n],A|Y [n])→ DbCohH(Y [n+1],A|Y [n+1]),

and we will consider the colimit category

colimn≥1D
bCohH(Y [n],A|Y [n]).

(Note that the transition functors in this colimit are not fully faithful.) Recall that
an object in this category is a pair (n,F ) where n ≥ 1 and F is an object in

DbCohH(Y [n],A|Y [n]), and that the space of morphisms from (n,F ) to (n′,F ′) is

colimm≥max(n,n′) HomDbCohH(Y [m],A|Y [m] )
(F ,F ′)

where the omit of the pushforward functors under the closed immersions Y [n] →
Y [m] and Y [n′] → Y [m].

Lemma A.4. There exists a canonical equivalence of categories

colimn≥1D
bCohH(Y [n],A|Y [n])

∼−→ DbCohHY (X,A ).

Proof. For any n ≥ 1 the pushforward functor under the closed immersion Y [n] →
X induces a functor DbCohH(Y [n],A|Y [n]) → DbCohHY (X,A ), and taking all of
these functors together provides a functor

F : colimn≥1D
bCohH(Y [n],A|Y [n])→ DbCohHY (X,A ).

It is clear that this functor is essentially surjective. To prove that it is fully faithful
we consider some objects (n,F ) and (n′,F ′) in the colimit category. Replacing
F or F ′ by a pushforward we can (and will) assume that n = n′. A morphism in

DbCohHY (X,A ) from F (F ) to F (F ′) is a diagram

F (F )
f←− G

g−→ F (F ′)

https://stacks.math.columbia.edu/tag/031C
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where G is a bounded complex of objects in CohHY (X,A ) and f, g are morphisms
of complexes in this category, with f a quasi-isomorphism. For m � 0, G is a
complex of objects in CohH(Y [m],A|Y [m]), proving that F is full. On the other

hand, a morphism from (n,F ) to (n,F ′) is a diagram

F
f←− G

g−→ F ′

where G is a bounded complex of objects in CohH(Y [m],A|Y [m]) for some m ≥
n, f, g are morphisms of complexes in this category with f a quasi-isomorphism,
and we omit the pushforward functor under the immersion Y [n] → Y [m]. If the
image of this morphism under F vanishes, by standard considerations (see e.g. [SP,

Tag 04VJ]) there exists a bounded complex H of objects in CohHY (X,A ) and
a quasi-isomorphism h : H → G such that g ◦ h = 0. For m � 0, H is a
complex of objects in CohH(Y [m],A|Y [m]), and then the image of our morphism in

DbCohH(Y [m],A|Y [m]) vanishes, which proves faithfulness. �

Appendix B. Equivariant modules

In this appendix we prove some generalities on categories of equivariant modules
over equivariant algebras. These results (and their proofs) are very similar to those
discussed in [MR1, Appendix A].

B.1. Morphisms and invariants. Let k be a noetherian commutative ring, let A
be a left noetherian k-algebra, and let H be a flat affine group scheme over k acting
on A by algebra automorphisms. Consider the categories ModH(A), ModHfg(A) of
H-equivariant A-modules and finitely generated H-equivariant A-modules. Since
A is noetherian, standard arguments (as e.g. in [AriB, §2.2]) show that the natural
functor

DbModHfg(A)→ DbModH(A)

is fully faithful.
It is a standard fact that the forgetful functor

ForH : ModH(A)→ Mod(A)

admits a right adjoint

AvH : Mod(A)→ ModH(A);

explicitly this functor sends an A-module M to the H-module IndH{1}(M) = M ⊗k
O(H), seen as the H-module of algebraic functions H → M (with the action
induced by multiplication on the right on H), with the action of A given by (a ·
ϕ)(h) = (h · a) · ϕ(h). In other words, as an A-module, IndH{1}(M) is obtained

from the A ⊗k O(H)-module M ⊗k O(H) (with the obvious action) by restriction
of scalars along the algebra morphism A → A ⊗k O(H) sending a to the function
h 7→ h · a (i.e. the coaction morphism). In particular, this fact implies that the

category ModH(A) has enough injectives; in fact any injective object is a direct
summand in an object of the form AvH(M) with M an injective A-module. This
fact implies that we can consider the derived bifunctor

(B.1) RHomModH(A) : D−ModH(A)×D+ModH(A)→ D+Mod(k).

Lemma B.1. If M ∈ ModHfg(A) and if N ∈ ModH(A) is injective, then we have

ExtnMod(A)(M,N) = 0

https://stacks.math.columbia.edu/tag/04VJ
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for any n > 0.

Proof. By the comments above we can assume that N = AvH(N ′) for some injective
A-module N ′. Since A⊗kO(H) is flat over A (for the action induced by the coaction
morphism as above) we have

ExtnA(M,N) = ExtnA(M,AvH(N ′))

∼= ExtnA⊗kO(H)((A⊗k O(H))⊗AM,N ′ ⊗k O(H)).

Now we have an isomorphism of A⊗k O(H)-modules

(A⊗k O(H))⊗AM
∼−→M ⊗k O(H)

(where on the right-hand side we consider the obvious module structure), given in
Sweedler’s notation by

(a⊗ ϕ)⊗m 7→ (a ·m(1))⊗ ϕm(2).

We deduce isomorphisms

ExtnA⊗kO(H)((A⊗k O(H))⊗AM,N ′ ⊗k O(H))

∼= ExtnA⊗kO(H)(M ⊗k O(H), N ′ ⊗k O(H))

∼= ExtnA(M,N ′ ⊗k O(H))

where now A acts on N ′ ⊗k O(H) via the restriction of the action of A ⊗k O(H)
along the obvious algebra morphism A→ A⊗k O(H); in other words the action is
induced by the action on N ′.

For this action, N ′ ⊗k O(H) is injective as an A-module. In fact, by Baer’s
criterion, to prove this it suffices to prove that for any left ideal I ⊂ A the map

HomA(A,N ′ ⊗k O(H))→ HomA(I,N ′ ⊗k O(H))

is surjective. However A and I are finitely generated A-modules and O(H) is flat
over k, so that by [BR3, Lemma 3.8(i)] these spaces identify with HomA(A,N ′)⊗k
O(H) and HomA(I,N ′) ⊗k O(H) respectively, in such a way that the map above
is induced by the similar map HomA(A,N ′) → HomA(I,N ′). We conclude by
injectivity of N ′ as an A-module and flatness of O(H). �

As explained e.g. in [BR3, Lemma 3.8(ii)], for M in ModHfg(A) and N in ModH(A)
the k-module HomA(M,N) admits a canonical H-module structure. If M is a

bounded complex of objects in ModHfg(A), we can therefore consider the functor

Hom•A(M,−) : C+ModH(A)→ C+Rep∞(H).

Since ModH(A) has enough injectives this functor admits a derived functor, which
will be denoted

RHomA(M,−) : D+ModH(A)→ D+Rep∞(H);

this notation is justified by the fact that, by Lemma B.1, the underlying com-
plex of k-modules of RHomA(M,N) is the complex RHomA(ForH(M),ForH(N)).

Note that for any M ′ in CbModHfg(A) and any quasi-isomorphism M → M ′, the
induced morphism RHomA(M ′, N) → RHomA(M,N) is an isomorphism, so that
this construction provides a bifunctor

DbModHfg(A)×D+ModH(A)→ D+Rep∞(H).



ON TWO MODULAR GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA103

Now we consider the functor of H-invariants (−)H , and denote its derived functor
by

InvH : D+Rep∞(H)→ D+Mod(k).

(This functor exists because Rep∞(H) has enough injectives.)

Lemma B.2. For any M ∈ DbModHfg(A) and N ∈ D+ModH(A), there exists a
canonical (in particular, bifunctorial), isomorphism

RHomModH(A)(M,N)
∼−→ InvH ◦RHomA(M,N).

Proof. As explained in [BR3, Lemma 3.8(ii)], forM in ModHfg(A) andN in ModH(A)
there exists a canonical isomorphism

HomModH(A)(M,N)
∼−→ (HomA(M,N))H .

By standard properties of derived functors, we deduce a bifunctorial morphism

RHomModH(A)(M,N)→ InvH ◦RHomA(M,N)

for M,N as in the lemma. To prove that this morphism is an isomorphism, it
suffices to prove that if M ∈ ModHfg(A) and N is an injective object of ModH(A)
we have

Hn(InvH(HomA(M,N)) = 0

for all n > 0. Here we can assume that N = AvH(N ′) for some injective A-module
N ′. Then as in the proof of Lemma B.1 we have

HomA(M,N) ∼= HomA(M,N ′ ⊗k O(H)) ∼= HomA(M,N ′)⊗k O(H),

where the second isomorphism uses [BR3, Lemma 3.8(i)]. The desired claim there-
fore follows from [J2, Lemma I.4.7]. �

B.2. Extension of scalars. Let now k′ be another noetherian commutative ring,
and consider the data A′ := k′ ⊗k A, H ′ := Spec(k′) ×Spec(k) H obtained by base
change. We will make the following assumptions:

(1) A is flat over k;
(2) A′ is noetherian;
(3) k has finite global dimension;
(4) for any M ∈ Rep(H), there exists an object M ′ ∈ Rep(H) which is flat over

k and a surjection M ′ �M .

The assumption (4) is subtle, as discussed (in a more general setting) in [Th]. Note
that by [Th, Corollary 2.9], it is satisfied at least if H is a split reductive group
scheme over k.

Let us note the following consequence of (4).

Lemma B.3. For any M ∈ ModHfg(A), resp. M ∈ ModH(A), there exists an object

M ′ ∈ ModHfg(A), resp. M ′ ∈ ModH(A), which is flat over A and a surjection
M ′ �M .

Proof. It suffices to prove the claim for finitely generated modules; the general case
then follows by the same considerations as in [Th, §2.2]. Let M ∈ ModHfg(A), and
let M ′ ⊂ M be an H-stable finitely generated k-submodule which generates M as
an A-module. (Such a submodule exists by [J2, I.2.13(3)].) By assumption there
exists N ′ ∈ Rep(H) which is flat over k and a surjection N � M ′. Then A ⊗k N
is naturally an object of ModHfg(A) which is flat as an A-module, and the natural
morphism A⊗k N →M is surjective. �
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Consider the categories ModH(A), ModHfg(A) and ModH
′
(A′), ModH

′

fg (A′), and
the natural functor

(B.2) ModH(A)→ ModH
′
(A′)

given by M 7→ A′ ⊗A M = k′ ⊗k M . By Lemma B.3, any M ∈ ModH(A) is a

quotient of an object of ModH(A) which is flat as an A-module. (Moreover, in case
M is finitely generated, this module can be taken to be finitely generated too.) It
follows that the functor (B.2) has a derived functor

D−ModH(A)→ D−ModH
′
(A′)

such that the diagram

D−ModH(A) //

ForH

��

D−ModH
′
(A′)

ForH

��
D−Mod(A)

A′⊗LA(−) // D−Mod(A′)

commutes. This functor will therefore also be denoted A′ ⊗LA (−). It restricts to a
functor

D−ModHfg(A)→ D−ModH
′

fg (A′)

Since A is flat over k (see Assumption (1)), the underlying complex of k′-modules
of A′ ⊗LAM is k′ ⊗Lk M ; by our assumption (3) this implies that the functor above
restricts to a functor

DbModH(A)→ DbModH
′
(A′),

hence also to a functor

DbModHfg(A)→ DbModH
′

fg (A′).

Consider now the bifunctor (B.1), and its analogue for A′.

Lemma B.4. For any M ∈ DbModHfg(A) and N ∈ D+ModH(A), we have a canon-
ical isomorphism

k′
L
⊗k RHomModH(A)(M,N)

∼−→ RHomModH
′
(A′)(A

′ L⊗AM,A′
L
⊗A N).

Proof. By Lemma B.2, for M,N as in the lemma there exists a canonical isomor-
phism

k′
L
⊗k RHomModH(A)(M,N) ∼= k′

L
⊗k
(
InvH ◦RHomA(M,N)

)
.

Using [MR1, Proposition A.8] we deduce a canonical isomorphism

k′
L
⊗k RHomModH(A)(M,N) ∼= InvH

′
(
k′

L
⊗k RHomA(M,N)

)
,

where in the right-hand side we consider the derived extension-of-scalars functor for
H-modules (which is well defined thanks to our assumption (4)). Now, as in [SP,
Tag 0A6A] we have a canonical isomorphism

k′
L
⊗k RHomA(M,N) ∼= RHomA′(A

′ L⊗AM,A′
L
⊗A N)

in D+Rep∞(H ′). The claim then follows from another application of Lemma B.2.
�

https://stacks.math.columbia.edu/tag/0A6A
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