Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices - Archive ouverte HAL
Article Dans Une Revue Abstract and Applied Analysis Année : 2014

Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices

Résumé

We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D 2 k ( n ) = ( 1 / 4 ) σ 2 k + 1,0 ( n ; 2 ) - 2 · 4 2 k σ 2 k + 1 ( n / 4 ) - ( 1 / 2 ) [ ∑ d | n , d ≡ 1 ( 4 ) { E 2 k ( d ) + E 2 k ( d - 1 ) } + 2 2 k ∑ d | n , d ≡ 1 ( 2 ) E 2 k ( ( d + ( - 1 ) ( d - 1 ) / 2 ) / 2 ) ] , U 2 k ( p , q ) = 2 2 k - 2 [ - ( ( p + q ) / 2 ) E 2 k ( ( p + q ) / 2 + 1 ) + ( ( q - p ) / 2 ) E 2 k ( ( q - p ) / 2 ) - E 2 k ( ( p + 1 ) / 2 ) - E 2 k ( ( q + 1 ) / 2 ) + E 2 k + 1 ( ( p + q ) / 2 + 1 ) - E 2 k + 1 ( ( q - p ) / 2 ) ] , and F 2 k ( n ) = ( 1 / 2 ) { σ 2 k + 1 † ( n ) - σ 2 k † ( n ) } . As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.
Fichier principal
Vignette du fichier
289187.pdf (2.78 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04463998 , version 1 (04-04-2024)

Identifiants

Citer

Daeyeoul Kim, Abdelmejid Bayad, Joongsoo Park. Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices. Abstract and Applied Analysis, 2014, 2014, pp.1-6. ⟨10.1155/2014/289187⟩. ⟨hal-04463998⟩
22 Consultations
14 Téléchargements

Altmetric

Partager

More