Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
Résumé
We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D 2 k ( n ) = ( 1 / 4 ) σ 2 k + 1,0 ( n ; 2 ) - 2 · 4 2 k σ 2 k + 1 ( n / 4 ) - ( 1 / 2 ) [ ∑ d | n , d ≡ 1 ( 4 ) { E 2 k ( d ) + E 2 k ( d - 1 ) } + 2 2 k ∑ d | n , d ≡ 1 ( 2 ) E 2 k ( ( d + ( - 1 ) ( d - 1 ) / 2 ) / 2 ) ] , U 2 k ( p , q ) = 2 2 k - 2 [ - ( ( p + q ) / 2 ) E 2 k ( ( p + q ) / 2 + 1 ) + ( ( q - p ) / 2 ) E 2 k ( ( q - p ) / 2 ) - E 2 k ( ( p + 1 ) / 2 ) - E 2 k ( ( q + 1 ) / 2 ) + E 2 k + 1 ( ( p + q ) / 2 + 1 ) - E 2 k + 1 ( ( q - p ) / 2 ) ] , and F 2 k ( n ) = ( 1 / 2 ) { σ 2 k + 1 † ( n ) - σ 2 k † ( n ) } . As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.
Domaines
Théorie des nombres [math.NT]Origine | Publication financée par une institution |
---|