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3Woosuk University, Samlae, Wanju, Jeonbuk 565-701, Republic of Korea

Correspondence should be addressed to Joongsoo Park; jspark0365@gmail.com

Received 30 May 2014; Accepted 29 July 2014; Published 27 August 2014

Academic Editor: Elena Litsyn

Copyright © 2014 Daeyeoul Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear
combination of divisor functions and Euler polynomials and obtain identities 𝐷
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As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.

1. Statement of Main Theoretical Results

Bernoulli polynomials 𝐵
𝑛
(𝑥) and Euler polynomials 𝐸

𝑛
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are usually defined by means of the following generating
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Fall

Figure 1: MCD tree.

and also by the recent development on the convolution
sums. In this paper, we investigate the three combinatoric
convolution sums with “even indices.” Consider

𝐷
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where ( 2𝑘
𝑎,𝑏,𝑐,𝑑

) = (2𝑘)!/𝑎!𝑏!𝑐!𝑑! with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 2𝑘. Now,
we state our main results.

Theorem 1. For any positive integers 𝑘 ≥ 1 and 𝑛 ≥ 2, one has
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Corollary 2. Let 𝑘 ≥ 4 be integer and 𝑝 and 𝑞 primes with
𝑝 ≡ 𝑞 ≡ −1(mod 4). Then one has
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Theorem 3. For any positive integers 𝑘 ≥ 1 and 𝑛 ≥ 2, one has
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†

2𝑘
(𝑛)} . (10)

Theorem 3 can be obtained by [5, 6]. Therefore, we omit
the proof.

2. Application and Perspective

2.1. Branch and Leaves Pattern. In real-time virtual system,
realistic and efficient generation and expression of plants
composing a broad terrain is a continuing problem [7, 8].
The procedural modelling method using convolution sums
of divisor functions (MCD) was suggested for a variety of
natural trees in a virtual ecosystem [9]. The basic structure
of MCD is that it defines the growth grammar including the
branch propagation, a growth pattern of branches and leaves,
and a process of growth deformation for various generations
of tree. In Figure 1, we illustrate theMCD for the divisor trees.

For more examples see [10]. Theorems 1 and 3 give us
basic background for efficient and diverse generations and
expressions of trees composing virtual ecosystemor real-time
animation processing. In order to apply MCD to the growth
structure of a tree model, (5) is modified and expressed in

𝑙

∑

𝑟=0

(
2𝑙

2𝑟
)

𝑁−1

∑

𝑘−1

𝐷
𝑖
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𝑖
(𝑥, 𝑦) 𝑘)𝐷

𝑖
(𝐿
𝑖
(𝑥, 𝑦) (𝑁 − 𝑘)) , (11)

where𝐷 represents various divisor functions, 𝑖 is the current
growth step (𝑔

𝑠
), and 𝑁 − 1 is the final iteration number of

the 𝑖th growth step. Here, 𝐷𝑖(𝐵𝑖(𝑥, 𝑦)𝑘) is a divisor function
that determines the pattern of the number of branches and
𝐷
𝑖
(𝐿
𝑖
(𝑥, 𝑦)(𝑁 − 𝑘) is a divisor function that determines the

number of leaves with 𝑙+1 different types of trees and grasses
in the virtual system. Further, 𝐵𝑖(𝑥, 𝑦), 𝐿𝑖(𝑥, 𝑦) are the 𝑖th
exponential function of branches and leaves. Through this
model, we verified the possibility of natural and efficient tree
growth [9, 11]. We approximately fix a certain tree model for
MCD satisfying the patterns of branch and leaves in virtual
system or real tree wood; then using formulae (8), (9), and
(10), we obtain the approximate total number for MCD trees
leaves by taking two kinds of trees with approximate MCD
(Theorem 3), that is, branch pattern 𝐵

𝑖
(𝑥, 𝑦) = 𝜎

†

0
(resp., 𝜎†

2
)

and leaves pattern 𝐿
𝑖
(𝑥, 𝑦) = 𝜎

†

2
(resp., 𝜎†

0
). We give the first

eleven values of the approximate total number 𝑇(𝑛) for MCD
tree leaves with 𝑛 − 1 steps (see Table 1).
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Table 1

𝑛 2 3 4 5 6 7 8 9 10 11 12
𝑇(𝑛) 2 10 24 50 96 148 224 342 452 606 832

𝜎(1)𝜎(1)

𝜎(1)𝜎(2) 𝜎(2)𝜎(1)

𝜎(1)𝜎(3) 𝜎(2)𝜎(2) 𝜎(3)𝜎(1)

𝜎(1)𝜎(4) 𝜎(2)𝜎(3) 𝜎(3)𝜎(2) 𝜎(4)𝜎(1)

𝜎(1)𝜎(5) 𝜎(2)𝜎(4) 𝜎(3)𝜎(3) 𝜎(4)𝜎(2) 𝜎(5)𝜎(1)

...

C
ol

or
 v

ar
ia

tio
n 

ste
p

N

Convolution sums of divisor function

Figure 2: Color of leaves.

2.2. Color of Leaves. Leaves are important elements that
constitute plants [12]. In [13] we see the leaves model of
convolution sumof divisor functions. First, we fix the random
color variation step 𝑁 and then we compute convolution
sums by use of (6) as shown in Figure 2.We denote by (𝑓

𝑠
, 𝑓
𝑑
)

the start and destination colors; output colors in phase are
determined by interpolating convolution sums. Next, based
on the minimum and maximum values of the elements of
convolution sums of divisor functions, normalized weighted
values between 0 and 1 are calculated and then each color
table is organized as follows:

𝑡 =
𝑑 − 𝑑min

𝑑max − 𝑑min
,

𝑓 = (1 − 𝑡) 𝑓
𝑠
+ 𝑓
𝑑
𝑡,

𝑑step =

(𝑐
max
𝑛

− 𝑐
min
𝑛

)

𝑑size
+ 1,

𝑖𝑑𝑥 =

(𝑐
𝑖𝑗

𝑛
− 𝑐

min
𝑛

)

𝑑step
,

(12)

𝑐
𝑖𝑗

leaf = 𝑐
𝑖𝑑𝑥

𝑑
. (13)

The noisemap that utilizes Perlin noise is used in the creation
of cloud textures for soft color changes. Here, 𝑑size is the
number of values that are not duplicated among the elements
of convolution sums calculated in the selected table; 𝑐max

𝑛
,

𝑐
min
𝑛

are the maximum and minimum noise values; and
𝑑step indicates the section of noise values influenced by a
single element of convolution sums. Once these parameters

are fixed, the leaf color is determined by finding the index
“𝑖𝑑𝑥” and the corresponding color “𝑐𝑖𝑑𝑥

𝑑
” in the color table

comprised of divisor functions that correspond to the noise
color in 𝑖th row and 𝑗th column [13]. Figure 2 represents the
image of a color table set created by calculating the color table
of each section. Theorem 1 gives the number of values of leaf
color and Theorem 3 gives pattern of branch and leaves in
the same model. In real-time ecosystem, efficient and fast
time is requested. When 𝑛 is large, the MCD that uses (7)
is complicate to compute directly in reasonable time. Our
results (8), (9), and (10) give simple formulas for efficient time
for them. In the forthcoming papers, we will investigate more
applications of real-time virtual ecosystem.

2.3. Proof of Main Results. To prove Theorem 1, we establish
Lemmas 4, 6, 7, and 9 and Corollary 5 and we recall
Proposition 8.

Lemma 4. Let 𝑘 ≥ 1. Set 𝐵
𝑘
:= ∑
𝑘

𝑗=0
(
𝑘

𝑗 ) 2
𝑗
𝐵
𝑗
= 2
𝑘
𝐵
𝑘
(1/2).

Then one has

𝐵
2𝑘+1

(
𝑑 + 1

2
) =

1

22𝑘+1

𝑘

∑

𝑖=0

(
2𝑘 + 1

2𝑖 + 1
)𝐵
2𝑘−2𝑖

𝑑
2𝑖+1

. (14)

Proof. By formula (4) we obtain

𝐵
2𝑘+1

(
1 + 𝑑

2
) − 𝐵

2𝑘+1
(
1 − 𝑑

2
)

=
1

22𝑘

𝑘

∑

𝑖=0

(
2𝑘 + 1

2𝑖
) 𝐵
2𝑖
(
1

2
) 2
2𝑖
𝑑
2𝑘+1−2𝑖

.

(15)

By (15) and (1) we get the lemma.
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By [14, Theorem 3] and Lemma 4 we get the corollary.

Corollary 5. Let 𝑘 ≥ 1 and 𝑛 ≥ 2. Then

𝑘−1

∑

𝑠=0

(
2𝑘

2𝑠 + 1
)

𝑛−1

∑

𝑚=1

𝜎
2𝑘−2𝑠−1,1

(𝑚; 2) 𝜎
2𝑠+1,1

(𝑛 − 𝑚; 2)

= 2
2𝑘−1

𝜎
2𝑘+1

(
𝑛

2
) +

2
2𝑘

2𝑘 + 1
∑

𝑑|𝑛

𝑑 𝑜𝑑𝑑

𝐵
2𝑘+1

(
𝑑 + 1

2
) .

(16)

Lemma 6. For any integers 𝛼 and 𝑘 ≥ 1, one has

∑

𝑢,V,𝑤≥0
(

𝑘

𝑢, V, 𝑤) (4𝛼 + 1)
𝑢
(−1)
𝑤
4
V
𝐵V = 4

𝑘
𝐵
𝑘
(𝛼) , (17)

2

2𝑘 + 1
∑

𝑢,V,𝑤≥0
(

2𝑘 + 1

𝑢, 2V, 𝑤) (4𝛼 + 1)
𝑢
(−1)
𝑤
4
2V−1

𝐵
2V

=
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(𝛼) + (4𝛼)
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.

(18)

Proof. Write the series as follows:

∞

∑

𝑘=0

𝑡
𝑘
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{ ∑

𝑢+V+𝑤=𝑘
(
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4
V
𝐵V}
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∞
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𝑢 𝑡
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∞

∑
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𝐵V
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V

V!
)

× (

∞

∑
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(−1)
𝑤 𝑡
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)
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) (
4𝑡

𝑒4𝑡 − 1
) (𝑒
−𝑡
) =

∞

∑

𝑘=0

(4𝑡)
𝑘
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𝐵
𝑘
(𝛼)

=

∞

∑

𝑘=0

𝑡
𝑘

𝑘!
(4
𝑘
𝐵
𝑘
(𝛼)) .

(19)

This completes the proof of (17). On the other hand, (18) may
be rewritten as

2

2𝑘 + 1
∑

𝑢+2V+𝑤=2𝑘+1
(

2𝑘 + 1

𝑢, 2V, 𝑤) (4𝛼 + 1)
𝑢
(−1)
𝑤
4
2V−1

𝐵
2V

=
2

2𝑘 + 1

× ∑
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(
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𝑢
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𝑤
4
V−1

𝐵V

−
2

2𝑘 + 1
∑
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(
2𝑘 + 1

𝑢, 1, 𝑤
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𝑢
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𝑤
4
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𝐵
1
.

(20)

From (17) we obtain
2

2𝑘 + 1
∑

𝑢+2V+𝑤=2𝑘+1
(

2𝑘 + 1
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𝐵
2V

=
1

2 (2𝑘 + 1)
∑
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𝑢
(−1)
𝑤
4
V
𝐵V

+

2𝑘

∑

𝑗=0

(
2𝑘

𝑗
) (−1)

𝑗
(4𝛼 + 1)

2𝑘−𝑗

=
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(𝛼) + (4𝛼)
2𝑘
.

(21)

This completes the proof of the lemma.

Lemma 7. For any integers 𝑘 ≥ 1 and 𝑛 ≥ 2, one has

−
2

2𝑘 + 1
∑

𝑢,V,𝑤≥0
(

2𝑘 + 1

𝑢, 2V, 𝑤) (−1)
𝑤
4
2V−1

𝐵
2V𝜎
††

𝑢
(𝑛)

= − ∑

𝑑|𝑛

𝑑≡1 (4)

(
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(
𝑑 − 1

4
) + (𝑑 − 1)

2𝑘
)

+ ∑

𝑑|𝑛

𝑑≡−1 (4)

(
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(−
𝑑 + 1

4
) + (𝑑 + 1)

2𝑘
) .

(22)

Proof. We observe that

−
2

2𝑘 + 1
∑

𝑢,V,𝑤≥0
(

2𝑘 + 1

𝑢, 2V, 𝑤) (−1)
𝑤
4
2V−1

𝐵
2V𝜎
††

𝑢
(𝑛)

= −
2

2𝑘 + 1
∑

4𝛼+1|𝑛

(
2𝑘 + 1

𝑢, 2V, 𝑤) (−1)
𝑤
4
2V−1

× 𝐵
2V(4𝛼 + 1)

𝑢

+
2

2𝑘 + 1
∑

4𝛼−1|𝑛

(
2𝑘 + 1

𝑢, 2V, 𝑤) (−1)
𝑤
4
2V−1

𝐵
2V(−4𝛼 + 1)

𝑢
.

(23)

From (18), we get

− ∑

4𝛼+1|𝑛

(
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(𝛼) + (4𝛼)
2𝑘
)

+ ∑

4𝛼−1|𝑛

(
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(−𝛼) + (4𝛼)
2𝑘
)

= − ∑

𝑑|𝑛,𝑑≡1 (4)

(
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(
𝑑 − 1

4
) + (𝑑 − 1)

2𝑘
)

+ ∑

𝑑|𝑛,𝑑≡−1 (4)

(
2 ⋅ 4
2𝑘

2𝑘 + 1
𝐵
2𝑘+1

(−
𝑑 + 1

4
) + (𝑑 + 1)

2𝑘
) .

(24)

We then get lemma.
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We recall Proposition 8 to be modified in Lemma 9.

Proposition 8 (see [15]). Let 𝑁 ≥ 3, 1 ≤ 𝑖 ≤ 𝑁 − 1, and
𝑛, 𝑘 ∈ N. One has

2𝑘

∑

𝑠=0

(
2𝑘

𝑠
) (−1)

𝑠

𝑛−1

∑

𝑚=1

𝜎
♭

2𝑘−𝑠
(𝑚; 𝑖,𝑁) 𝜎

♭

𝑠
(𝑛 − 𝑚; 𝑖,𝑁)

= −2𝑁
2𝑘
𝜎
2𝑘+1

(
𝑛

𝑁
) −

2𝑘

∑

𝑢=0

(
2𝑘

𝑢
) (−𝑖)

2𝑘−𝑢
𝜎
♭

𝑢
(𝑛; 𝑖, 𝑁)

−
2

2𝑘 + 1

× ∑

𝑢,V,𝑤∈N∪{0}
(

2𝑘 + 1

𝑢, 2V, 𝑤)𝑁
2V−1

𝐵
2V(−𝑖)

𝑤
𝜎
♭

𝑢
(𝑛; 𝑖, 𝑁) ,

(25)

where 𝜎♭
𝑟
(𝑛; 𝑖, 𝑁) := ∑ 𝑑|𝑛

𝑑≡𝑖 (𝑁)

𝑑
𝑟
− (−1)

𝑟
∑ 𝑑|𝑛

𝑑≡−𝑖 (𝑁)

𝑑
𝑟.

Using Lemma 7, we modify Proposition 8 as follows.

Lemma 9. For any 𝑛, 𝑘 ∈ N one has

2𝑘

∑

𝑠=0

(
2𝑘

𝑠
) (−1)

𝑠

𝑛−1

∑

𝑚=1

𝜎
††

2𝑘−𝑠
(𝑚) 𝜎
††

𝑠
(𝑛 − 𝑚)

= −2 ⋅ 4
2𝑘
𝜎
2𝑘+1

(
𝑛

4
) +

2 ⋅ 4
2𝑘

2𝑘 + 1

× (− ∑

𝑑|𝑛,𝑑≡1 (4)

𝐵
2𝑘+1

(
𝑑 − 1

4
)

+ ∑

𝑑|𝑛,𝑑≡−1 (4)

𝐵
2𝑘+1

(−
𝑑 + 1

4
))

+ 2(− ∑

𝑑|𝑛,𝑑≡1 (4)

(𝑑 − 1)
2𝑘

+ ∑

𝑑|𝑛,𝑑≡−1 (4)

(𝑑 + 1)
2𝑘
) .

(26)

Proof. First, we check that

2𝑘

∑

𝑢=0

(
2𝑘

𝑢
) (−1)

2𝑘−𝑢
𝜎
††

𝑢
(𝑛)

=

2𝑘

∑

𝑢=0

(
2𝑘

𝑢
) (−1)

2𝑘−𝑢

× ( ∑

𝑑|𝑛,𝑑≡1 (4)

𝑑
𝑢
− (−1)

𝑢
∑

𝑑|𝑛,𝑑≡−1 (4)

𝑑
𝑢
)

= ∑

𝑑|𝑛,𝑑≡1 (4)

(𝑑 − 1)
2𝑘

− ∑

𝑑|𝑛,𝑑≡−1 (4)

(𝑑 + 1)
2𝑘
.

(27)

From Lemma 7 and Proposition 8, our claim follows.

To end the proof of Theorem 1, we observe that

𝐷
2𝑘

(𝑛) =

2𝑘

∑

𝑠=0

(
2𝑘

𝑠
) (−1)

𝑠

𝑛−1

∑

𝑚=1

𝜎
††

2𝑘−𝑠
(𝑚) 𝜎
††

𝑠
(𝑛 − 𝑚)

+

𝑘−1

∑

𝑠=0

(
2𝑘

2𝑠 + 1
)

×

𝑛−1

∑

𝑚=1

𝜎
2𝑘−2𝑠−1,1

(𝑚; 2) 𝜎
2𝑠+1,1

(𝑛 − 𝑚; 2) .

(28)

Comparing Corollary 5 and Lemma 9, we see that

𝐷
2𝑘

(𝑛) =
1

4
𝜎
2𝑘+1,0

(𝑛; 2) − 2 ⋅ 4
2𝑘
𝜎
2𝑘+1

(
𝑛

4
)

− 2 ∑

𝑑|𝑛,𝑑≡1 (2)

(−1)
(𝑑−1)/2

(𝑑 − (−1)
(𝑑−1)/2

)
2𝑘

+
2
2𝑘

2𝑘 + 1

× [ ∑

𝑑|𝑛,𝑑≡1 (4)

𝐵
2𝑘+1

(
𝑑 + 1

2
)

+ ∑

𝑑|𝑛,𝑑≡−1 (4)

𝐵
2𝑘+1

(
𝑑 + 1

2
)

− 2
2𝑘+1

∑

𝑑|𝑛,𝑑≡1 (4)

𝐵
2𝑘+1

(
𝑑 − 1

4
)

−2
2𝑘+1

∑

𝑑|𝑛,𝑑≡−1 (4)

𝐵
2𝑘+1

(
𝑑 + 5

4
)] .

(29)

From (3) we have

𝐷
2𝑘

(𝑛)

=
1

4
𝜎
2𝑘+1,0

(𝑛; 2) − 2 ⋅ 4
2𝑘
𝜎
2𝑘+1

(
𝑛

4
)

− 2 ∑

𝑑|𝑛,𝑑≡1 (2)

(−1)
(𝑑−1)/2

(𝑑 − (−1)
(𝑑−1)/2

)
2𝑘

+
2
2𝑘

2𝑘 + 1

× [ ∑

𝑑|𝑛,𝑑≡1 (4)

{𝐵
2𝑘+1

(
𝑑 − 1

2
) − 2
2𝑘+1

𝐵
2𝑘+1

(
𝑑 − 1

4
)}

+ ∑

𝑑|𝑛

𝑑≡−1 (4)

{𝐵
2𝑘+1

(
𝑑 + 1

2
) − 2
2𝑘+1

𝐵
2𝑘+1

(
𝑑 + 1

4
)}
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+ ∑

𝑑|𝑛,𝑑≡1 (4)

(2𝑘 + 1) (
𝑑 − 1

2
)

2𝑘

− ∑

𝑑|𝑛,𝑑≡−1 (4)

2 (2𝑘 + 1) (
𝑑 + 1

2
)

2𝑘

] .

(30)

By (2) and (3) we get the theorem.

Proof of Corollary 2. From ([16, page 150]) we can derive

𝑘−1

∑

𝑟=1

(
2𝑘

2𝑟
)𝐸
2𝑟

(𝑥) 𝐸
2𝑘−2𝑟

(𝑦)

= (1 − 𝑥 − 𝑦) 𝐸
2𝑘

(𝑥 + 𝑦) + 𝐸
2𝑘+1

(𝑥 + 𝑦)

+ (𝑦 − 𝑥) 𝐸
2𝑘

(𝑦 − 𝑥) − 𝐸
2𝑘+1

(𝑦 − 𝑥)

− 𝐸
2𝑘

(𝑥) − 𝐸
2𝑘

(𝑦) .

(31)

We set 𝑥 = (𝑝 + 1)/2 and 𝑦 = (𝑞 + 1)/2 in (31) and get the
corollary.
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