ALGEBRAIC GROMOV’S ELLIPTICITY OF CUBIC HYPERSURFACES
Résumé
We show that every smooth cubic hypersurface $X$ in ${\mathbb P}^{n+1}$, $n \ge 2$ is algebraically elliptic in Gromov’s sense. This gives the first examples of non-rational projective manifolds elliptic in Gromov’s sense. We also deduce that the punctured affine cone over X is elliptic.
Mots clés
spray, Gromov’s ellipticity, unirationality, stable rationality, cubic threefold, cubic hypersurface, affine cone.
spray Gromov's ellipticity unirationality stable rationality cubic threefold cubic hypersurface affine cone. 2020 Mathematics Subject Classification. Primary 14J30 14J70 14M20; Secondary 14N25 32Q56
spray
Gromov's ellipticity
unirationality
stable rationality
cubic threefold
cubic hypersurface
affine cone. 2020 Mathematics Subject Classification. Primary 14J30
14J70
14M20; Secondary 14N25
32Q56
Domaines
Géométrie algébrique [math.AG]
Fichier principal
Gromov ellipticity vs rationality (1).pdf (299.63 Ko)
Télécharger le fichier
Gromov ellipticity vs rationality.pdf (172.14 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|