Automata Based Multivariate Time Series Analysis for Anomaly Detection over Sliding Time Windows - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Automata Based Multivariate Time Series Analysis for Anomaly Detection over Sliding Time Windows

Résumé

We describe an optimal linear time complexity method for extracting patterns from sliding windows of multivariate time series that depends only on the length of the time series. The method is implemented as an open-source Java library and is used to detect anomalies in multivariate time series.
Fichier principal
Vignette du fichier
engproc-39-00065.pdf (2.33 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04460520 , version 1 (15-02-2024)

Licence

Identifiants

Citer

Arnold Hien, Nicolas Beldiceanu, Claude-Guy Quimper, Null- I Restrepo. Automata Based Multivariate Time Series Analysis for Anomaly Detection over Sliding Time Windows. 9th International Conference on Time Series and Forecasting, Jul 2023, Gran Canaria, Spain. ⟨10.3390/engproc2023039065⟩. ⟨hal-04460520⟩
35 Consultations
23 Téléchargements

Altmetric

Partager

More