
HAL Id: hal-04460520
https://hal.science/hal-04460520

Submitted on 15 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata Based Multivariate Time Series Analysis for
Anomaly Detection over Sliding Time Windows

Arnold Hien, Nicolas Beldiceanu, Claude-Guy Quimper, Null- I Restrepo

To cite this version:
Arnold Hien, Nicolas Beldiceanu, Claude-Guy Quimper, Null- I Restrepo. Automata Based Multivari-
ate Time Series Analysis for Anomaly Detection over Sliding Time Windows. 9th International Con-
ference on Time Series and Forecasting, Jul 2023, Gran Canaria, Spain. �10.3390/engproc2023039065�.
�hal-04460520�

https://hal.science/hal-04460520
https://hal.archives-ouvertes.fr


Citation: Hien, A.; Beldiceanu, N.;

Quimper, C.-G.; Restrepo, M.-I.

Automata Based Multivariate Time

Series Analysis for Anomaly

Detection over Sliding Time

Windows. Eng. Proc. 2023, 39, 65.

https://doi.org/10.3390/

engproc2023039065

Academic Editors: Ignacio Rojas,

Hector Pomares, Luis Javier Herrera,

Fernando Rojas and

Olga Valenzuela

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Automata Based Multivariate Time Series Analysis for
Anomaly Detection over Sliding Time Windows †

Arnold Hien 1,∗ , Nicolas Beldiceanu 1,∗ , Claude-Guy Quimper 2 and María-I. Restrepo 1

1 Department of Automation, Production and Computer Sciences, IMT Atlantique, 44300 Nantes, France;
maria-isabel.restrepo-ruiz@imt-atlantique.fr

2 Computer Science Department, Laval University, Quebec City, QC G1V 0A6, Canada;
claude-guy.quimper@ift.ulaval.ca

* Correspondence: arnold.hien@imt-atlantique.fr (A.H.); nicolas.beldiceanu@imt-atlantique.fr (N.B.)
† Presented at the 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

12–14 July 2023.

Abstract: We describe an optimal linear time complexity method for extracting patterns from sliding
windows of multivariate time series that depends only on the length of the time series. The method
is implemented as an open-source Java library and is used to detect anomalies in multivariate
time series.

Keywords: multivariate time series; transducers; sliding windows; anomaly detection

1. Introduction

Multivariate time series [1,2] are sequences or streams of more than one time-dependent
variable corresponding to the simultaneous evolution of several variables over time.
They can be observed in many areas and can thus be used to describe the evolution
of key indicators.

Context. The analysis of time series makes it possible to extract certain behaviours
that can be described by patterns [3]. These patterns inform us about the evolution of
variables and provide trends observed in the time series. Patterns describing abnormal
situations can be captured by regular expressions. The analysis of the time series consists of
first identifying pattern occurrences in the time series, then associating a numerical value
with each occurrence through the computation of a feature value. Anomaly detection then
performs according to the following steps:

• Symbolically describe abnormal behaviours through patterns;
• Find the occurrences of these patterns in the time series;
• Identify the occurrences of those patterns whose numerical characteristics are deviant.

To identify these patterns, Beldiceanu et al. [3,4] used transducers, i.e., finite-state
automata producing an output, which made it possible to efficiently identify pattern occur-
rences and calculate the corresponding feature value. This work and that of Arafailova [5]
laid the necessary foundations for the development of our tool for detecting anomalies in
time series.

Question addressed by this paper. The challenge is to design an efficient algorithm
capable of identifying a succession of pattern occurrences denoting anomalies within
the sliding time windows of a multivariate time series, where the patterns are described
generically.

Our contribution. Given a multivariate time series with measurements over n in-
stants and all sliding time windows over m consecutive instants, we describe an optimal
time complexity algorithm in Θ(n) to identify all time windows containing occurrences
of patterns corresponding to anomalies. A parameterised version [6] of this algorithm
handling a variety of patterns was implemented as a Java library.

Eng. Proc. 2023, 39, 65. https://doi.org/10.3390/engproc2023039065 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023039065
https://doi.org/10.3390/engproc2023039065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-0547-784X
https://orcid.org/0000-0003-1452-596X
https://orcid.org/0000-0002-5899-0217
https://orcid.org/0000-0002-5191-3913
https://doi.org/10.3390/engproc2023039065
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023039065?type=check_update&version=1


Eng. Proc. 2023, 39, 65 2 of 9

Paper organisation. In Section 2, we present the required background, such as pat-
terns, features, and transducers. Then, in Section 3, we define the extraction of patterns
occurrences on sliding windows; we present how patterns are evaluated both qualitatively
and quantitatively using regular expressions and features. In Section 4, we present our
anomaly detection tool and illustrate its use in Section 4.2 on environmental sensor data [7].

2. Background on Multivariate Time Series

A multivariate time series is obtained by observing the evolution of d measures over
regular periods [8]. It is denoted as a n-dimensional array X = ⟨X1, X2, . . . , Xn⟩, where n
is the length of the time series, d is the number of measures, Xi ∈ Rd is the i-th vector of
measures, and X j

i is the j-th component of vector Xi. As a stream is unbounded, searching
anomalies on a full stream does not make sense as data is generated continuously and sent
in multiple data records; we rather want to identify anomalies on sliding windows of the
stream [9]. Each window is a subsequence denoted by Xi,j (with i < j) whose measures
are defined from instant i to instant j. The next section shows how to describe conditions
between two consecutive measures of a multivariate time series.

2.1. Alphabet as a Mean to Describe Conditions between Adjacent Measures

To specify patterns on a multivariate time series, the first step is to describe the basic
elements of a pattern, namely a finite set of conditions between p consecutive measures
of the time series. Each condition is interpreted as the letter of the alphabet Σ that we
now introduce.

Definition 1 (alphabet). Given p consecutive measures Xi, Xi+1, . . . , Xi+p−1, an alphabet Σ is
defined as a set of mutually exclusive conditions {C1, C2, . . . , Ck} such that C1 ∨C2 ∨ ⋅ ⋅ ⋅ ∨Ck is
true, where each condition C` (with ` ∈ [1, k]) compares the components of Xi, Xi+1, . . . , Xi+p−1

using the operators <, =, or >. Each condition C` of Σ must have its mirror condition Cmir
` in Σ,

where Cmir
` is obtained by flipping the comparison operators < and > in C`. Each of the conditions

C1, C2, . . . , Ck will be called a symbolic letter [10].

2.2. Signature of the Multivariate Time Series

The first step to analyse a multivariate time series X is to generate the sequence S of
symbolic letters Si (with i ∈ [1, n− p+ 1]) associated with p consecutive measures of X . This
leads to the notion of signature S.

Definition 2 (Signature, arity). Consider a sequence of n measuresX and a function F ∶ Rp → Σ,
where Σ is a finite set denoting an alphabet. Then, the signature of X is a sequence of symbolic
letters S = ⟨S1, S2, . . . , Sn−p+1⟩ where each Si equals F(Xi, . . . , Xi+p−1).

The alphabet Σ is used to define regular expressions to symbolically characterise the
occurrences of anomalies in S. For this, we use patterns and features.

2.3. Pattern and Feature as Qualitative and Quantitative Aspects of Anomalies

The qualitative aspect of anomalies is described as the words of the language Lσ

associated with the regular expression σ defined over the alphabet Σ [11].

Definition 3 (Patterns [3]). A pattern σ over the alphabet Σ is a triple ⟨reg, b, a⟩, where reg
is a regular expression over Σ that is only matched by non-empty words, while b and a are two
non-negative integers, whose role is to delete parts of the pattern that are used to detect the start and
end of a pattern.

Definition 4 (Pattern reverse [4]). Two patterns σ = ⟨reg, b, a⟩ and σr = ⟨regr, br, ar⟩ are the
reverse of each other if w1w2 . . . wk ∈Lσ ⇔ wmir

k wmir
k−1 . . . wmir

1 ∈Lσr , a = br, b = ar.



Eng. Proc. 2023, 39, 65 3 of 9

A list of 22 patterns can be found in [4,12].
Features. After identifying a pattern occurrence in a time series, it is possible to

characterise it with a numerical value. For this, we use features, which are functions
allowing us to compute certain characteristics of a pattern occurrence, such as the min/max
value. In [4], Beldiceanu et al. used five features for the quantitative evaluation of patterns
in the context of sliding windows: ONE, WIDTH, SURFACE, MIN, and MAX.

Aggregators. Sometimes, several occurrences of a pattern are identified in a sliding
window. To obtain a unique result for the whole window, we use aggregators, which are
functions that aggregate the features values on the different occurrences of the pattern.
In [3,4], three aggregation functions are proposed: MIN, MAX, and SUM. In this paper,
we only use the SUMaggregator. To identify patterns occurrences in a time series, we use
transducers.

2.4. Seed Transducers

Identifying pattern occurrences is achieved by using seed transducers [3]. We use
deterministic finite transducers [13,14], which are automataM that generate an output
sequence over the alphabet Σ

′

from an input sequence over the alphabet Σ. To identify
the occurrences of a pattern σ, our transducer reads one by one the symbolic letters
Si in Σ and triggers a transition from state qi−1 to qi to produce a semantic letter τi in
Σ
′

associated with Si. Each semantic letter designates a phase in the recognition of an
occurrence of the pattern, e.g., when an occurrence of σ is found, the semantic letter FOUND

is generated. The semantic letter MAYBEb means that the transducer has found the first
letters of a potential occurrence of σ but needs to read more letters to confirm it. The
output alphabet Σ

′ = {OUT, MAYBEb, OUTr, FOUND, FOUNDe, IN, MAYBEa, OUTa} of a seed
transducer is called the semantic alphabet. More details about their meaning can be found
in [3].

Example 1. Let us consider a temperature and humidity measuring device that allows one measure-
ment every hour. Our multivariate time series X is given in Table 1. Assume we want to identify
the situation where, for two consecutive measures, i.e., p = 2, both the temperature and the humidity
increase. For this purpose, we define the alphabet Σ = {<,≤,=,≥,>,≷} as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< ∶ if X1
i < X1

i+1 ∧X2
i < X2

i+1≤ ∶ if (X1
i < X1

i+1 ∧X2
i = X2

i+1)∨ (X1
i = X1

i+1 ∧X2
i < X2

i+1)= ∶ if X1
i = X1

i+1 ∧X2
i = X2

i+1≥ ∶ if (X1
i > X1

i+1 ∧X2
i = X2

i+1)∨ (X1
i = X1

i+1 ∧X2
i > X2

i+1)> ∶ if X1
i > X1

i+1 ∧X2
i > X2

i+1≷ ∶ if (X1
i > X1

i+1 ∧X2
i < X2

i+1)∨ (X1
i < X1

i+1 ∧X2
i > X2

i+1)
We then define two patterns using the following observation. Normally, when the temperature

increases, the humidity decreases and vice versa. Thus, when both metrics change in the same way
(increasing or decreasing), it may be a sign of an anomaly. These problematic changes are captured
by the patterns σ� and σ�, respectively, corresponding to > ∣ >(> ∣= ∣≥)∗> and < ∣ <(< ∣= ∣≤)∗<,
where σ� describes a simultaneous decrease in both temperature and humidity, and σ� an increase.
Figure 1A shows two maximal occurrences of σ� in the multivariate time series X . Using the
WIDTH feature, we obtain f1 = 2 and f2 = 4 as the lengths of the two occurrences. Using the
SUMaggregator, we obtain a total length g = 6. These values are computed using the transducer
given in Figure 1B, which describes the transitions from the initial state s.

Table 1. Multivariate time series X : temperature and humidity level evolution over 17 h.

Time 1 am 2 am 3 am 4 am 5 am 6 am 7 am 8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm

Temp. (C) 19.3 21.5 19.2 21.4 23.6 22.8 22.8 20.1 20.9 21.5 22.7 23.6 23.6 19.2 21.5 21.5 21.5
Hum. (%) 74.9 52.2 74.8 52.1 73.2 72.3 65.7 55.9 52.1 64.5 64.5 72.7 62.4 59.8 52.1 55.2 55.2



Eng. Proc. 2023, 39, 65 4 of 9

Eng. Proc. 2023, 1, 0 4 of 8

3.1. Register-based features evaluation on a time series

Consider a multivariate time series X = ⟨X1, X2, . . . , Xn⟩, a pattern σ and a feature f . To
obtain the contribution of σ on X we associate three accumulators , and to the transducerM of σ.
We obtain a register automaton [? ] in which each accumulator is updated as X is read:

• R gradually records the sum of the feature values of f on each completely terminated found
occurrence of σ (i.e. τi ∈ {OUTa, FOUNDe});

• C stores the feature value of the current occurrence for which we did not yet reach the end (i.e.
τi ∈ {FOUD, IN});

• D contains the feature value of the current potential part of an occurrence (τi ∈{MAYBEb, MAYBEa}).

Accumulators , and are updated according to the semantic letter τi returned byM. Details about
this evaluation can be found in [? ] and [? ].

Example 2 (Continuation of Example 1). Reading S9 = ‘<’ leads to τ9 = FOUND. As showed in
Table C of Fig. 1, we then compute ← +1 (i.e. C ← 1), meaning that the length of the current
occurrence of σ� is 1. Similarly, τ10 = ma means that we get a potential extra part of the already
found occurrence of σ�. We then compute its length with ← +1. τ11 = in means that we are still
inside an occurrence of σ�. It then confirms the membership of the encountered extra parts. Thus,
we compute ← ++ 1. Finally, τ12 = oa means that we are no more in an occurrence of σ�. We then
compute← + to integrate in .

3.2. Register-based features evaluation on sliding windows

The contribution of a pattern on a sliding window Xi,j = Xi, Xi+1, . . . , Xj [? ? ] is computed
using Equation (1).

fσ(Xi,j) = { 0 if there is no occurrence of σ
fσ(X1,j)+ fσr(Xn,i)− fσ(X1,n) otherwise.

(1)

Computing fσ(Xi,j) involves different steps. The first step consists of checking the presence of an
occurrence of σ in Xi,j, and the second step computes fσ(X1,j), fσr(Xn,i) and fσ(X1,n). In this
section, we first show how to compute the contribution of σ on X1,j, then we describe our method of
identifying occurrences of σ on sliding windows.

Computing the contribution of σ on a sliding window.
In Equation 1, fσ(X1,n) corresponds to the final value of after reading X and fσ(X1,j) to its

value after reading the subsequence X1,j. Similarly, fσr(Xn,i) corresponds to the value of after
reading the reverse sequence Xr

n,i using the transducer of σr. To compute fσ(Xi,j), we then first have

S ≷ ≷ ≷ < > ≥ > ≷ < ≤ < ≥ > ≷ ≤ =τ o o o f oa o o o f ma in oa o o o o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

20

21

22

23

Te
m

pe
ra

tu
re

(X
1 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

55

60

65

70

H
um

id
ity

(X
2 )

(A)
s t

=∶ out

≤∶ out

≥,>,≷∶ out

<∶ in

≤∶ ma

=∶ ma

<∶ found

≥,>,≷∶ outa

(B)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S ≷ ≷ ≷ < > ≥ > ≷ < ≤ < ≥ > ≷ ≤ =

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 3 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 4 4 4 4 4

5 5 5 5 5 12 12 12 12 12 12 12 18 18 18 18 18 18

(C)

Figure 1. (A) Occurrences of pattern σ� in a multivariate time series, (B) Transducer of pattern σ�, (C) Accu-
mulators updates
Figure 1. (A) Occurrences of pattern σ� in a multivariate time series, (B) Transducer of pattern σ�,
(C) Accumulators updates.

3. Optimal Patterns Extraction from Sliding Windows

As explained in Section 2, the analysis of time series makes it possible to characterise
them qualitatively with patterns, and quantitatively with features. The sum of the feature
values of all pattern occurrences in a time series is called its contribution. We describe an
optimal time-complexity algorithm for computing such contribution. This algorithm is
used both when a multivariate time series corresponds to a single finite sequence of timed
data, or when we have a data stream consisting of successive subsequences of timed data.
Without lost of generality, we focus on a single finite sequence and show how to generalise
it to a stream at the end of this section.

3.1. Register-Based Features Evaluation on a Time Series

Consider a multivariate time series X = ⟨X1, X2, . . . , Xn⟩, a pattern σ and a feature
f . To obtain the contribution of σ on X we associate three accumulators R, C and D to
the transducerM of σ. We obtain a register automaton [3] in which each accumulator is
updated as X is read:

• R gradually records the sum of the feature values of f on each completely terminated
found occurrence of σ (i.e., τi ∈ {OUTa, FOUNDe});

• C stores the feature value of the current occurrence for which we did not yet reach the
end (i.e., τi ∈ {FOUND, IN});

• D contains the feature value of the current potential part of an occurrence
(τi ∈{MAYBEb, MAYBEa}).

Accumulators R, C, and D are updated according to the semantic letter τi returned byM. Details of this evaluation can be found in [3,12].

Example 2 (Continuation of Example 1). Reading S9= ‘<’ leads to τ9 = FOUND. As shown in
Table C of Figure 1, we then compute C← D+ 1 (i.e., C ← 1), meaning that the length of the current
occurrence of σ� is 1. Similarly, τ10 = ma means that we obtain a potential extra part of the already
found occurrence of σ�. We then compute its length with D← D+ 1. τ11 = in means that we are
still inside an occurrence of σ�. It then confirms the membership of the encountered extra parts.
Thus, we compute C← C+D+ 1. Finally, τ12 = oa means that we are no longer in an occurrence of
σ�. We then compute R← R+C to integrate C in R.

3.2. Register-Based Features Evaluation on Sliding Windows

The contribution of a pattern on a sliding window Xi,j = Xi, Xi+1, . . . , Xj [15,16] is
computed using Equation (1).

fσ(Xi,j) = { 0 if there is no occurrence of σ
fσ(X1,j)+ fσr(Xn,i)− fσ(X1,n) otherwise. (1)



Eng. Proc. 2023, 39, 65 5 of 9

Computing fσ(Xi,j) involves different steps. The first step consists of checking the
presence of an occurrence of σ in Xi,j, and the second step computes fσ(X1,j), fσr(Xn,i), and
fσ(X1,n). In this section, we first show how to compute the contribution of σ on X1,j, then
describe our method of identifying occurrences of σ on sliding windows.

Computing the Contribution of σ on a Sliding Window

In Equation (1), fσ(X1,n) corresponds to the final value of R after reading X and
fσ(X1,j) to its value after reading the subsequence X1,j. Similarly, fσr(Xn,i) corresponds
to the value of R after reading the reverse sequence Xr

n,i using the transducer of σr. To
compute fσ(Xi,j), we first have to know the values of R, C, and D associated with each
semantic letter returned. A first step is, therefore, performed to acquire the needed values
exploited to optimally compute fσ(Xi,j).

Pattern Occurrences Checker in Slidings Windows

To obtain an optimal time complexity algorithm, we also need to check whether each
sliding window contains at least one pattern occurrence, i.e., see the first case of Equation (1).
A naïve approach would be to check whether there is an occurrence of σ in each window
independently. Thus, considering a window size of m, the occurrence check of σ on all
sliding windows would lead to a time complexity of O(m ⋅ n) [4].

To obtain an optimal time complexity of Θ(n), we create a new array, denoted as E,
which provides for each position in the time series, the end of the next occurrence of pattern
in X . Indeed, if there is an occurrence of σ in Xi,j, then this occurrence will be defined
between positions u and v, with i ≤ u ≤ v ≤ j. The accumulator E will indicate that an
occurrence of σ ends at v. Similarly, given that σr and X r are, respectively, the reverse
of σ and X , then the end of an occurrence of σr in X r matches the start of an occurrence
of σ in X [4]. This makes it possible to say that an occurrence of σ begins at u. The new
accumulator E records at position k the end of the next occurrence of σ from Xk. Table C
of Figure 1 gives the values of E indicating the end of the next occurrences of σ� in the
multivariate time series X of Example 1.

Computing the End of the Next Pattern Occurrence from the Pattern Transducer

Depending on the presence of FOUND or FOUNDe in the transducerM, two cases must
be distinguished:

- When FOUNDe ∈M, E is updated according to lines 3–9 of Algorithm 1;
- When FOUND ∈M, E is updated according to lines 10–20 of Algorithm 1.

In Algorithm 1, we use two types of assignments: value assignment, denoted ‘←’, and
variable linkage, denoted ‘=’. For the first one, a value is directly assigned to a variable. For
the second one, two variables are made equal using a linked list; when one of these variables
is assigned, this assignment is automatically propagated to all the linked variables.

Linking two consecutive subsequences of a data stream. To find a pattern occurrence
located across consecutive subsequences of a data stream, we use a buffer that records the
last m − 1 measures. Each new received sequence ⟨X1, X2, . . . , Xk⟩ then integrates these past
measurements as follows: X = ⟨X−m+1, X−m+2, . . . X0, X1, X2, . . . , Xk⟩.



Eng. Proc. 2023, 39, 65 6 of 9

Algorithm 1: Computing the end of the next occurrence of pattern for each
position.

1 Input S[1..n− 1]: time series signature; σ: pattern;M: transducer of σ; Output E[0..n]: next pattern occurrence
end;

2 begin
3 If FOUNDe ∈M then
4 state← init_state; E[0]← 0;
5 For each k ∈ 1, . . . , n− 1 do
6 τ ←M(σ, state,S[k]);
7 If τ ∈ {OUT, OUTr , MAYBEb} then E[k] = E[k+ 1];
8 else if τ = FOUNDe then E[k]← k+ 1;

9 E[n]← n+ 1; return E;

10 else
11 I[0..n] ∶ accumulator array; MA[0..n] ∶ accumulator array;
12 state← init_state; I[0]← 0; I[n]← 0; MA[0]← 0; MA[n]← n + 1; MA[n− 1] = E[n− 1];
13 For each k ∈ 1, . . . , n− 1 do
14 τ ←M(σ, state,S[k]);
15 If τ ∈ {OUT, OUTr , MAYBEb} then I[k]← 0; MA[k]← 0; E[k− 1] = E[k];
16 else if τ = FOUND then E[k− 1] = E[k]; E[k] = MA[k]; I[k]← 1;
17 else if τ = IN then E[k− 1] = E[k]; E[k] = MA[k]; MA[k− 1] = MA[k]; I[k]← 1;
18 else if τ = MAYBEa then E[k] = E[k+ 1]; MA[k− 1] = MA[k]; I[k]← I[k− 1]+ 1;
19 else if τ = OUTa then MA[k− 1]← k+ 1− I[k− 1]; MA[k]← 0; I[k]← 0;

20 E[n]← n+ 1; E[n− 1]← n+ 1− I[n− 1]; return E;

4. Anomaly Detection Tool

In this section, we describe an anomaly detection tool that exploits the efficient evalua-
tion of patterns contributions on sliding windows. First, we give the key parameters of the
tool. Then we present some experiments carried out.

4.1. Parameters

Anomaly detection is used to identify suspicious behaviour as data evolve. We use
three parameters, namely: (i) the pattern σ we are looking for, (ii) the feature f we consider,
and (iii) the window size m. Anomalies occur when there are unusual values and when the
sum of them exceeds a given threshold. We add two parameters to adjust the sensitivity
of our tool to small variations in consecutive measures, and to multiple occurrences of
unusual values:

• The minimum difference threshold δX is used to determine the minimum variation for
two consecutive measures to be considered as different.

• The occupation percentage threshold ε is the minimum percentage of the window occu-
pation by the pattern wrt its contribution within the window. Thus, an anomaly is
detected when the occupation percentage exceeds ε.

4.2. Experiments

We have implemented our anomaly detection tools using Java 17. For the experiments,
we analysed data from an environmental sensor [7]. These data show the evolution of
temperature and humidity measurements over time, as shown in Figure 2. A visual analysis
of Figure 2A highlights the existence of strong variations in the dataset with temperature
or humidity, often dropping sharply to 0. A similar phenomenon can be observed with
temperature increases of more than three degrees. Figure 2B gives a zoom-in and more
detailed view of these variations. Each of these variations are potential anomalies that the
tool identifies.

For our analysis, we used combinations of values of the previous parameters of
Figure 2C. For all the combinations of values, we followed the following protocol: first,
we identify problematic windows; second, we colour them in red and plot them; then we
analyse the effects of each parameter variations. For space reasons, we will only show the
results of two combinations of parameters, one for each of pattern σ� and σ� . The analysis
of the results shown in Figure 3 then allows us to conclude that our tool allows one to
efficiently identify anomalies occurrences in windows. The addition of parameters δX and



Eng. Proc. 2023, 39, 65 7 of 9

ε, and the possibility of choosing the pattern to identify makes it possible to characterise
the anomalies and to adjust their detection in a better way.

0

20

40

60

80

100

H
u
m
id
it
y
 

2

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000
Time

0

5

10

15

20

25

30

T
e
m
p
e
ra
tu
re
 

1

(A) SENSOR DATA

55

60

65

70

75

80

85

Hu
m
id
ity

 
2

Time

20

21

22

23

24

Te
m
pe

ra
tu
re
 

1

(B) Values from X255700 to X255750

Parameters Values

m 10, 20, 30, 40, 50, 60, 75, 100
δX 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0
ε 0.25, 0.3, 0.4, 0.5, 0.6, 0.75

(C) Experiment parameter values

Figure 2. Evolution of the values of the analysed dataset and summary of the values of the parameters
used in our experiments.

0

5

10

15

20

25

30

Te
m
pe

ra
tu
re
 

1

1
40
51
9

81
03
7

12
15
55

16
20
73

20
25
91

24
31
09

28
36
27

32
41
45

36
46
63

40
51
81

Time

0

20

40

60

80

100

Hu
m
id
ity

 
2

0

5

10

15

20

25

30

Te
m
pe

ra
tu
re
 

1

1
40
51
9

81
03
7

12
15
55

16
20
73

20
25
91

24
31
09

28
36
27

32
41
45

36
46
63

40
51
81

Time

0

20

40

60

80

100

Hu
m
id
ity

 
2

(A) σ�, m = 20, δX = 4.0 ∶ ε = 0.4 vs. ε = 0.6

0

5

10

15

20

25

30

Te
m
pe

ra
tu
re
 

1

1
40
51
9

81
03
7

12
15
55

16
20
73

20
25
91

24
31
09

28
36
27

32
41
45

36
46
63

40
51
81

Time

0

20

40

60

80

100

Hu
m
id
ity

 
2

0

5

10

15

20

25

30

Te
m
pe

ra
tu
re
 

1

1
40
51
9

81
03
7

12
15
55

16
20
73

20
25
91

24
31
09

28
36
27

32
41
45

36
46
63

40
51
81

Time

0

20

40

60

80

100

Hu
m
id
ity

 
2

(B) σ�, m = 60, ε = 0.6 ∶ δX = 1.5 vs. δX = 3.0

Figure 3. Problematic windows identified when using patterns σ� and σ�, and varying the values
of δX and ε. These problematic windows are plotted in red, the non-problematic windows remain in
blue.

Effects of δX Variation

When analysing the effect of δX on the results, we notice that, as expected, small values
of δX lead to the detection of more problematic windows. Indeed, large values of δX make
it possible to ignore the small variations in the values of Xk ∈ X to consider only the large
variations. Therefore, many, probably non-problematic occurrences of patterns are ignored.



Eng. Proc. 2023, 39, 65 8 of 9

Conversely, with small values of δX , these occurrences will be considered problematic and
lead to more anomalies being detected. This behaviour is maintained whatever the pattern,
the dataset or the values of m and ε.

Effects of m and ε Variation

The analysis of the effects of m and ε shows that the bigger m is, the smaller must ε be
(and vice versa), if we want to catch a maximum number of problematic windows. Indeed,
a large window size m may make it unlikely to find a high number of occurrences of σ.
Therefore, the values of these two parameters should be adjusted inversely. This behaviour
is maintained whatever the pattern, the dataset, or the values of δX .

5. Conclusions

In this paper, we have proposed an efficient method for multivariate time series
analysis. This transducer-based approach makes it possible to extract occurrences of
patterns on sliding windows and to characterise them quantitatively with an optimal time
complexity. We used the method for detecting anomalies and obtained a parameterised
detection tool. The experiments we conducted show the ability of our approach to efficiently
identify inconsistencies in data. In the future, we may consider other uses such as the
automatic annotation of multivariate time series or the generation of time series.

Author Contributions: Conceptualization, A.H. and N.B.; methodology, A.H. and N.B.; software,
A.H. and N.B.; validation, A.H. and N.B.; formal analysis, A.H. and N.B.; investigation, A.H. and
N.B.; resources, A.H. and N.B.; data curation, A.H. and N.B.; writing—original draft preparation,
A.H. and N.B.; writing—review and editing, A.H., N.B., C.-G.Q., and M.-I.R.; visualization, A.H.,
N.B., C.-G.Q., and M.-I.R.; supervision, N.B.; project administration, N.B.; funding acquisition, N.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the EU-funded ASSISTANT project no. 101000165.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs (https://gitlab.com/postdochien/atisad (accessed on 5 July 2023)). Publicly available datasets
were analyzed in this study. This data can be found here: https://www.kaggle.com/datasets/
garystafford/environmental-sensor-data-132k (accessed on 5 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Audibert, J. Unsupervised Anomaly Detection in Time-Series. (Détection Non Supervisée des Anomalies Dans Les Séries

Temporelles). Ph.D Thesis, Sorbonne University, Paris, France, 2021.
2. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. Deep learning for time series classification: A review. Data Min.

Knowl. Discov. 2019, 33, 917–963. [CrossRef]
3. Beldiceanu, N.; Carlsson, M.; Douence, R.; Simonis, H. Using finite transducers for describing and synthesising structural

time-series constraints. Constraints 2016, 21, 22–40. [CrossRef]
4. Beldiceanu, N.; Carlsson, M.; Quimper, C.; Restrepo-Ruiz, M. Classifying Pattern and Feature Properties to Get a Θ(n) Checker

and Reformulation for Sliding Time-Series Constraints. CoRR 2019, abs/1912.01532. Available online: https://arxiv.org/abs/19
12.01532 (accessed on 5 July 2023).

5. Arafailova, E. Functional Description of Sequence Constraints and Synthesis of Combinatorial Objects. Ph.D. Thesis, IMT
Atlantique, Nantes, France, 2018.

6. Hien, A.; Beldiceanu, N.; Quimper, C.; Restrepo-Ruiz, M. Code and Supplementary Material. 2023. Available online:
https://gitlab.com/postdochien/atisad (accessed on 5 July 2023).

7. Stafford, G. Environmental Sensor Telemetry Data. 2020. Available online: https://www.kaggle.com/datasets/garystafford/
environmental-sensor-data-132k (accessed on 5 July 2023).

8. Morrill, J.; Fermanian, A.; Kidger, P.; Lyons, T.J. A Generalised Signature Method for Time Series. CoRR 2020, abs/2006.00873.
Available online: https://arxiv.org/abs/2006.00873 (accessed on 5 July 2023).

https://gitlab.com/postdochien/atisad
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
http://doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1007/s10601-015-9200-3
https://arxiv.org/abs/1912.01532
https://arxiv.org/abs/1912.01532
https://gitlab.com/postdochien/atisad
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
https://arxiv.org/abs/2006.00873


Eng. Proc. 2023, 39, 65 9 of 9

9. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. Segmenting Time Series: A Survey and Novel Approach. In Data Mining in Time Series
Databases; World Scientific: Singapore, 2004; Volume 57, pp. 1–21. [CrossRef]

10. Veanes, M.; Hooimeijer, P.; Livshits, B.; Molnar, D.; Bjørner, N.S. Symbolic finite state transducers: Algorithms and applications.
In Proceedings of the 39th ACM SIGPLAN-SIGACT, Philadelphia, PA, USA, 25–27 January 2012; pp. 137–150. [CrossRef]

11. Crochemore, M.; Hancart, C.; Lecroq, T. Algorithms on Strings; Cambridge University Press: Cambridge, MA, USA, 2007.
12. Arafailova, E.; Beldiceanu, N.; Douence, R.; Carlsson, M.; Flener, P.; Rodríguez, M.A.F.; Pearson, J.; Simonis, H. Global Constraint

Catalog, Volume II, Time-Series Constraints. CoRR 2016, abs/1609.08925. Available online: https://arxiv.org/abs/1609.08925
(accessed on 5 July 2023).

13. Sakarovitch, J. Elements of Automata Theory; Cambridge University Press: Cambridge, MA, USA, 2009.
14. Hopcroft, J.E.; Motwani, R.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation, 3rd ed.; Pearson International

Edition: London, UK, 2006.
15. Kolev, B.; Akbarinia, R.; Jiménez-Peris, R.; Levchenko, O.; Masseglia, F.; Patiño, M.; Valduriez, P. Parallel Streaming Implementa-

tion of Online Time Series Correlation Discovery on Sliding Windows with Regression Capabilities. In Proceedings of the 9th
International Conference on Cloud Computing and Services Science, Heraklion, Crete, Greece, 2–4 May 2019; SciTePress: Setúbal,
Portugal, 2019; Volume 1, pp. 681–687.

16. Kontaki, M.; Papadopoulos, A.N.; Manolopoulos, Y. Adaptive similarity search in streaming time series with sliding windows.
Data Knowl. Eng. 2007, 63, pp. 478–502. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/9789812565402_0001.
http://dx.doi.org/10.1145/2103656.2103674
https://arxiv.org/abs/1609.08925
http://dx.doi.org/10.1016/j.datak.2007.03.002

	Introduction
	Background on Multivariate Time Series
	Alphabet as a Mean to Describe Conditions between Adjacent Measures
	Signature of the Multivariate Time Series
	Pattern and Feature as Qualitative and Quantitative Aspects of Anomalies
	Seed Transducers

	Optimal Patterns Extraction from Sliding Windows
	Register-Based Features Evaluation on a Time Series
	Register-Based Features Evaluation on Sliding Windows

	Anomaly Detection Tool
	Parameters
	Experiments

	Conclusions
	References

