Semiclassical asymptotics of the Bloch-Torrey operator in two dimensions
Résumé
The Bloch-Torrey operator on a bounded smooth planar domain, subject to Dirichlet boundary conditions, is analyzed. Under assumptions on the left-hand side of the domain, asymptotics of the eigenvalues with the smallest real part in the semiclassical limit are derived. The strategy is a backward complex scaling and the reduction to a tensorized operator involving a real Airy operator and a complex harmonic oscillator.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|