THE SAITO CRITERION AND SOME AVATARS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

THE SAITO CRITERION AND SOME AVATARS

Résumé

Let k be a field of characteristic zero and R = k[x 1 ,. .. , x n ] be a graded commutative ring. To any set of 1 ≤ s ≤ n-1 algebraically independent polynomials f 1 ,. .. , f s ∈ R one associates a rank-(n+1-s) R-module Der(f 1 ,. .. , f s) of logarithmic derivations; these logarithmic derivations δ ∈ Der(f 1 ,. .. , f s) verify δ(f 1) f 1 = • • • = δ(f s) f s ∈ R. The aim of this note is to extend the Saito criterion, which characterizes freeness of the module Der(f) of tangent vector fields along a reduced divisor V (f), to the module Der(f 1 ,. .. , f s). More precisely, let δ i be (n + 1-s) independent derivations in Der(f 1 ,. .. , f s) and U ⊂ Der(f 1 ,. .. , f s) the sub-module generated by the δ i. We prove that U = Der(f 1 ,. .. , f s) if and only if codim k n V (n+1-s U) > 1 when s > 1 or V (n U) = V (f 1) when s = 1.
Fichier principal
Vignette du fichier
saito-affine-arrondo60.pdf (139.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04453994 , version 1 (12-02-2024)
hal-04453994 , version 2 (16-07-2024)

Identifiants

Citer

Daniele Faenzi, Marcos Jardim, Jean Vallès. THE SAITO CRITERION AND SOME AVATARS. 2024. ⟨hal-04453994v1⟩
43 Consultations
35 Téléchargements

Altmetric

Partager

More