THE SAITO CRITERION AND SOME AVATARS
Résumé
Let k be a field of characteristic zero and R = k[x 1 ,. .. , x n ] be a graded commutative ring. To any set of 1 ≤ s ≤ n-1 algebraically independent polynomials f 1 ,. .. , f s ∈ R one associates a rank-(n+1-s) R-module Der(f 1 ,. .. , f s) of logarithmic derivations; these logarithmic derivations δ ∈ Der(f 1 ,. .. , f s) verify δ(f 1) f 1 = • • • = δ(f s) f s ∈ R. The aim of this note is to extend the Saito criterion, which characterizes freeness of the module Der(f) of tangent vector fields along a reduced divisor V (f), to the module Der(f 1 ,. .. , f s). More precisely, let δ i be (n + 1-s) independent derivations in Der(f 1 ,. .. , f s) and U ⊂ Der(f 1 ,. .. , f s) the sub-module generated by the δ i. We prove that U = Der(f 1 ,. .. , f s) if and only if codim k n V (n+1-s U) > 1 when s > 1 or V (n U) = V (f 1) when s = 1.
Origine | Fichiers produits par l'(les) auteur(s) |
---|