Datasets with rich Labels for Machine Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Datasets with rich Labels for Machine Learning

Résumé

Most datasets used for classification use hard labels. In this paper, five new datasets labeled with uncertainty and imprecision by crowdsourcing contributors are presented. Richer labels are modeled with the theory of belief functions, which generalizes several reasoning frameworks with uncertainty, such as possibilities or probabilities. These datasets can be used with classical models using hard labels but also with probabilistic, fuzzy or even evidential models. Several concrete application cases are presented, for which these new datasets provide a useful knowledge representation of the user's uncertainty.
Fichier principal
Vignette du fichier
Datasets_with_rich_labels_for_machine_learning-1.pdf (4.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04453391 , version 1 (12-02-2024)

Identifiants

Citer

Arthur Hoarau, Constance Thierry, Arnaud Martin, Jean-Christophe Dubois, Yolande Le Gall. Datasets with rich Labels for Machine Learning. 2023 IEEE International Conference on Fuzzy Systems (FUZZ), Aug 2023, Incheon, France. ⟨10.1109/FUZZ52849.2023.10309672⟩. ⟨hal-04453391⟩
60 Consultations
88 Téléchargements

Altmetric

Partager

More