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Abstract—Most datasets used for classification use hard labels.
In this paper, five new datasets labeled with uncertainty and
imprecision by crowdsourcing contributors are presented. Richer
labels are modeled with the theory of belief functions, which
generalizes several reasoning frameworks with uncertainty, such
as possibilities or probabilities. These datasets can be used with
classical models using hard labels but also with probabilistic,
fuzzy or even evidential models. Several concrete application
cases are presented, for which these new datasets provide a useful
knowledge representation of the user’s uncertainty.

Index Terms—Crowdsourcing, Datasets, Evidential Learning,
Belief Functions

I. INTRODUCTION

Crowdsourcing [1] is the outsourcing of a task to a crowd of
contributors on dedicated platforms. Several types of platforms
exist [2] depending on the proposed type of task, the expertise
of the crowd that performs them and the remuneration granted.
For example, on routine activity platforms, the tasks are sim-
ple, do not require expertise and the crowd is very diversified.
Crowdsourcing is as well used by companies to easily and
quickly call on manpower [3], as by research organizations,
especially for data annotation [4].

An interface for crowdsourcing was introduced in [5] al-
lowing users to label data in an uncertain and imprecise way.
This paper proposes to use this interface to obtain datasets
with rich labels, this time for the machine learning community.
The theory of belief functions is used here as in [5] but
the combination of information is different. This framework
allows to generalize probabilities but also other theories for
reasoning with uncertainty, like imprecise probabilities or
possibilities.

With these new datasets, the goal is to provide the ability
for uncertainty-based models to access data that have actually
been labeled by contributors, in an uncertain and imprecise
manner. The paper is organized as follows, section II reviews
richer labels and belief function theory. Section III introduces
the five new datasets and section IV illustrates areas of
application where such datasets, because of their novelty, could
provide solutions. Finally Section V concludes the article.

II. RICH LABELS AND THEORY OF BELIEF FUNCTIONS

A. Rich labels

Most of the datasets used for classification consider hard
labels, with a binary membership where the observation is
either a member of the class or not. In this paper, we refer
as rich labels the elements of response given by a source
that may include several degrees of imprecision. Philippe
Smets hypothesized that the more imprecise humans are, the
more certain they are [6], [7]. To our knowledge, there is
no dataset for machine learning labeled in an uncertain and
imprecise way by contributors who have had the opportunity
to represent this imperfection. Most of the time, datasets
with hard labels are noisy or, as in [8], fuzzy labels are
extracted from the original dataset. Other datasets directly
reference fuzzy labels [9], but the imprecision is related to
the observations and none of them represent several degrees
of user imprecision. Uncertain and imprecise answers are
given in [5] but these data are not suitable for machine
learning, with several contributors labeling the same picture,
and especially the number of observations is much too small.
In this document, these labels are called rich - but could also
be named uncertain, soft or imperfect depending on the context
- as opposed to hard labels and they are modeled using the
theory of belief functions.

B. Theory of belief functions

The theory of belief functions, also called Dempster-Shafer
theory [10], [11], is used in this study to model uncertainty
and imprecision in the labels.

Let Ω = {ω1, . . . , ωM} be the frame of discernment for M
exclusive and exhaustive hypotheses. The power set 2Ω is the
set of all subsets of Ω. A Basic Belief Assignment is the belief
that a source may have about the elements of the power set of
Ω, this function assigns a mass to each element of this power
set such that the sum of all masses is equal to 1.

m : 2Ω → [0, 1],∑
A∈2Ω

m(A) = 1. (1)



Each subset A ∈ 2Ω such that m(A) > 0 is called a focal
element of m. The uncertainty is therefore represented by a
mass m(A) < 1 on a focal element A and the imprecision is
represented by a non-null mass m(A) > 0 on a focal element
A such that |A| > 1.

A mass function m is called simple support mass function
when it has two focal elements, one of which is Ω:

m(A) = 1− w , A ∈ 2Ω,

m(Ω) = w ,

m(B) = 0, B ∈ 2Ω\{A,Ω}.
(2)

with w ∈ [0, 1], the mass function m can then be noted Aw .
The cautious rule of combination ∧⃝, introduced by Denœux

in [12], allows to combine the information contained in two
dependent mass functions. It is defined as follows:

m1 ∧⃝m2 =
⊕
A∈2Ω

Aw1(A)∧w2(A) (3)

with ∧ the operator of minimum and the sign
⊕

is Dempster’s
rule of combination [11]. This combination rule will be used
to model the labels.

III. CREDAL DATASETS

A. Imprecise and uncertain contributors

In this paper, we propose five new datasets. The adopted
approach is first explained and then each dataset is described.
With the interface introduced in [7], crowdsourcing contrib-
utors are allowed to label observations in an uncertain and
imprecise way (see [6] for definitions). The user expresses
uncertainty on a Lickert scale (from 1 to 7 levels). Its impreci-
sion is expressed by a selection of multiple propositions. Each
experiment is performed on a crowd of non-specific and paid
contributors1. If a user is not completely precise and certain,
a second step allows him; -to refine his answer when he has
selected more than one class, or -to choose more classes when
he has chosen a single answer with a non maximum certainty.
The two answers are modeled within the framework of belief
functions and combined using the cautious combination rule.

Figure 1 presents the interface proposed to the contributor
to label each of the observations. Several proposals can be
selected by the user who must also estimate the global
certainty of his answer.

TABLE I
CREDAL DATASETS

Name Classes Pictures Contributors Features
Credal Dog-7 7 700 50 43
Credal Dog-4 4 400 50 47
Credal Dog-2 2 200 50 42
Credal Bird-10 10 200 50 30
Credal Bird-2 2 40 50 17

Table I shows the five new proposed datasets. The content
made available for each of them is presented as follows:

1The experiments were carried out in France, hence the presence of dog
breeds and bird species likely to be known to Europeans.

• Features: Pictures in RGB2. Large feature vector of 512
variables. Feature vector of fewer components of a PCA3.

• Classes: True class representing the ground truth. Rich
labels from the contributors’ responses.

• Raw crowdsourcing inputs: to bypass belief functions
and get direct user responses on the interface.

The process of labeling is highlighted with a few examples
in the following sections, describing each dataset.

B. Credal Dog-7

The first dataset represents pictures of 7 breeds of dogs.
Exactly 512 features (also available in this dataset) are ex-
tracted from each observations4 (i.e. the 400x400 RGB pic-
tures of dogs) and a PCA is carried out. The first components
regrouping in total 70% of the variance are retained, these are
the 43 selected features. Note that for all datasets only nu-
merical variables are used, the dataset is described as follows.
Observations: 700, Classes: 7, Features: 43, Contributors: 50,
Labels by contributors: 14.

An example of the process of labeling an observation in this
dataset is shown in Figure 1. Two steps are presented, the first
step asks the user to choose as much breeds as possible in order
to have a high certainty. Here, Brittany, Shetland Sheepdog
and Beagle are selected with a certainty of 6 out of 7. The
second step allows the user to reduce his choice, by doing so,
his certainty is bound to decrease. In the opposite case, where
the user first chooses a precise answer, the second step asks
the user not to reduce his choice, but to enlarge if possible
the number of selected classes. If in the first step the user has
a precise (only one class) and certain (totally certain) answer,
no second step is offered. To obtain the mass associated with
the response, the selected certainty value is divided by the
maximum value5, this mass is assigned to the focal element
of the selected classes and the rest goes to ignorance. Two
mass functions result from the user’s first and second choice
giving m1 and m2 respectively:

• m1: m1({ω1, ω2, ω3}) = 0.86, m1(Ω) = 0.14
• m2: m2({ω1}) = 0.43, m2(Ω) = 0.57

with ω1 = Brittany, ω2 = Shetland Sheepdog and ω3 =
Beagle. The following label m given to the observation is the
cautious combination of the two masses:

• m: m({ω1}) = 0.43, m({ω1, ω2, ω3}) = 0.49, m(Ω) =
0.08

The labels in these datasets are therefore given in this form
and each observation is assigned a mass function by a user.

The 2-dimension representation in Figure 2 is the dataset on
the first two principal components of a PCA. It is clear that
metaclasses are formed, for example Shetland Sheepdog and
Collie are very close. Indeed, these two breeds of dogs are

2On recent systems color values of pixels are encoded on Red, Green, and
Blue components.

3Principal Component Analysis, in data analysis.
4A ResNet-34 is trained and during the prediction phase, for each obser-

vation, the 512 outputs of the last layer give the features.
5On the Likert scale used, the values range from 1 to 7.



Fig. 1. Labeling process for a crowdsourcing contributor on the Credal Dog-7 dataset.

Fig. 2. Principal component analysis on Credal Dog-7, with a representation
of the dataset on the first principal component (PC1) and the second (PC2).

very similar, hardly discernible to an inexperienced user. The
Welsh Corgi is left a bit apart, while the remaining 4 breeds
form a cluster.

Half of the collected responses used 2 steps (the other half
corresponds to the answers where the user announces that
he knows perfectly the breed, or that he can’t answer the
iteration). Also, 80% of the totally certain responses contain
the true class, and 79% of both certain and precise answers
are correct. This information is important, it allows us to see
that the users who say they know the real class often have the
right answer, they are the experienced users.

C. Credal Dog-4

This dataset has great similarities with the first one, but
is a different dataset, both the extracted features and the
labels are different, from different contributors. Similarly,
512 features are extracted and a PCA yields 47 principal
components retaining 70% of the total variance. Observations:

400, Classes: 4, Features: 47, Contributors: 50, Labels by
contributors: 8.

The interface for the Credal Dog-4 labeling campaign is
showed in Figure 3. The same two steps are presented, and
here, Foxhound and Beagle are selected with a certainty of
7 out of 7, which means that the user knows that the dog is
one of these two breeds. In the second step, the user chooses
Foxhound with a high certainty of 6 out of 7, which means
that among his previous selection, he has a strong belief that
the true class is Foxhound. The two mass functions m1 and
m2 resulting from the answers are given as follows:

• m1: m1({ω1, ω2}) = 1
• m2: m2({ω1}) = 0.86, m2(Ω) = 0.14

with ω1 = Foxhound and ω2 = Beagle. The following label
m given to the observation is the cautious combination of the
two masses:

• m: m({ω1}) = 0.86, m({ω1, ω2}) = 0.14

Figure 4 is the representation of the dataset on the PCA’s
first two principal components. The two breeds Foxhound
and Beagle are very close, and are also often difficult to
differentiate. While Brittany and Basset seem to belong to
their own clusters.

For each experience, the results seem to agree, there are
always about half of the responses (45%) that are two-step and
about 20% of wrong answers when users specify a certain and
precise answer. Here, 81% of the certain answers are correct,
and 78% of the certain and precise answers are correct.

D. Credal Dog-2

The last 2-class dataset on dog breeds obtained during
crowdsourcing is defined as follows. Observations: 200,
Classes: 2, Features: 42, Contributors: 50, Labels by con-
tributor: 4. Having two classes and only one possible degree
of imprecision is not representative of what can be done
with richer labels. But often in machine learning, simple 2-
class datasets are used to introduce new models or definitions.
Credal Dog-2 is then proposed to fill this need. Figure 5 shows
the process of labeling for an observation in this dataset. Only



Fig. 3. Labeling process for a crowdsourcing contributor on the Credal Dog-4 dataset.

Fig. 4. Principal component analysis on Credal Dog-4, with a representation
of the dataset on the first principal component (PC1) and the second (PC2).

two breeds are possible, and for the first step, both Brittany
and Beagle are selected with a certainty of 5 out of 76. In the
second step, the user chooses Beagle with a lower certainty
of 2 out of 7, which means that among his previous selection,
he has not a strong belief that the true class is Beagle but is
still more confident than for Brittany. The two mass functions
m1 and m2 resulting from the answers are given as follows:

• m1: m1(Ω) = m1({ω1, ω2}) = 1
• m2: m2({ω1}) = 0.29, m2(Ω) = 0.71

with ω1 = Beagle and ω2 = Brittany. The following label
m given to the observation is the cautious combination of the
two masses:

• m: m({ω1}) = 0.29, m({ω1, ω2}) = 0.71

E. Credal Bird-10

This dataset is obtained from the same interface but this time
the experience is done over ten species of birds. Observations:
200, Classes: 10, Features: 30, Contributors: 50, Labels by
contributor: 20.

Another specificity of this dataset is that Labels by contrib-
utor × Contributors ̸= Observations. In the previous datasets,
each observation is labeled once, and each contributor label a
fixed number of observations. During this experience, multiple
users labeled the same observation, and one of the labels
is randomly selected to be the final label in order to have
one label per picture. The rest is the same, 512 features are
extracted and a PCA yields 30 principal components retaining
70% of the total variance.

The interface for the campaign is showed in Figure 7. First
Western Jackdaw, Carrion Crow, Common Raven and Rook
are selected with a certainty of 7 out of 7. In the second step,
the user chooses Western Jackdaw and Common Raven with
a certainty of 4 out of 7. The two mass functions m1 and m2

resulting from the answers are given as follows:
• m1: m1({ω1, ω2, ω3, ω4}) = 1
• m2: m2({ω1, ω2}) = 0.57, m2(Ω) = 0.43

with ω1 = Western Jackdaw, ω2 = Common Raven,
ω3 = Carrion Crow and ω4 = Rook. The following label
m given to the observation is the cautious combination of the
two masses:

• m: m({ω1, ω2}) = 0.57, m({ω1, ω2, ω3, ω4}) = 0.43

On this label, there is two degrees of ignorance, one on
{ω1, ω2} and one on {ω1, ω2, ω3, ω4} but there is no uncer-
tainty on the total ignorance because m({Ω}) = 0.

The 2-dimension representation in Figure 8 also shows clear
metaclasses. Species Marsh Tit, Great Tit and Coal Tit are put
together. It is the same for Common Raven, Western Jackdaw,
Rook and Carrion Crow. Only European Robin remains alone.

6In this experiment, the first-step certainty does not matter if the user selects
both classes, as it represents total ignorance.



Fig. 5. Labeling process for a crowdsourcing contributor on the Credal Dog-2 dataset.

Fig. 6. Principal component analysis on Credal Dog-2, with a representation
of the dataset on the first principal component (PC1) and the second (PC2).

For the Credal Bird-10 dataset, the proportions of iterations
(46%) and good answers (82% for max certainty) are almost
the same, with more correct certain and precise answers
(91%).

F. Credal Bird-2

The last dataset is a small one, also with bird species and
on only two classes. Observations: 40, Classes: 2, Features:
17, Contributors: 50, Labels by contributor: 4. Specificities
for this dataset are the same as in the previous one, and is
based on the same combination than for Credal Dog-2.

IV. APPLICATIONS

This section presents several applications for this kind of
dataset. From supervised and unsupervised learning to active
learning, they can be used in a large spectrum of applications
and within many frameworks.

A. Evidential learning

Thanks to the use of the theory of belief functions; proba-
bilities, possibilities, credal sets and fuzzy sets can be derived

from mass functions. These datasets are compliant with evi-
dential classifiers [13]–[15] but also with a large number of
models such as fuzzy or imprecise classifiers.

B. Increasing performance

The idea of getting closer to what the user really thinks
may increase performance. Indeed, it would be better to know
that someone is unsure of its wrong answer than just having
a wrong hard label. Those kinds of datasets can help to show
that by giving the possibility to users to answer in an uncertain
and imprecise way, they can give more reliable information
than with hard labels. In the experiment in Table II, each
crowdsourcing campaign is reiterated but this time a single
hard label is required from contributors. These hard labels are
also present in the available resources from each dataset. The
Evidential K-Nearest Neighbors [14] is used for classification,
with a 5-fold cross validation to estimate the best K. Mean
accuracies over 100 experiments are presented as performance
score. This experiment shows that, overall, giving the possibil-
ity to users to answer imperfectly can increase performance.

TABLE II
MEAN ACCURACY BY DATASET FOR HARD AND RICH LABELS (± A 95%

CONFIDENCE INTERVAL FOR THE ESTIMATION OF THE MEAN).

Datasets Hard labels Rich labels
Credal Dog-7 68.7 ± 0.8 75.8 ± 0.7
Credal Dog-4 70.8 ± 1.0 69.3 ± 1.0
Credal Dog-2 98.4 ± 0.5 98.0 ± 0.4
Credal Bird-10 52.8 ± 1.5 60.7 ± 1.5
Credal Bird-2 51.6 ± 3.1 63.5 ± 3.7

C. Knowledge representation

The knowledge added in the labels can be modeled and the
representation of uncertainty can be useful, for example in
active learning [16]. A sampling by uncertainty then allows to
find the zones of uncertainty in the space of the features.



Fig. 7. Labeling process for a crowdsourcing contributor on the Credal Bird-10 dataset.

Fig. 8. Principal component analysis on Credal Bird-10, with a representation
of the dataset on the first principal component (PC1) and the second (PC2).

V. CONCLUSION

In this paper, we proposed five new datasets, labeled in an
uncertain and imprecise way by crowdsourcing contributors.
During the data collection, two steps are proposed to the
contributor to label an image: he first formulates an initial
answer, which he can then refine or enlarge according to
the precision but also the certainty given to his proposal.
The information collected is modeled by the theory of belief
functions. It provides flexibility in the representation of labels,
which allows to work on many uncertainty frameworks, such
as fuzzy sets, possibilities or even classical probabilities. The
datasets7 are free and available, they also contain the raw user
answers for any type of need.8
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