Communication Dans Un Congrès Année : 2024

Optimized Gröbner basis algorithms for maximal determinantal ideals and critical point computations

Vincent Neiger
Mohab Safey El Din

Résumé

Given polynomials g and f1,,fp, all in k[x1,,xn] for some field k, we consider the problem of computing the critical points of the restriction of g to the variety defined by f1==fp=0. These are defined by the simultaneous vanishing of the fi's and all maximal minors of the Jacobian matrix associated to (g,f1,,fp). We use the Eagon-Northcott complex associated to the ideal generated by these maximal minors to gain insight into the syzygy module of the system defining these critical points. We devise new F5-type criteria to predict and avoid more reductions to zero when computing a Gr\"obner basis for the defining system of this critical locus. We give a bound for the arithmetic complexity of this enhanced F5 algorithm and compare it to the best previously known bound for computing critical points using Gr\"obner bases.
Fichier principal
Vignette du fichier
ISSAC24_Final.pdf (2) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04450728 , version 1 (10-02-2024)
hal-04450728 , version 2 (26-07-2024)

Identifiants

Citer

Sriram Gopalakrishnan, Vincent Neiger, Mohab Safey El Din. Optimized Gröbner basis algorithms for maximal determinantal ideals and critical point computations. ISSAC 2024 - 49th International Symposium on Symbolic and Algebraic Computation, Jul 2024, Raleigh, NC, United States. pp.400-409, ⟨10.1145/3666000.3669713⟩. ⟨hal-04450728v2⟩
150 Consultations
103 Téléchargements

Altmetric

Partager

More