Optimized Gröbner basis algorithms for maximal determinantal ideals and critical point computations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Optimized Gröbner basis algorithms for maximal determinantal ideals and critical point computations

Vincent Neiger
Mohab Safey El Din

Résumé

Given polynomials $g$ and $f_1,\dots,f_p$, all in $\Bbbk[x_1,\dots,x_n]$ for some field $\Bbbk$, we consider the problem of computing the critical points of the restriction of $g$ to the variety defined by $f_1=\cdots=f_p=0$. These are defined by the simultaneous vanishing of the $f_i$'s and all maximal minors of the Jacobian matrix associated to $(g,f_1, \ldots, f_p)$. We use the Eagon-Northcott complex associated to the ideal generated by these maximal minors to gain insight into the syzygy module of the system defining these critical points. We devise new $F_5$-type criteria to predict and avoid more reductions to zero when computing a Gr\"obner basis for the defining system of this critical locus. We give a bound for the arithmetic complexity of this enhanced $F_5$ algorithm and compare it to the best previously known bound for computing critical points using Gr\"obner bases.
Fichier principal
Vignette du fichier
ISSAC24_Final.pdf (2.21 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04450728 , version 1 (10-02-2024)
hal-04450728 , version 2 (26-07-2024)

Identifiants

Citer

Sriram Gopalakrishnan, Vincent Neiger, Mohab Safey El Din. Optimized Gröbner basis algorithms for maximal determinantal ideals and critical point computations. ISSAC 2024 - 49th International Symposium on Symbolic and Algebraic Computation, Jul 2024, Raleigh, NC, United States. pp.400-409, ⟨10.1145/3666000.3669713⟩. ⟨hal-04450728v2⟩
147 Consultations
97 Téléchargements

Altmetric

Partager

More