MOISST: Multimodal Optimization of Implicit Scene for SpatioTemporal Calibration - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

MOISST: Multimodal Optimization of Implicit Scene for SpatioTemporal Calibration

Nathan Piasco
  • Fonction : Auteur
Moussab Bennehar
  • Fonction : Auteur
Luis Roldão
  • Fonction : Auteur
Dzmitry Tsishkou
  • Fonction : Auteur
Cyrille Migniot

Résumé

With the recent advances in autonomous driving and the decreasing cost of LiDARs, the use of multimodal sensor systems is on the rise. However, in order to make use of the information provided by a variety of complimentary sensors, it is necessary to accurately calibrate them. We take advantage of recent advances in computer graphics and implicit volumetric scene representation to tackle the problem of multi-sensor spatial and temporal calibration. Thanks to a new formulation of the Neural Radiance Field (NeRF) optimization, we are able to jointly optimize calibration parameters along with scene representation based on radiometric and geometric measurements. Our method enables accurate and robust calibration from data captured in uncontrolled and unstructured urban environments, making our solution more scalable than existing calibration solutions. We demonstrate the accuracy and robustness of our method in urban scenes typically encountered in autonomous driving scenarios.
Fichier principal
Vignette du fichier
2303.03056.pdf (20.92 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04440804 , version 1 (28-03-2024)

Identifiants

Citer

Quentin Herau, Nathan Piasco, Moussab Bennehar, Luis Roldão, Dzmitry Tsishkou, et al.. MOISST: Multimodal Optimization of Implicit Scene for SpatioTemporal Calibration. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2023, Detroit, France. pp.1810-1817, ⟨10.1109/IROS55552.2023.10342427⟩. ⟨hal-04440804⟩
118 Consultations
12 Téléchargements

Altmetric

Partager

More