Combining additivity and active subspaces for high-dimensional Gaussian process modeling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Combining additivity and active subspaces for high-dimensional Gaussian process modeling

Résumé

Gaussian processes are a widely embraced technique for regression and classification due to their good prediction accuracy, analytical tractability and built-in capabilities for uncertainty quantification. However, they suffer from the curse of dimensionality whenever the number of variables increases. This challenge is generally addressed by assuming additional structure in the problem, the preferred options being either additivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.
Fichier principal
Vignette du fichier
AddEmbHal.pdf (1.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04434927 , version 1 (05-02-2024)

Identifiants

Citer

Mickael Binois, Victor Picheny. Combining additivity and active subspaces for high-dimensional Gaussian process modeling. 2024. ⟨hal-04434927⟩
42 Consultations
34 Téléchargements

Altmetric

Partager

More