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Abstract

Gaussian processes are a widely embraced technique for regression and classification
due to their good prediction accuracy, analytical tractability and built-in capabilities
for uncertainty quantification. However, they suffer from the curse of dimensionality
whenever the number of variables increases. This challenge is generally addressed by
assuming additional structure in the problem, the preferred options being either addi-
tivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian
process modeling is to combine them with a multi-fidelity strategy, showcasing the
advantages through experiments on synthetic functions and datasets.

1 Introduction

As a surrogate modeling option, Gaussian processes (GPs), also known as kriging, enjoy

widespread use across applied scientific domains, including engineering, machine learning

and physics (see e.g., Williams & Rasmussen, 2006; Gramacy, 2020). Appreciated for their

efficiency on small datasets, GPs offer a full predictive distribution in closed form and are

readily accessible from numerous software packages. Nonetheless, the case of many input

variables remains one of the most challenging topic in GP modeling, and particularly in its

use within Bayesian optimization (BO) (see e.g., Garnett, 2023). The root of the issue is

that the typical covariance kernels employed in applications, e.g., the squared exponential or

Matérn ones, hinge on Euclidean and absolute distances between data points, as discussed,

e.g., by Wilson et al. (2016). As the dimension increases, so do the distances between

designs. Hence, in high-dimensional spaces, GP predictions predominantly operate in the
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extrapolation regime, where the selection of a trend (or mean function) is critical, see e.g.,

Journel & Rossi (1989).

Among possible structural assumptions to scale with respect to the number of variables,

three main categories have emerged. The first one is to identify the most important variables

and then reduce the problem dimensionality. This adaptive variable selection is applied for

instance by Cao et al. (2022), while remaining efficient in both the number of variables and

dimensions through the use of the Vecchia approximation, which restricts the conditioning set

of each observations to only a few designs. A second, more general approach, entails assuming

that the problem has a low intrinsic dimensionality, meaning that the variation of the function

is concentrated on a few directions only. This is also referred to as using linear embeddings

Wang et al. (2013); Garnett et al. (2014) or active subspaces (AS, Constantine et al., 2014;

Eriksson et al., 2019). Hence, both approach avoid dealing directly with high-dimensional

distances. A third perspective is to consider additive decompositions of the function, where

components involve only a few variables, thereby limiting the degree of interaction between

variables, see e.g., Duvenaud et al. (2011); Durrande et al. (2012); Rolland et al. (2018); Lu

et al. (2022). Ginsbourger et al. (2016), decomposes a regular product Gaussian kernel into

ANOVA terms allowing the resulting GP to undergo a similar decomposition. The originality

is to separate elements into additive and ortho-additive components (i.e., that capture all

the non-additive parts). For a more comprehensive review of high-dimensional GPs and BO,

we refer to Malu et al. (2021); Binois & Wycoff (2022).

Here we focus on these two promising avenues that have been explored separately: the

use of linear embeddings and of additive models. Each approach comes with its own set

of strengths and limitations. Linear embeddings offer great scalability and allow captur-

ing complex interactions, but only as long as the intrinsic dimension is low. Besides, the

intrinsic dimension is generally not know before hand and the method is very sensitive to

its estimation, as it is to the choice of the embedding. Additive models typically capture

very well the main trends from high-dimensional data. However, as the number of possible

interactions terms makes the full inference combinatorially intractable, with too many hy-

perparameters, it is common practice to limit the number of interactions to a manageable

few, which severely limits the expressivity of those models. Additional concerns may arise

in BO due to the vanishing variance at unexplored locations Durrande et al. (2012).

Given the distinct relative advantages of each approach – namely the scalability and

interpretability offered by additive GPs and the ability to capture high-order interactions

through AS-based GPs – we aim to propose a hybrid model that incorporates the strengths
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of both. As each can capture the features of the other, with high-order interactions or large

intrinsic dimensionality, combining them is not trivial. To address identifiability issues, we

introduce orthogonality by adopting a multi-fidelity approach, typically used when inex-

pensive yet coarse approximations of the target function are available, see e.g., Kennedy &

O’Hagan (2000); Brevault et al. (2020). In a nutshell, our model will consider two fidelity

levels: a coarse level corresponding to a first order additive model and a high-fidelity level

by a GP on an active subspace whose dimension is learned.

Our contributions are the following:

• We concentrate on two efficient structural assumptions for high-dimensional GP mod-

eling, namely additivity and linear embeddings. We further detail their respective

strengths and weaknesses, plus the complexity of a naive combination.

• We develop a multi-fidelity approach designed to efficiently perform this combination,

capturing additive and linear embedding contributions.

• For AS-based GPs, we discuss inference of the intrinsic dimension within one- or two-

stage methods.

• We conduct a thorough comparison of our multi-fidelity method against baselines

within an extensive benchmark comprising test functions and datasets. Our find-

ings confirm that the multi-fidelity approach improves over a standard GP when either

additivity or active subspaces are present. Importantly, the performance does not

degrade when such structures are absent.

2 Background

We want to fit a Gaussian process model of f : X ⊂ Rd → R when d is relatively large.

What large means depends on the dataset size and the complexity of the problem at hand. In

the derivative free black-box context, it is generally considered that ten variables problems

already fall within the realm of high dimensionality. We briefly outline Gaussian process

regression, the additive and linear embedding versions, before introducing the multi-fidelity

model.
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2.1 Gaussian Processes Regression

Given n ∈ N input designs x(i) ∈ X with corresponding observations f(x(i)) = yi (possibly

noisy), GPs are a form of spatial modeling that only depends on a mean and a covariance

function. Typically, the mean function is taken to be zero, and all the modeling effort is

placed on the covariance function k. From this GP prior, the posterior distribution is another

GP and the prediction at any x follows: Y (x)|(x, yi)1≤i≤n ∼ N (mn(x), s
2
n(x)) where, see

e.g., Williams & Rasmussen (2006); Gramacy (2020):

mn(x) = k(x)⊤K−1y,

s2n(x) = k(x,x)− k(x)⊤K−1k(x)

with y := (y1, . . . , yn), k(x) := (k(x,x(i)))1≤i≤n, K := (k(x(i),x(j))+ τ 21i=j)1≤i,j≤n. τ
2 is the

noise hyperparameter, when assuming yi = f(x(i)) + εi, with εi ∼ N (0, τ 2).

The covariance kernel function must be a positive definite function. In practice, pa-

rameterized families such as the Gaussian and Matérn covariances are employed, see e.g.,

Williams & Rasmussen (2006). As an example, the Matérn 5/2 kernel in product form writes:

k(x,x′) = σ2
d∏

i=1

ki(xi, x
′
i) with ki(xi, x

′
i) =

(
1 +

√
5hi/θi + 5h2

i /(3θ
2)
)
exp

(
−
√
5hi/θ

)
. For

inferring the hyperparameters, we rely on the log-likelihood: logL := −n/2 log(2π) −
1/2 log |K|−1/2y⊤K−1y. When the variance parameter σ2 can be factorized, i.e. K = σ2R,

with R the correlation matrix, its estimator is available in closed-form: σ̂2
n := n−1y⊤R−1y,

while the other hyperparameters are obtained by maximizing the concentrated log-likelihood:

log L̃ := −n/2 log(2π)− n/2 log(σ̂2
n)− n/2 log |R| − n/2.

A typical extension of GPs to offer much better scalability with data size is to follow the

Sparse Variational GP (SVGP) framework (Titsias, 2009; Hensman et al., 2013). While not

considered in this paper, our model would naturally apply to this framework.

2.2 Additive Model

Unlike tensor product covariance kernels whose values quickly decrease to zero, impacting

the covariance values hence the modeling ability, the tensor sum counterparts do not suffer

from this problem. This latter form of covariance amounts to considering additive models,

that is, decompositions of the original function into several components. The general model

writes f(x) ≈ µ+
M∑
i=1

gi(xAi
) with component functions gi acting on subsets of variables Ai,

plus a constant term µ. These subsets can simply be the original variables Neal (1997); Plate
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(1999); Duvenaud et al. (2011); Durrande et al. (2012), disjoint groups Kandasamy et al.

(2015); Gardner et al. (2017) or more general subsets of variables Rolland et al. (2018).

The sum form of the covariance, i.e., kA(x,x
′) =

d∑
i=1

ki(xi, x
′
i), translates in the model,

where the mean becomes the sum of component-wise means mn,A(x) = kA(x)
⊤K−1

A y =
d∑

i=1

ki(xi)K
−1
A y =

d∑
i=1

mn,i(xi) with ki(xi) := (ki(xi, x
(j)
i ))1≤j≤n. It becomes useful for visu-

alization and interpretation, e.g., with main effect plots. As for the predictive variance, it

does not have a similar decomposition but it can can be zero at unobserved locations, unless

noise is present, see, e.g., Durrande et al. (2012).

Inference can involve learning variance and scale parameters for every component kernel,

plus eventually selecting interaction order, with up to 2d components. To help inference,

centering the various terms is usually preferred to avoid non-identifiability Durrande et al.

(2012); Lu et al. (2022). Orthogonality constraints can be further added between the terms,

leading to functional ANOVA decomposition of the original function, see e.g., Muehlenstaedt

et al. (2012); Durrande et al. (2013); Ginsbourger et al. (2016).

2.3 Active Subspace Methods

By not imposing the variables to match the original variables in dimension reduction, one

can rather attempt to learn the most important directions of variation of f : f(x) ≈ g(A⊤x)

with A a d × r matrix, 1 ≤ r ≤ d and preferably r ≪ d. Learning this linear embedding

encoded in A is possible with different strategies. Elements of A can be treated as regular

hyperparameters Garnett et al. (2014); Tripathy et al. (2016); Letham et al. (2020), or they

can be randomWang et al. (2013); Nayebi et al. (2019), relying on the stability of the random

projection for the L2 norm.

When looking at directions where f varies the most, the so-called active subspace Con-

stantine (2015), A is defined (up to a rotation) as the largest r eigen vectors of the matrix

C :=
∫
X
∇(f(x))⊤∇(f(x))λ(dx) where λ is usually the Lebesgue measure on hypercubic

domains. Without the gradient of f , A may be estimated via compressed sensing, partial

least squares, principal component analysis, see e.g., Carpentier & Munos (2012); Djolonga

et al. (2013); Bouhlel et al. (2016); Raponi et al. (2020). For a GP, its AS matrix C(n) can be

directly computed, as shown by Wycoff et al. (2021) and detailed in Appendix A. These AS

approaches usually involve first learning a high-dimensional GP to estimate A, before fitting

a low dimensional GP in the reduced space, see e.g., Tripathy et al. (2016). In Appendix A,

we also show how to learn directly the low dimensional GP.
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2.4 Multi-fidelity

Be it a number of Monte Carlo iterations, a mesh or a training set size, the accuracy of a

simulator experiment is often tunable. Accordingly, GP models have been adapted to take

into account these various levels of fidelity, see e.g., Kennedy & O’Hagan (2000); Forrester

et al. (2008); Le Gratiet & Garnier (2014); Tighineanu et al. (2022). We only review the two

levels case here, coarse (resp. fine) level denoted by C (resp. E), with the auto-regressive

(AR) model: fE(x) = ρfC(x) + δ(x), δ(·) ⊥ fC(·). This model, proposed by Kennedy &

O’Hagan (2000), assumes that ∀x ̸= x′, Cov [YE(x), YC(x
′)|YC(x)] = 0, i.e., that nothing

more can be learned for YE(x) from the coarse model if YC(x) is known.

Denote the nC observations yC (resp. yE) at XC :=
(
x
(1)
C , . . . ,x

(nC)
C

)
(resp. XE). Given

the following covariances:

Cov [YC(x), YC(x
′)] = kC(x,x

′),

Cov [YE(x), YC(x
′)] = ρkC(x,x

′),

Cov [YE(x), YE(x
′)] = ρ2kC(x,x

′) + kE(x,x
′),

the corresponding predictive equations for the zero mean version are given by (see, e.g.,

Kennedy & O’Hagan (2000); Forrester et al. (2008) for the derivation):

mn,E(x) = k̃(x)⊤K̃−1ỹ,

s2n,E(x) = ρ2kC(x,x) + kE(x,x)− k̃(x)⊤K̃−1k̃(x)
(1)

with k̃(x)⊤ = [ρkC(XC ,x), ρ
2kC(XE,x) + kE(XE,x)],

K̃ =

[
kC(XC ,XC) ρkC(XC ,XE)

ρkC(XE,XC) ρ2kC(XE,XE) + kE(XE,XE)

]
and ỹ⊤ = [yC ,yE].

For inference, the low fidelity model is independently trained first, then the fine level

hyperparameters (including ρ) are obtained based on d := yE − ρyC(XE). If the designs of

experiments between fidelity levels are nested, i.e., XE ⊆ XC , the difference between levels

can be directly evaluated. Otherwise, the difference can be computed based on the predictive

mean Forrester et al. (2008); Sacher et al. (2021), replacing yC(XE) by its prediction. Further

details are given in Appendix B.

A recursive formulation of Eq. (1) is available to reduce the computational effort, see

e.g., Le Gratiet & Garnier (2014), but equivalence holds only in the noiseless setting, see

Appendix B. Subsequently we introduce our proposed multi-fidelity combination of additive
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and linear embedding models, tailored to tackle high-dimensional problems.

3 Multi-fidelity for High-dimensional Modeling

Our goal is to combine the advantages of both additive and linear embedding models, without

further complexifying inference. Ideally, each component would capture distinct features of

the high-dimensional black-box, thereby enhancing the overall model performance.

3.1 Combination Options

There are presumably many options to combine models. A straightforward idea would be

to simply sum the two types of models, but this raises identifiability issues. Without the

AS assumption, this is the model proposed by Plate (1999) for visualization, by gradually

modifying the degree of additivity. Another such idea is first to apply a rotation with AS as

a preprocessing step, e.g., as in Wycoff et al. (2022), before applying an additive model on

the inactive directions. The drawbacks here are the loss of interpretability of the additive

model in the original variables and a potential lack of interpolation if the additivity assump-

tion does not hold. The converse is to learn a linear embedding directly on the residuals

of an additive model, which result in a challenging inference problem if done in one step.

One workaround to include orthogonality conditions would be to follow Lenz (2013); Gins-

bourger et al. (2016) with an orthogonal decomposition between additive and ortho-additive

components, before applying AS on the latter. While appealing, this decomposition remains

based on the projection of a single high-dimensional tensor product kernel. Furthermore,

the independent integral derivations of ortho-additive and AS components do not seamlessly

carry over when combined.

3.2 A Multi-fidelity Approach

To maintain an orthogonality condition for identifiability, we propose to rely on the one

enjoyed by the multi-fidelity model. Indeed, this model regresses the coarse model when

no data is available, in order to improve extrapolation–the predominant prediction regime

characteristic of high-dimensional problems. We opt for a first order additive model as

the coarse level and a linear embedding model as the finer one. This choice is the most

natural since (first order) additivity is a restrictive yet data-efficient assumption. The linear

embedding then is able to learn the remaining high orders of interaction, allowing flexibility
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in the choice of the embedding dimension r. In the case r = d, a regular GP is fit on the

residuals between additive model prediction and data, still on the rotated initial input space,

thus maintaining interpolation in the noiseless case. This rotation is shown to be helpful as

a pre-processing step Wycoff et al. (2022). If the additive model is a good approximation,

the remaining variance of the GP on the residuals will be smaller. This thus alleviates

the inflation of the variance in high dimension stemming from the behavior of distances,

causing over-exploration as often observed in high-dimensional BO, see e.g., Eriksson et al.

(2019). The converse, taking an AS model as coarse model is less relevant as it will also

capture additive components while a finer additive model may not be able to interpolate

deterministic data. Plus, again, the additive model would be on a rotated input space,

losing interpretability and convenience. Our proposed model thus writes:{
YE(x) = ρYC(x) + δ(Ax)

YC(x) ⊥ δ(Ax)
(2)

In practice there is solely one set of (fine level) evaluations y. To obtain coarse level values

and d, we simply take the predictions provided by the additive model: y(C) = m
(C)
n (XC). An

issue that may arise with this scheme is when an additive model fits the data perfectly. This

scenario is more likely to occur when the training dataset is small, or the dimension large.

Figure 1 illustrates an example using the non-additive Branin function. There are several

options to cope with this issue, which can be detected by comparing the noise variance to the

process variance. One is to restrict the range of the lengthscale (e.g., using prior knowledge).

Another one is to withhold some designs from the additive model. That way, if the prediction

by the additive model is not accurate, then it will be corrected at the fine level. Lastly, it

remains to build the finer model on the residuals of the prediction by the coarse level. When

fitting a linear embedding model, one key question is the selection of the dimension. We

choose to rely on the likelihood to do so.

3.3 Proposed Instantiation

We detail the construction of model (2) in Algorithm 1. In Step 2, we restrict ourselves to

using a first order additive model, avoiding higher order terms selection. From Steps 3 to 6,

in case the noise variance of the additive model τ 2C is less than one percent of the additive

process variance, σ2
n,C =

d∑
i=1

αi, then the additive model is replaced by one trained on a

fraction p of the data. In Step 7, the low fidelity data is obtained by predicting with the
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Figure 1: Additive model prediction surfaces on 20 points from the Branin function, inter-
polating (left) or approximating (right).

Algorithm 1 Pseudo-code for multi-fidelity high dim GP

1: Input: XE = XC , y, p (e.g., 0.8)
2: Train an additive model YC on (XC ,y)

3: if τ 2C ≤ 0.01×
d∑
1

αi then

4: Sample n0 = p× n data points from x1:n, y and remove the rest from XC and y(C).
5: Train an additive model YC on (XC ,y

(C)).
6: end if
7: Predict the response of YC at XE: m

(C)
n (XE).

8: Train a multi-fidelity GP from the residual data: d = y − ρm
(C)
n (XE).

9: Estimate the corresponding AS matrix C(n).
10: Train an AS multi-fidelity GP, varying the number of dimensions kept r.
11: Output: Trained multi-fidelity model.

additive model. The remaining steps are dedicated to learning the linear embedding and the

corresponding GP hyperparameters.

For this, we prefer the active subspace to be learned (and not random, which usually re-

quires several random AS to work well, in practice and theoretically, see Cartis et al. (2023)).

There we follow Wycoff et al. (2021), because the required number of hyperparameters to

learn the linear embedding remains limited compared to say, Garnett et al. (2014); Letham

et al. (2020). Following the modularization principle Liu et al. (2009), that is, separating

inference of different modules, we chose to perform a two-stage approach, rather than the

single-stage one described in Appendix A. In Step 8, first a tensor product high-dimensional

GP model is trained on the residuals between the observations and predictions by the coarse
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model from Step 7. From this model, an estimation of the active subspace matrix C is

obtained (Step 9), following Wycoff et al. (2021). The eigen vectors U of C(n) = UΛU⊤

provide the new coordinate system, i.e., with rotated coordinates XE,r = XEU1:r (assuming

that X is centered). It remains to select the number r of eigen vectors from U. Since r is

a discrete parameter, one simple workaround is to optimize the lengthscale parameters for

various values of r, before selecting the best overall value (Step 10). One can consider that

lengthscales for the inactive dimensions are set to infinity, such that this remains the same

model defined on the full rotated space. Note that this can result in a noisy model, where

the noise subsumes the contributions of the inactive dimensions.

4 Empirical Evaluation

We conduct a comparative analysis between the multi-fidelity approach and baseline methods

on synthetic functions and datasets. Rather than taking very large input dimensions d and

data sizes n, we focus on the low data regime, considering n up to 500 and d up to 32.

4.1 Setup

As a baseline, we use a standard GP model (hereafter denoted by Ref), with a tensor prod-

uct kernel. The R R Core Team (2023) package hetGP Binois & Gramacy (2021) is used for

learning of the hyperparameters, where the initialization of the hyperparameters is comple-

mented by an initialization with the R package RobustGaSP Gu et al. (2022) for a robust

hyperparameter estimation Gu et al. (2018). We entertain an additional variant of standard

GPs, with an isotropic kernel (Iso). Additionally we assess the individual component models

of the multi-fidelity approach: a first order additive model (Add) and linearly embedded GP

(AS). A multi-fidelity model with a standard GP for the finer level is also entertained (MF),

in addition to the version with active subspace (ASMF, which is our main proposal). We

further add naive variants (n-) of the multi-fidelity models, involving a direct summation

of the additive model with the one on the residuals. The implementation of the proposed

models is in the Supplementary Material to reproduce the results. All use Matérn 5/2 kernels

in these experiments.

For test functions, we start with draws from GPs with d = 8, 15, avoiding model mis-

match. That is, we consider draws from standard GPs and first order additive GPs. The

subsequent set of tests is with classical toy problems: Sobol (d = 8) Marrel et al. (2009),

penicillin (d = 7) Liang & Lai (2021), Levy (d = 10, 20) Laguna & Marti (2005) and Cola
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(d = 17) Mathar & Zilinskas (1994). We also embed lower dimensional test functions, Hart-

mann3 (de = 3) with a random AS matrix with d = 8, 15 and Branin (de = 2) Dixon (1978)

with a random hashing matrix with d = 10. We complement these by adding an additive

GP realization to the linearly embedded Hartmann3 function. From a thousand randomly

sampled locations where these benchmarks are evaluated, a training set is extracted. Lastly,

we use real datasets BostonHousing (d = 13), Concrete (d = 8) Newman et al. (1998),

pumadyn (d = 8, 32) Corke (1996) and CASP (d = 9) Rossi & Ahmed (2015). All test sets

are centered, and rescaled to unit variance. As for metrics, we rely on the root mean square

error (RMSE) and score (or log-predictive density, Gneiting & Raftery, 2007), computed on

the remaining data after training.

4.2 Results

The results are presented for the RMSE (lower is better) and score (higher is better) in

Figures 2 and 3. We threshold scores at -5 for better visualization. Before delving into specific

details, the multi-fidelity plus AS is in general at least as well as regular GPs. Notably, it

can improve significantly the results when additive or low intrinsic dimensionality is present.

The few exceptions, e.g., on standard GP samples, occur mostly for the lowest budgets

and with a small difference. It is noteworthy that regular GPs are in general not worse

than most alternatives, and in particular when first-order additive or AS-alone structure

are not present. This underscores the importance of meticulous hyperparameter tuning for

high-dimensional GPs, where larger values can be taken to offset greater distances, without

resulting in conditioning issues of the covariance matrix.

The naive and AR multi-fidelity models seem to perform similarly on the RMSE, but

the AR model generally yields better scores, both with full and AS kernels. Perhaps unsur-

prisingly, the best results of the MF models are obtained when the additive model performs

well: e.g., for Sobol, penicilin, addGP. Then the AS version of the MF GPs tends to out-

perform the full GP one, where the best results are obtained when AS structure is present

as well: penicillin, puma, addGP + Hartman or Levy. This improvement can be attributed

to either truncating the number of active dimensions, or simply to the rotation applied on

the input space when keeping all variables. This can be seen in Appendix in Figure 4 (also

note that the selected dimension is usually larger than the actual embedding one, which is

recommended in practice Letham et al. (2020) and theoretically Cartis & Otemissov (2022)).

While additive and AS models excel when such structure is present, they tend to perform

poorly when this assumption does not hold, especially in terms of score. This effect is more
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Figure 2: First part RMSE and score results. The color lines indicate the baseline result
from standard GP models.
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Figure 3: Second part RMSE and score results. The color lines indicate the baseline result
from standard GP models.
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pronounced in additive models, as AS GP ones can compensate using r = d dimensions,

ultimately not reducing the dimension.

Then for problems with simultaneously additive and AS structures, the dedicated GP

models perform best. Isotropic GPs may make a reasonable initial choice with low data,

as they are much easier to infer, but they quickly become less effective than anisotropic

ones. Timings are provided in Appendix C, Figure 6, where the repeated optimization of

the likelihood to estimate the best low dimension r in the AS models shows. Considering

multi-fidelity does not add much computational effort. In terms of budget, more data is

beneficial to all models, as reflected by the larger boxplots for lower budgets. The effect of

the budget is the most striking on the AS models, suggesting that a minimal amount of data

is essential for robust inference. Conversely, the additive model exhibits the least change

with increasing budget and can perform well even with lowest budgets.

Finally, we include an indicative comparison with the higher-order additive model (OAK)

from Lu et al. (2022), as depicted in Figure 5 in Appendix C. However, the results are harder

to interpret: the predictive variance is not returned to compute scores, additional scalings

are performed, plus a measure on the input space is needed. OAK can perform better than

the alternatives on some test cases, but worse on the cases with active subspaces. This

highlights the difficulty of learning high-order interactions in additive models.

5 Conclusion and Perspectives

We propose a simple solution to properly combine the predominant structural assumptions

for high-dimensional modeling: additivity and low intrinsic dimensionality. The resulting

multi-fidelity model is simple to construct and robust to incorrect assumptions. The promis-

ing results obtained open perspectives in several main directions. First, the inference of GP

hyperparameters for high-dimensional problems may be improved, potentially starting with

GPs that have pre-selected lengthscales, as suggested in Appriou et al. (2023). Then a com-

parison could be conducted with direct inference of the active subspaces matrix within GPs,

see e.g., Letham et al. (2020) or Garnett et al. (2014). Given that larger datasets may be

necessary for more precise inference of such features, a combination with sparse GP models,

e.g., as in Moss et al. (2023), would be considered. This could further include input and

output warpings, as already advocated by Lin & Joseph (2020); Lu et al. (2022). A second

direction to explore is the use of less linear multi-fidelity models as summarized by Brevault

et al. (2020), or even multi source models, see, e.g., Poloczek et al. (2017). This would be
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beneficial when combining models whose structural assumptions have no natural ordering,

like BOCK Oh et al. (2018), and higher order additive models Lu et al. (2022). Non-linear

dimension reduction is another appealing candidate, see e.g., Guhaniyogi & Dunson (2016).

Lastly, GP modeling shines in sequential procedures, where existing works only focus on

individual aspects, say additivity Schwabe (1995), multi-fidelity Le Gratiet & Cannamela

(2015) or active subspace estimation Wycoff et al. (2021). Future research could delve into

the alignment of these goals compared to Bayesian optimization, exploring how these aspects

synergize in sequential decision-making processes.
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A One Shot Active Subspace Gaussian Process Learn-

ing

In practice, C =
∫
X
∇(f(x))⊤∇(f(x))λ(dx) is often estimated by Monte Carlo, either di-

rectly on f when the gradient is available, or on its surrogate. In Wycoff et al. (2021), this AS

matrix is expressed in closed form for a GP, which can be further used to reduce the dimen-

sion. Let k be a twice differentiable kernel, with derivatives κ, Wi,j :=
∫
X κi(X)⊤κj(X)dλ,

and Ei,j :=
∫
X

∂2k(X,X)
∂xi∂xj

dλ. Then, C
(n)
i,j = Ei,j − tr (K−1

n Wi,j) + y⊤K−1
n Wi,jK

−1
n y. As a

result, estimating a GP with reduced dimension is possible via a two-step process: first fit

an high-dimensional GP, then use the corresponding AS matrix to learn a low dimensional

GP on the projected data, with kernel k(x,x′) = k̃(A⊤x,A⊤x′), assuming a centered X,

where A = Ur, the first r eigen vectors of C(n).

Nevertheless, the AS matrix C(n) in fact only depends on the d lengthscale hyperpa-

rameters, and the data. What we propose here is to use the same parameterization of the

AS matrix of the GP, but learn the parameters via the likelihood of a low dimensional GP,

i.e., learn all hyperparameters: l1, . . . , lr, θ1, . . . θd at once, where the li (resp. θi) are the low

(high) dimensional GP lengthscales.

We rely on the work made previously with the derivative of an AS kernel in Wycoff et al.

(2021), and give the additional required expressions, that is ∂C
∂θi

:

∂C
(n)
i,j

∂θi
=

∂Ei,j − tr (K−1
n Wi,j) + y⊤K−1

n Wi,jK
−1
n y

∂θi
.

Hence we need
∂Ei,j

∂θi
, ∂K−1

n

∂θi
and

∂Wi,j

∂θi
. These are combined to get:

∂C
(n)
i,j

∂θi
=

∂Ei,j

∂θi
− tr

(
∂K−1

n

∂θi
Wi,j +K−1

n

∂Wi,j

∂θi

)
+

y⊤∂K−1
n

∂θi
Wi,jK

−1
n y + y⊤K−1

n

∂Wi,j

∂θi
K−1

n y + y⊤K−1
n Wi,j

∂K−1
n

∂θi
y.

and up to the likelihood level:

∂ logL

∂θi
=

∂
(
const.− n

2
log y⊤K−1y − 1

2
log |K|

)
∂θi

=
n

2σ̂2
y⊤K−1∂K

∂θi
K−1y − 1

2
Tr

(
K−1∂K

∂θi

)
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where, using the chain rule
∂Ki,j

∂θi
=

∂Ki,j

∂U
∂U
∂θi

. More precisely, using Petersen et al. (2008),

involving the eigen vectors Ul and corresponding eigen value λl of C, and pseudo-inverses †:

∂Ul

∂θi
= (λlI−C)†

∂C

∂θi
Ul.

As an example, for a Gaussian kernel in the reduced dimension too, h = (xi − xj), such

that:
∂Ki,j

∂W
= 2Diag(l)Whh⊤Ki,j.

For this Gaussian kernel case, parameterized by k(x,x′) =
d∏

i=1

exp

(
−
(

xi−x′
i

θi

)2
)

(denot-

ing a = xi, b = x′
i and t = θi):
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)
e
− b2+a2

2t2 −
(
−b2 + 2 (b+ a− 1)− a2

)
e
−b2+2(b+a−1)−a2

2t2

)
8t4

+
2
√
π (a− b)

(
erf
(

b+a−2
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)
− erf

(
b+a
2t
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4t2 −
√
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)
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B Complements on the Auto-regressive Multi-fidelity

Model

For the implementation, we start by giving some log-likelihood derivatives. Then we discuss

the link to the recursive formulation of the AR multi-fidelity model.
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B.1 Log-likelihood Derivatives

Derivatives of the log-likelihood are given, e.g., in Forrester et al. (2008). The only change

is the log-likelihood derivative that requires adaptation in the additive case.

For the coarse level model with an additive kernel where K =
d∑

i=1

αiK
(i)(θi) + gI:

L = −n/2 log(2π)− 1/2y⊤
CK

−1yC − 1/2 log |K|

∂L

∂θi
= 1/2y⊤

CK
−1∂K

∂θi
K−1yC − 1/2Tr

(
K−1∂K

∂θi

)
∂L

∂αi

= 1/2y⊤
CK

−1∂K

∂αi

K−1yC−1/2Tr

(
K−1∂K

∂αi

)
= 1/2y⊤

CK
−1K(i)K−1yC−1/2Tr

(
K−1K(i)

)
Then for the AR multi-fidelity kernel:

∂L̃

∂ρ
=

∂ − n/2 log(σ̂2
d)

∂ρ
= −1/2

∂(yE − ρyC)
⊤K−1(yE − ρyC)

∂θi
= yCK

−1(yE − ρyC)

B.2 Recursive Formulation

Le Gratiet & Garnier (2014) provide a recursive formulation of the multi-fidelity AR model,

which is equivalent to the one by Kennedy & O’Hagan (2000) but only in the deterministic

case. This formulation writes:

mn,E(x) = mn,C(x) + kE(x,XE)K
−1
E (y(E) − ρy(C)),

s2n,E(x) = ρ2sn,C(x) + kE(x,x)− kE(x,XE)K
−1
E kE(XE,x)

(3)

which reduces the computational complexity of fitting the finer level and gives the predictive

quantities at all fidelity levels. We give here a simple proof of the equivalence in this case,

then show that it does not apply in the noisy one.

B.2.1 Deterministic Case

In the deterministic case, when both designs are equal, XC = XE (of size n):

K̃ =

[
kC(XC ,XC) ρkC(XC ,XE)

ρkC(XE,XC) ρ2kC(XE,XE) + kE(XE,XE)

]
:=

[
KC ρKC

ρKC ρ2KC +KE

]
Similarly, k̃(x) := [ρkC , ρ

2kC + kE]
⊤ for shorter notation (dropping the dependence on

x).
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Then the block-matrix inverse formula Petersen et al. (2008) gives, following the notations

there: C1 = KC − ρ2KC(KE + ρ2KC)
−1KC and C2 = ρ2KC +KE − ρ2KC = KE where this

second equality is used for expressing K̃−1: K̃−1 =

[
ρ2K−1

E +K−1
C −ρK−1

E

−ρK−1
E K−1

E

]
.

Consequently, for the predictive equations:

K̃−1k̃ = [ρ3K−1
E kC + ρK−1

C kC − ρ3K−1
E kC − ρK−1

E kE,−ρ2K−1
E kC + ρ2K−1

E kC +K−1
E kE] =

[ρK−1
C kC − ρK−1

E kE,K
−1
E kE]

such that

mn,E(x) = k̃⊤K̃−1ỹ = ρkCK
−1
C yC − ρkEK

−1
E yC + kEK

−1
E yE = mn,C(x) + kEK

−1
E (yE −

ρyC)

and

s2n,E(x) = k̃⊤K̃−1k̃ = ρ2kCK
−1
C kC−ρ2kCK

−1
E kE+ρ2kCK

−1
E kE+kEK

−1
E kE = ρ2kCK

−1
C kC+

kEK
−1
E kE = ρ2s2n,C(x) + s2n,d(x)

For the non equal DoE, XC can be split into [XE,XR] where XR are the designs where

only the cheap level is evaluated. In this case, we still have that C2 = ρ2KC(XE,XE) +

KE − ρ2KC(XE,XE) = KE. The last term is obtained by realizing that A12 is the first nE

lines of KC(XC ,XC) = A11. Then A12A
−1
11 = [I,0] and A−1

11 A21 = [I,0]⊤ such that:

K̃−1 =


[
ρ2K−1

E 0

0 0

]
+KC(XC ,XC)

−1

[
−ρK−1

E

0

]
[
−ρK−1

E 0
]

K−1
E


Hence, with k̃ = [ρkC(XE,x), ρkC(XR,x), ρ

2kC(XE,x)+kE], the same simplifications as

above occur, giving the equivalence between the two formulations. From the expression of

K̃−1, only n× n inverses and determinants need to be computed.

B.2.2 Noisy Coarse Function

Now assume that the low fidelity function is noisy, as is usually the case for an additive

model. This time, the application of the block inverse matrix when XE = XC on:

Ǩ =

[
kC(XC ,XC) + gI ρkC(XC ,XE)

ρkC(XE,XC) ρ2kC(XE,XE) + kE(XE,XE)

]
:=

[
KC +D ρKC

ρKC ρ2KC +KE

]
gives, (following again notations from Petersen et al. (2008)): C1 = (KC + D) −

ρ2KC(KE + ρ2KC)
−1KC and C2 = ρ2KC +KE − ρ2KC(KC +D)−1KC = KE + ρ2(K−1

C +

g−1I)−1 = KE + gρ2KC(KC + gI)−1 using the Woodbury identity. Even though it allows

to reduce the computational complexity of the direct multi-fidelity approach, it does not

lead to the expressions from the recursive formulation. In particular, the recursive variance
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expression does not equal zero at XE since the low fidelity variance is greater than zero.

C Additional Results

To complement the results provided in the main part, Figure 4 focuses on the estimation of

the low intrinsic dimensionality. Then a comparison on the RMSE for the OAK model by Lu

et al. (2022) is given in Figure 5, before general timing results in Figure 6. The experiments

have been performed on four 2.40GHz Intel cores.
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Figure 4: Number of active dimensions kept for the AS GP (left boxplots) and MF AS
GP (right gray-filled boxplots). The red segments indicate the number of variables of the
problem (d).
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Figure 5: Additional RMSE results including the OAK model. The color lines indicate the
baseline result from standard GP models.
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Figure 6: Timings in seconds. The color lines indicate the baseline result from standard GP
models.
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