Anomaly Detection in Industrial IoT Using Distributional Reinforcement Learning and Generative Adversarial Networks - Archive ouverte HAL
Article Dans Une Revue Sensors Année : 2022

Anomaly Detection in Industrial IoT Using Distributional Reinforcement Learning and Generative Adversarial Networks

Résumé

Anomaly detection is one of the biggest issues of security in the Industrial Internet of Things (IIoT) due to the increase in cyber attack dangers for distributed devices and critical infrastructure networks. To face these challenges, the Intrusion Detection System (IDS) is suggested as a robust mechanism to protect and monitor malicious activities in IIoT networks. In this work, we suggest a new mechanism to improve the efficiency and robustness of the IDS system using Distributional Reinforcement Learning (DRL) and the Generative Adversarial Network (GAN). We aim to develop realistic and equilibrated distribution for a given feature set using artificial data in order to overcome the issue of data imbalance. We show how the GAN can efficiently assist the distributional RL-based-IDS in enhancing the detection of minority attacks. To assess the taxonomy of our approach, we verified the effectiveness of our algorithm by using the Distributed Smart Space Orchestration System (DS2OS) dataset. The performance of the normal DRL and DRL-GAN models in binary and multiclass classifications was evaluated based on anomaly detection datasets. The proposed models outperformed the normal DRL in the standard metrics of accuracy, precision, recall, and F1 score. We demonstrated that the GAN introduced in the training process of DRL with the aim of improving the detection of a specific class of data achieves the best results.

Dates et versions

hal-04431338 , version 1 (01-02-2024)

Identifiants

Citer

Hafsa Benaddi, Mohammed Jouhari, Khalil Ibrahimi, Jalel Ben-Othman, El Mehdi Amhoud. Anomaly Detection in Industrial IoT Using Distributional Reinforcement Learning and Generative Adversarial Networks. Sensors, 2022, 22 (21), pp.8085. ⟨10.3390/S22218085⟩. ⟨hal-04431338⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

More