Crime pays; homogenized wave equations for long times - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2022

Crime pays; homogenized wave equations for long times

Agnes Lamacz-Keymling
  • Fonction : Auteur
Jeffrey Rauch
  • Fonction : Auteur
  • PersonId : 830089

Résumé

This article examines the accuracy for large times of asymptotic expansions from periodic homogenization of wave equations. As usual, ϵ denotes the small period of the coefficients in the wave equation. We first prove that the standard two scale asymptotic expansion provides an accurate approximation of the exact solution for times t of order ϵ − 2 + δ for any δ > 0. Second, for longer times, we show that a different algorithm, that is called criminal because it mixes different powers of ϵ, yields an approximation of the exact solution with error O ( ϵ N ) for times ϵ − N with N as large as one likes. The criminal algorithm involves high order homogenized equations that, in the context of the wave equation, were first proposed by Santosa and Symes and analyzed by Lamacz. The high order homogenized equations yield dispersive corrections for moderate wave numbers. We give a systematic analysis for all time scales and all high order corrective terms.
Fichier principal
Vignette du fichier
AllaireLamaczRauchNewSubmission2.pdf (370.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04431158 , version 1 (01-02-2024)

Identifiants

Citer

Grégoire Allaire, Agnes Lamacz-Keymling, Jeffrey Rauch. Crime pays; homogenized wave equations for long times. Asymptotic Analysis, 2022, 128 (3), pp.295-336. ⟨10.3233/ASY-211707⟩. ⟨hal-04431158⟩
24 Consultations
38 Téléchargements

Altmetric

Partager

More