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CRIME PAYS ; HOMOGENIZED WAVE EQUATIONS FOR LONG
TIMES

GRÉGOIRE ALLAIRE1, AGNES LAMACZ2, AND JEFFREY RAUCH3

Abstract. This article examines the accuracy for large times of asymptotic expansions
from periodic homogenization of wave equations. As usual, ǫ denotes the small period
of the coefficients in the wave equation. We first prove that the standard two scale
asymptotic expansion provides an accurate approximation of the exact solution for times t
of order ǫ−2+δ for any δ > 0. Second, for longer times, we show that a different algorithm,
that is called criminal because it mixes different powers of ǫ, yields an approximation
of the exact solution with error O(ǫN ) for times ǫ−N with N as large as one likes. The
criminal algorithm involves high order homogenized equations that, in the context of
the wave equation, were first proposed by Santosa and Symes and analyzed by Lamacz.
The high order homogenized equations yield dispersive corrections for moderate wave
numbers. We give a systematic analysis for all time scales and all high order corrective
terms.
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1. Introduction

1.1. Traditional homogenization, secular growth, and long times. This paper

studies the long time behavior of the wave equation in an infinite periodic medium,

(1.1) ρ(x/ǫ) ∂2t u
ǫ − div

(
a(x/ǫ) graduǫ

)
= f(t, x), uǫ = f = 0 for t < 0 ,

where ρ, a are periodic functions. Denote by T
d the unit torus. The unknown uǫ is real

valued as is ρ ∈ L∞(Td), while a ∈ L∞(Td) has values that are real symmetric matrices.

The coefficients are positive definite in the sense that there is a constant m1 > 0 so that
1
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for all ξ ∈ R
d,

a(y)ξ · ξ ≥ m1|ξ|2, and ρ(y) ≥ m1, for a.e. y ∈ T
d .

The source term f is smooth with ∂αt,xf ∈ L2(R1+d) for all α ∈ N
d+1 and is supported in

{0 ≤ t ≤ 1} until Section 5.

The motivation comes from the articles, in chronological order, [23], [18], [14], [3], [9] that

describe the behavior of solutions to the wave equation on the very long time scale t ∼ 1/ǫ2

and beyond (see also the engineering literature, including [7], [15], and the numerical

literature [1], [2], [6]). The descriptions on these time scales require modifications of the

traditional two scale homogenization ansatz, which is the following:

(1.2) U(ǫ, t, x, x/ǫ), U(ǫ, t, x, y) ∼
∞∑

n=0

ǫn un(t, x, y) , un(t, x, y) periodic in y .

The right hand side is a formal power series in ǫ. No convergence is expected (see Appendix

A). The sign ∼ represents equality in the sense of formal power series. The coefficient

functions un belong to the space of smooth functions of (t, x, y) ∈ R×R
d ×T

d supported

in t ≥ 0 that are periodic in y.

The classical homgenization approach [8], [10], [11], [16], [22] shows that the ansatz (1.2)

provides a good approximation on bounded time intervals. Section 3 proves that the

traditional construction (1.2) yields in fact a good approximation on time intervals 0 ≤
t ≤ C ǫ−2+δ with C as large and δ > 0 as small as one likes.

It was first observed by Santosa and Symes in [23], and then proved in [18] (see also [14],

[3], [9]), that a different ansatz that we call criminal, yields a good approximation for times

of order ǫ−2. In the elliptic setting, the criminal ansatz was first proposed by Bakhvalov

and Panasenko [8]. They recognized that an analogous approach formally works for the

wave equation but did not discover its utility for large time asymptotics.

To analyze the two scale ansatz (1.2), each profile un is written as the sum of its non

oscillating contribution πun and its oscillating part (I − π)un, defined as 1

un(t, x, y) = πun + (I − π)un, (πun)(t, x) :=
1

|Td|

∫

Td

un(t, x, y) dy.

Introduce the traditional second order partial differential operators

(1.3)

Ayy := divy a(y) grady,

Axx := divx a(y) gradx,

Axy := divx a(y) grady + divy a(y) gradx .

1This decomposition of the two scale hierarchy emphasizing the projector π follows modern develop-
ments in hyperbolic geometric optics, see [21].
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Then [
ρ(x/ǫ) ∂2t − div a(x/ǫ)grad

]
U(ǫ, t, x, x/ǫ) ∼ W (ǫ, t, x, x/ǫ) ,

where W is the formal Laurent series in ǫ defined by

(1.4)

[
ρ(y)∂2t −

1

ǫ2
Ayy −

1

ǫ
Axy −Axx

]
U(ǫ, t, x, y) ∼W (ǫ, t, x, y) :=

∞∑

n=−2

ǫn wn(t, x, y).

In the trditional approach the un are chosen so that W = f .

Since the source term f(t, x) does not depend on y, it has no oscillating part, (I−π)f = 0,

and thus it is natural to seek the un so that (I − π)wn = 0. The formal power series U ,

satisfying (1.4), for which (I − π)wn = 0 for all n has a very rigid structure that steers

our analysis. For k ≥ 1, Definition 2.2 introduces differential operators

(1.5) χk(y, ∂t, ∂x) =
∑

α∈Nd+1, |α|=k

cα,k(y) ∂
α
t,x.

The coefficients cα,k are solutions of periodic cell problems. The coefficients of the pure

x derivatives in (1.5) are the classical kth order correctors in elliptic homogenization [8],

[10], [22]. Theorem 2.5 proves that the formal power series U(t, x, y), that yield profiles

wn satisfying (I − π)wn = 0 for all n, are characterized by un satisfying

(1.6) ∀n ≥ 0, (I − π)un =
n∑

k=1

χk(y, ∂t, ∂x) πun−k .

In particular the oscillating part is given in terms of the non-oscillating parts of lower

order.

The second structural identity concerning the U satisfying (I − π)wn = 0 is a formula for

πwn that involves homogenized differential operators a∗k(∂t, ∂x) with constant coefficients.

The operator a∗2 is the standard homogenized wave operator [8], [10], [11], [16], [22] (see

(2.19) for its precise definition). For k ≥ 3, the a∗k are called high order homogenized

operators [8]. By establishing a combinatorial formula for the a∗k, Theorem 2.13 proves

that the odd order homogenized operators vanish, a∗2n+1 = 0. This is a classical result for

a∗1 = 0 and a∗3 = 0 (see e.g. [4] and references therein). It was already known for all odd

orders in the elliptic case [24]. Theorem 2.10 proves that

(1.7) ∀n, (I − π)wn = 0, ⇐⇒ ∀n, πwn =
∑

0≤2j≤n

a∗2j+2(∂t, ∂x) πun−2j .

Equation (1.7) expresses πwn in terms of πum with m ≤ n and having the same parity as

n. This is the leap frog structure.

The traditional algorithm [8], [10], [22] setsW = f enforcing w0 = πw0 = f and wn = 0 for

n 6= 0. The first equation w0 = f yields the homogenized wave equation a∗2(∂t, ∂x)πu0 = f

whose solution u0 = πu0 has energy independent of t for t beyond the support of f . The
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leading profile πu0 does not grow with time. Demanding that πwn = 0, for n ≥ 1 leads to

wave equations for πun with a source term given in terms of πum, with m smaller than n

and having the same parity as n. One finds πun = 0 for n odd. One can quickly assess the

rate of growth of the profiles u2n in time. This is called secular growth (see Section 2.3).

For u2 one has a
∗
2(∂t, ∂x)πu2+a

∗
4(∂t, ∂x)πu0 = 0, a wave equation for πu2 with source that

does not grow in time. Therefore u2 cannot grow faster than t. Continuing one finds that

πu4 grows no faster than t2 and πu2k no faster than tk. The leap frog structure shows that

πun grows no faster than tn/2. Without the leap frog structure one would have found tn.

The (2n)th term in the ansatz (1.2) is of size ǫ2n tn. For times t ∼ 1/ǫ2 the higher order

terms can no longer be understood as correction terms. The slow secular growth from

the leap frog structure explains why t ∼ 1/ǫ2 is a critical time scale for the traditional

expansion.

The secular growth estimate implies Theorem 3.1 asserting that for any N, δ > 0 choosing

a sufficiently large number of terms in the traditional ansatz (1.2) guarantees that the error

is O(ǫN) for times t ≤ 1/ǫ2−δ.

Appendix A.2 contains an example showing that the classical approximation is not accu-

rate for times t ∼ 1/ǫ2+δ for any δ > 0.

Remark 1.1. It is interesting to contrast our results with those of Pastukhova [20], who

showed that the large time behavior of periodic parabolic equations is given, at least to

leading order, by the homogenized equation. In contrast, our example in Appendix A.2

shows that in the hyperbolic setting the secular growth renders the homogenized equation

inaccurate for times longer than 1/ǫ2. The method of Pastukhova [20], using Bloch waves,

shares some features with ours, including high order homogenized equations and filtering.

It is completely different because the time asymptotics of the parabolic equation is purely

decaying while the wave equation oscillates indefinitely.

1.2. Asymptotic crimes and longer times. To find approximate solutions for longer

times we abandon the classical ansatz (1.2) that requires w0 = Πw0 = f and wn = 0

for n 6= 0 in two ways. Firstly, we allow the terms un in the series (1.2) to depend on

ǫ and secondly we demand wn = 0 only up to some precision. We call it an asymptotic

crime in the spirit of the variational crimes of Strang for non-conforming finite elements

[25]. In addition to homogenization theory, asymptotic crimes have a long history in fluid

dynamics and geometric optics, see [19].

Bakhvalov and Panasenko [8] used the strategy to find a high order elliptic approximation

in one shot. The present paper analyses the hyperbolic case showing that the analogous

ansatz is accurate for very long times, a result that has no elliptic analogue.
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To construct the criminal approximation, one starts with a two-scale series as in the

classical ansatz. The main difference is to allow the terms in the series to depend on ǫ”.

To emphasize the fact that the new profiles are not the same as the old ones we call them

vn and set

V (ǫ, t, x, y) ∼
∞∑

n=0

ǫn vn .

In order that the computations retain much of the structure from the traditional ansatz

we demand that (1 − π)wn = 0 for all n. That yields (1.6) and (1.7) and, in particular,

the leading term is non oscillating, v0 = πv0.

Then (1.7) implies that the discrepancy W − f = π(W − f) is equal to the sum of the

lines,

(1.8)

ǫ0
[
a∗2(∂t, ∂x)πv0 − f

]
+

ǫ1
[
a∗2(∂t, ∂x)πv1

]
+

ǫ2
[
a∗2(∂t, ∂x)πv2 + a∗4(∂t, ∂x)πv0

]
+

ǫ3
[
a∗2(∂t, ∂x)πv3 + a∗4(∂t, ∂x)πv1

]
+

ǫ4
[
a∗2(∂t, ∂x)πv4 + a∗4(∂t, ∂x)πv2 + a∗6(∂t, ∂x)πv0

]
+

ǫ5
[
a∗2(∂t, ∂x)πv5 + a∗4(∂t, ∂x)πv3 + a∗6(∂t, ∂x)πv1

]
+ · · · .

The problems of secular growth came from setting all the rows equal to zero. That yields

equations for the corrector terms that have the preceding profiles as sources. The criminal

strategy requires only that the sum of the lines vanishes. That can be achieved setting

πvn = 0 for all n > 0 and demanding that

(1.9)
[
a∗2(∂t,x) + ǫ2a∗4(∂t,x) + ǫ4a∗6(∂t,x) + · · ·

]
v0 = f , v0 = 0 for t < 0 .

The coefficients in Equation (1.9) depend on ǫ. To solve this equation with accuracy

O(ǫN), v0 must depend on ǫ, v0 = v0(ǫ, t, x). Including oscillatory correction terms, the

approximation takes the new form

(1.10) V (ǫ, t, x, y) ∼
∞∑

n=0

ǫn vn(ǫ, t, x, y) , vn(ǫ, t, x, y) periodic in y ,

where vn = (I − π)vn, for n ≥ 1, and each profile depends on ǫ. The series is different

from (1.2). First vn depends on ǫ. Second πvn = 0 for n ≥ 1. Expanding vn with respect

to ǫ shows that formally
∑
ǫnvn is equal to

∑
ǫnun as power series in ǫ. It is crucial

to note that none of the infinite series converges in any sense at all so resummation is

not justified. The traditional ansatz
∑N

0 ǫ
nun is not a good approximation for times

larger than 1/ǫ2. The vn(ǫ, t, x, y) that we construct yield good approximations where the

traditional summation is innaccurate.
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Neither we nor anyone else solves (1.9). To construct v0, (1.9) is modified in several ways.

The first difficulty is that the terms ǫ2j−2 a∗2j(∂t, ∂x) are typically of order 2j in ∂t. The

more terms one keeps the higher order is the equation in ∂t. The truncated operators

usually define ill posed initial value problems, see our discussion just after (1.13). The

first thing that we do is perform a normal form transformation that converts the operators

a∗2j with j ≥ 2 to operators in ∂x only. The normal form removes all the time derivatives

other than those in a∗2. In Section 4.2 it is proved that there are uniquely determined

homogeneous operators R2j(∂t,x) and ã2j(∂x) of degree 2j so that as formal power series

in ∂t, ∂x,

(1.11)
[
1 +

∞∑

j=1

R2j

(
∂t,x
)][ ∞∑

j=1

a∗2j
(
∂t,x
)]

= a∗2
(
∂t,x
)

+

∞∑

j=2

ã2j
(
∂x
)
.

The operators R2j and ã2j are computable by a rapid recursive algorithm. This step

has no analogue in the elliptic context. Applying 1 +
∑∞

j=1R2j

(
ǫ∂t,x

)
to (1.9) yields the

equivalent equation

(1.12)
[
a∗2(∂t,x) +

∞∑

j=2

ǫ2j−2 ã2j(∂x)
]
v0(ǫ, t, x) =

[
1 +

∞∑

j=1

ǫ2jR2j

(
∂t,x
)]
f .

To construct the criminal approximation the sums in (1.12) are first truncated to finite

sums. The corresponding equation depends on the number of terms retained and the

unknown function is denoted vk0. The truncated equation of order k is, with Rk :=∑k
j=1R2j ,

(1.13)
[
a∗2(∂t,x) +

k+1∑

j=2

ǫ2j−2 ã2j(∂x)
]
vk0(ǫ, t, x) =

[
1 +Rk

(
ǫ∂t,x

)]
f, vk0 = 0 for t < 0 .

The initial value problem (1.13) is usually ill posed so does not define a profile vk0. The

typical reason for this ill-posedness is that the coefficient of the highest order derivative

operator has the wrong sign. For example, it is known [13], [18], [4] that, at least when

ρ is constant, the operator ã4 has the wrong sign so that (1.13) is ill posed for k = 2.

Surprisingly, that is not a fatal flaw.

A classical idea (at least for k = 1) [18], [14], [3], [4] to overcome this obstacle is to rely

on a Boussinesq’s trick to obtain a suitable sign of the highest order space derivative by

exchanging some space derivatives with time derivatives. Here, we rather use a filtering

approach. The correctors ǫ2j−2ã2j(∂x) added to a∗2(∂t, ∂x) are only small compared to

a∗2 when applied to functions whose Fourier transform is supported where ǫξ is small (ξ

being the Fourier variable). The idea is to filter the source term. Choose ψ1 ∈ C∞
0 (Rd)

equal to 1 on a neighborhood of the origin. Choose 0 < α < 1. The operator ψ1(ǫ
αD)
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is the Fourier multiplier g 7→ F−1 (ψ1(ǫ
αξ)Fg). Equivalently D := (1/i)∂x. The filtered

equation is

(1.14)
[
a∗2(∂t,x) +

k+1∑

j=2

ǫ2j−2 ã2j(∂x)
]
vk0 = ψ1(ǫ

αD)
(
1 +Rk(ǫ∂t,x)

)
f, vk0 = 0 for t < 0.

The right hand side has Fourier transform supported in |ξ| ≤ Cǫ−α ≪ 1/ǫ. Equation

(1.14) is the one that is solved to determine a profile vk0 . The filtered equation (1.14) has

a unique tempered solution. That solution has spatial Fourier transform supported in

ǫ−α suppψ1. Energy bounds like those for a∗2 are proved in Section 4.4. The operator on

the left in (1.13) is the sum of the homogenized operator and small higher order terms.

The higher order terms are sometimes thought of as dispersive correctors. This is at least

the original interpretation of ã4 in [23]. Equations (1.9), (1.12), (1.13) and (1.14) are

called high order homogenized equations, introduced in the elliptic setting in [8]. Since

then, many authors have used it. For the wave equation, see [23], [18], [14], [3], [9], [4].

Note that, as remarked in [3], the high order homogenized equation (1.13) of a given order

k is not unique, since some x and t derivatives can be exchanged.

The next definition summarizes the recipe for the criminal approximate solution.

Definition 1.2 (Criminal approximation). Fix the choice of ψ1 ∈ C∞
0 (Rd), 0 < α < 1,

and 0 ≤ k ∈ N. Define profiles vkn(ǫ, t, x, y) for 0 ≤ n ≤ 2k + 2 as follows.

• Nonoscillatory parts. For 1 ≤ n ≤ 2k + 2 set πvkn = 0. For n = 0, πvk0 is the unique

tempered solution of the high order homogenized equation (1.14).

• Oscillatory parts. For 1 ≤ n ≤ 2k + 2 set (I − π)vkn = χn πv
k
0 , where χn is defined by

(1.5), and (I − π)vk0 = 0 (or equivalently, vk0 = πvk0).

Define

(1.15) V k(ǫ, t, x, y) :=

2k+2∑

n=0

ǫn vkn(ǫ, t, x, y) =
(
I +

2k+2∑

n=1

ǫnχn(y, ∂t, ∂x)
)
vk0 (ǫ, t, x) .

The criminal approximate solution is V k(ǫ, t, x, x/ǫ).

The main result of the present paper is the following approximation theorem.

Theorem 1.3 (Criminal error). Suppose that uǫ is the exact solution of (1.1) and V k

is given by (1.15). For each k ≥ 1 there are positive constants C, ǫ0 so that for 0 < ǫ < ǫ0
and t ≥ 0, the error in energy satisfies

∥∥∇t,x

(
uǫ(t, x) − V k(ǫ, t, x, x/ǫ)

)∥∥
L2(Rd

x)
≤ C ǫ2k+2 〈t〉 , with 〈t〉 :=

√
1 + t2 .

Remark 1.4. i. If one wants the error to decrease as ǫN1 on time intervals 0 ≤ t ≤ C/ǫN2,

it suffices to choose k so that N1 +N2 ≤ 2k + 2.
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ii. The initial value problem defining vk0 has constant coefficients. Its spatial Fourier

Transform is given by an explicit formula. A spectrally accurate approximate solution is

computable by FFT.

Writing u =
∫ t

0
∂tu dt, with u(0) = 0, yields the following corollary.

Corollary 1.5. With the assumptions and notations in Theorem 1.3, the error measured

in L2(Rd) satisfies

∥∥uǫ(t) − V k(ǫ, t, x, x/ǫ)
∥∥
L2(Rd)

≤ C ǫ2k+2 〈t〉2 .

Remark 1.6. Since the L2-norm of ∇t,xu
ǫ is of order 1 and independent of time t, the

absolute error of Theorem 1.3 is also a relative error. In constrast, the L2-norm of uǫ

is O(〈t〉) and can grow nearly this fast. Therefore, the relative error is better than the

absolute error of Corollary 1.5 and is similar to that of Theorem 1.3.

A more subtle corollary is that the oscillating part of the approximate solution is not

necessary for the long time asymptotics if one is content with an error of the order of ǫ.

Corollary 1.7. With the assumptions and notations in Theorem 1.3, the error from the

leading term vk0 satisfies
∥∥uǫ(t) − vk0 (ǫ, t, x)

∥∥
L2(Rd)

≤ C
(
ǫ+ ǫ2k+2 〈t〉2

)
.

Corollary 1.7 shows that for N as large as one likes, if one takes k ≥ N , then uniformly

on 0 ≤ t ≤ C/ǫN the L2(Rd)-error is smaller than ǫ using only the leading nonoscillatory

term vk0 (ǫ, t, x) in the approximate solution. Corollary 1.7 was proved in [9] in a more

general context (almost periodic or random coefficients) with a proof based on Bloch

waves. Theorem 1.3 improves previous results since, not only the approximation error is

valid for times as large as one wants, but the error is as high order in ǫ as one wants. Our

results also improve those of [18], [14] which were restricted to times of order 1/ǫ2 with

an error of order ǫ. The first paper [18] relies on two scale asymptotic expansions, while

the second one [14] uses Bloch waves.

The previous works [18], [14] considered (1.1) with f = 0 and nonvanishing initial data.

In addition in [14], ∂tu(0) = 0. In [9] a right hand side and nonvanishing initial data are

allowed, but the error estimates are restricted to order ǫ. One of the reasons that we can

push the analysis further is that our choice simplifies some things. We next expand a

little on this choice. The solutions of (1.1) with f smooth in time with values in L2(Rd)

and supported in a compact time interval satisfy

(1.16) ∀j ∈ N, sup
0<ǫ<1

sup
t∈R

∥∥∇t,x∂
j
t u

ǫ(t)
∥∥
L2(Rd)

< ∞.
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The coefficients vary on the small scale ǫ but the solutions do not oscillate in time. For

smooth solutions with f = 0 and Cauchy data uǫ(0), ∂tu
ǫ(0) the initial derivatives satisfy

∀j ≥ 0, ℓ ∈ {0, 1}, ∂2j+ℓ
t uǫ(0) =

(
1

ρ(x/ǫ)

(
div a(x/ǫ) grad

))j

∂ℓtu
ǫ(0) .

These yield formulas for ∇t,x∂
j
t u

ǫ
∣∣
t=0

:= Hǫ
j

(
uǫ(0), ∂tu

ǫ(0)
)
. The initial data correspond-

ing to solutions satisfying (1.16) are those for which

(1.17) ∀j, sup
ǫ

∥∥Hǫ
j

(
uǫ(0), ∂tu

ǫ(0)
)∥∥

L2(Rd)
< ∞ .

For the f = 0 problem with Cauchy data satisfying (1.17) the approximation properties

for both classical and criminal strategies are as in our Theorems. For the f = 0 problem

the accuracy of the approximation is determined by how well the initial data can be

appproximated by data satisfying (1.17).

The condition (1.17) is awkward to use. For example when ρ, a are just L∞(Td) and at

least one of them is not constant it is true but not immediately obvious that no family

of initial data that is independent of ǫ can satisfy this condition. Without performing

a nontrivial computation it is not clear that there are initial data given by two scale

expansions that satisfy this condition. The solutions from traditional homogenization

with our source term f(t, x) viewed for t beyond supp f show that there are many such

two scale data.

Equation (1.1) shows that solutions that do not oscillate in time are important. Their

description via Cauchy data is awkward. We study problem (1.1).

Remark 1.8. Theorem 1.3 has no analogue in the elliptic setting. In the elliptic setting,

high accuracy by criminal methods dates to Bahkvalov and Panashenko [8]. Smyshlyaev

and Cherednichenko [24] present a different but related high order elliptic strategy. If one

is only interested in local averages of the difference between the exact solution and its

two-scale ansatz, then the oscillating terms (I − π)un disappear by averaging. The non

oscillating solutions of the high order homogenized equation give an approximation with

high order accuracy to such averages.

1.3. Outline of the present paper. In Section 2 the classical two scale asymptotic

expansion for wave equations is analyzed. Theorem 2.13 proves that the odd order ho-

mogenized operators vanish and Theorem 2.15 shows that secular growth of the profiles

is half as fast as one might expect. We call this the leap frog structure of the asymptotic

expansion.

Section 3 studies the accuracy of the classical expansion. Classical proofs show that for

bounded time and any N the error is O(ǫN). We prove that taking more corrector terms

one has O(ǫN) accuracy for times of order ǫ−2+δ, for any δ > 0.
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Section 4 presents the details of the derivation of the criminal asymptotic expansion and

proves Theorem 1.3.

Section 5 shows that our results for sources f compactly supported in time suffice, by a

simple argument, to treat sources that grow at most polynomially in time.

Section 6 discusses the application of our ideas to Schrödinger’s equations. It also contains

a discussion of differences that arise when considering systems of wave equations. These

include challenges not yet resolved.

Appendix A gives an example in dimension d = 1 for which the upper bound on the the

secular growth predicted in Section 2 is attained. For the same example, the classical two

scale asymptotic expansion (1.2) does not yield a good approximation for times t ∼ 1/ǫ2+δ.

Appendix B provides a classical a priori estimate for two scale oscillating functions.

Appendix C proves that solutions of the wave equation have finite energy for sources less

regular in x but more regular in t than the standard condition f ∈ L1
loc(R ; L2(Rd)).

2. Analysis of the two scale ansatz (1.2)

This section analyses the classical ansatz (1.2) and not the criminal strategy with ǫ-

dependent coefficients. Revisit the standard method of two scale asymptotic expansions

for the wave equation (1.1). We depart from the textbooks [8], [10], [22] in several ways.

First, in these books the method is usually applied to an elliptic equation and the wave

equation is only said to be treated similarly and only for time bounded independently of ǫ.

Second, we recognize that much information can be extracted from the part (I−π)wn = 0

of equation (1.4). Exact combinatorial formulas are given for terms of all orders in the

ansatz (1.2) and its leap frog structure is exhibited. All these results prepare the way for

the criminal approach of Section 4.

Infinite order asymptotic expansions require that the source term f be infinitely smooth

with respect to time. The periodic coefficients ρ and a are assumed to be in L∞(Td).

2.1. Ansatz. Let Ayy,Axy,Axx be the second order partial differential operators defined

in (1.3). Consider the two scale power series (1.2), and the formula (1.4) for the action of

the differential operator. All terms un(t, x, y) and wn(t, x, y) are periodic in y, equivalently

defined for y ∈ T
d. The relation (1.4) is equivalent to

(2.1)

[
ρ(y)∂2t −

1

ǫ2
Ayy − 1

ǫ
Axy − Axx

] ∞∑

n=0

ǫn un(t, x, y) =

∞∑

n=−2

ǫn wn(t, x, y)

as formal Laurent series in ǫ. Equation (2.1) at order ǫn reads

(2.2)
ǫ−2 : −Ayyu0 = w−2 ,

ǫ−1 : −(Ayyu1 +Axyu0) = w−1 ,
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and, for k ≥ 0, the coefficient of ǫk is

ρ(y)∂2t uk − (Ayyuk+2 + Axyuk+1 + Axxuk) = wk .(2.3)

To homogenize problem (1.1) the usual strategy is to choose the series U such thatW ∼ f ,

i.e to choose the profiles un such that w0 = f and wn = 0 for all 0 6= n ≥ −2. We perform

a more subtle analysis. The equationW−f ∼ 0 is satisfied if and only if π(W−f) ∼ 0 and

(I −π)(W − f) ∼ 0. The source term f(t, x) is smooth and non oscillatory, (I −π)f = 0.

Therefore, it follows that

(2.4) (I − π)wk = 0 for all k ≥ −2.

Using (2.4) already yields a lot of information about the two-scale asymptotic expansion

(1.2). The next subsection relies only on assumption (2.4). Both classical and criminal

strategies use (2.4).

2.2. Projections and the hierarchy. The analysis of (2.2), (2.3) pivots around the

second order symmetric elliptic operator Ayy : H1(Td) → H−1(Td). Denote by π the

L2(Td) orthogonal projection on constants,

πg :=
1

|Td|

∫

Td

g(y) dy .

This operator π coincides with the action of g as a distribution on the test function 1. It

is therefore a well defined operator on all periodic distributions. This operator extends

to functions of t, x, y by acting only on the last variable,

(πg)(t, x) :=
1

|Td|

∫

Td

g(t, x, y) dy .

Lemma 2.1 (Cell Problem). The operators in (1.3) satisfy

πAyy = 0 , Ayyπ = 0 and πAxyπ = 0 .

The nullspace of Ayy is equal to the space of constant functions, i.e. πH1(Td). The image,

RangeAyy, is the subspace of mean zero functions, i.e. (I−π)H−1(Td). Therefore Ayy is

a bijection (I − π)H1(Td) → (I − π)H−1(Td) and thus has an inverse denoted by A−1
yy .

Proof. A classical application of the Lax-Milgram Lemma. �

To solve (2.2) and (2.3), these equations will be projected by π (yielding the non-oscillatory

hierarchy) and (I − π) (leading to the oscillatory hierarchy) and solved separately.
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2.2.1. The oscillatory hierarchy. Consider power series U and W for which (I−π)wn = 0

for all n ≥ −2. Equations (2.2) and (2.3) are multiplied on the left by (I − π). Using

(I − π)w−2 = 0 the first line of (2.2) becomes

0 = (I − π)Ayyu0 = (I − π)Ayy(I − π)u0.

Lemma 2.1 shows that this is equivalent to (I − π)u0 = 0, the oscillatory part of u0
vanishes.

Since πAxyπ = 0, one has πAxyu0 = πAxyπu0 = 0. Thus, the second line of (2.2) shows

that (I − π)w−1 = 0 if and only if

(2.5) (I − π)u1 = −A−1
yy (I − π)Axyπu0 = −A−1

yy Axyπu0 := χ1(y, ∂x)πu0 .

Next, derive analogous formulas expressing (I − π)uk in terms of the πuj with j < k.

Since by assumption (I − π)wk = 0 for all k ≥ 0, (2.3) leads to

(I − π)
[
ρ(y)∂2t uk −Ayyuk+2 − Axyuk+1 − Axxuk

]
= 0 .

By Lemma 2.1 this is equivalent to

(I − π)uk+2 = −A−1
yy

(
I − π

)[
Axyuk+1 + (Axx − ρ(y)∂2t )uk

]
.(2.6)

Equation (2.6) expresses the oscillatory part of uk+2 in terms of earlier profiles. It can be

further simplified by rewriting the earlier profiles as uj = πuj +(1−π)uj , the sum of non

oscillatory and oscillatory parts. Then express the (1− π)uj parts in terms of still earlier

profiles, and so on. In this way the oscillatory parts can be eliminated yielding a relation

determining the oscillatory parts in terms of the nonoscillatory parts that is made explicit

in Theorem 2.5. In (2.5) an operator χ1 was introduced. This definition is now extended

to higher order.

Definition 2.2. Set χ−1 := 0, χ0 := I. For k ≥ 1 define operators mapping functions of

t, x to functions of t, x, y by

(2.7) χk(y, ∂t, ∂x) := −A−1
yy (I − π)

[
Axyχk−1 + (Axx − ρ(y)∂2t )χk−2

]
= (I − π)χk.

This recovers the previous definition of χ1 = −A−1
yy Axy = −A−1

yy (I−π)Axy, where the last

equality follows from Lemma 2.1. The operators χk are differential in t, x with coefficients

that depend on y. The y-dependence arises only from the coefficients a(y), ρ(y) and is

analysed in the next Lemma. To show that the above definition makes sense, it suffices to

prove that for any smooth function ϕ ∈ C∞(R1+d) and every (t, x) ∈ R
1+d the argument

of A−1
yy , namely

(I − π)
[
Axyχk−1 + (Axx − ρ∂2t )χk−2

]
ϕ(t, x) ,

belongs to the range of Ayy. This is verified in the next Lemma.
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Lemma 2.3. For all k ≥ 1 the following holds. For every function ϕ ∈ C∞(R1+d) and

every (t, x) ∈ R
1+d one has that

[
Axyχk−1 + (Axx − ρ∂2t )χk−2

]
ϕ(t, x)

belongs to H−1(Td). In particular χkϕ(t, x) ∈ (I−π)H1(Td). Furthermore, for any k ≥ 1,

there exist coefficients cβ,k ∈ (I − π)H1(Td) such that

(2.8) χk(y, ∂t, ∂x) =
∑

|β|=k

cβ,k(y) ∂
β
t,x .

In particular, χk is a homogeneous operator of degree k in ∂t,x.

Proof. The proof is by induction on k. For k = 1 one directly observes that Axyϕ belongs

toH−1(Td) and thus χ1 = −A−1
yy (I−π)Axy is a first-order operator in x with (I−π)H1(Td)

coefficients. The case k = 2 is analogous. One has that [Axyχ1 + (Axx − ρ∂2t )]ϕ(t, x) ∈
H−1(Td), since χ1 satisfies (2.8). In particular χ2ϕ(t, x) ∈ (I − π)H1(Td), which proves

(2.8) for k = 2.

Assume the statement for k ≥ 1 and prove it for k + 1. For a function ϕ ∈ C∞(R1+d)

compute

(2.9)

[
Axyχk + (Axx − ρ(y)∂2t )χk−1

]
ϕ(t, x)

= divx
(
a(y)gradyχkϕ(t, x)

)
+ divy

(
a(y)gradxχkϕ(t, x)

)

+ divx
(
a(y)gradxχk−1ϕ(t, x)

)
− ρ(y)∂2t

(
χk−1ϕ(t, x)

)
.

By the induction hypothesis χkϕ(t, x) and χk−1ϕ(t, x) are in H
1(Td). Therefore, all terms

on the right hand side of (2.9) are in H−1(Td). In particular χk+1ϕ(t, x) ∈ (I−π)H1(Td),

which is the claimed result.

Since the operator Axy is homogeneous of degree one and (Axx − ρ∂2t ) is homogeneous of

degree two, it follows that χk+1 is homogeneous of degree k + 1. �

Remark 2.4. i. If ρ is independent of y, the fact that (I − π)χ0 = 0 implies that

χ2(y, ∂t, ∂x) does not depend on ∂t. ii. In this case an induction on k shows that for any

k ≥ 1, χk(y, ∂t, ∂x) contains only time derivatives of order ≤ k − 2.

The first structural result concerns formal power series U for which the oscillatory parts

(I − π)wn vanish.

Theorem 2.5. Fix −2 ≤ k ∈ Z. For a formal power series U and corresponding W the

following are equivalent.

i. For −2 ≤ j ≤ k one has

(2.10) (I − π)wj = 0 .
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ii. For 0 ≤ ℓ ≤ k + 2 one has

(2.11) (I − π)uℓ =

ℓ∑

n=1

χnπuℓ−n .

Remark 2.6. Relation (2.11) implies that the first term in the formal power series is not

oscillating, namely u0 = (I − π)u0.

Theorem 2.5 has a particularly elegant form for profiles so that (1 − π)wℓ = 0 for all ℓ.

This holds if and only if the formal power series in ǫ for u is given in terms of the series

for πu by
∞∑

n=0

ǫn un =
( ∞∑

ℓ=0

ǫℓχℓ

)( ∞∑

k=0

ǫkπuk

)
.

The elliptic analogue is in [8].

Proof. For k = −2 the statement follows directly by recalling that (I − π)w−2 = 0 if and

only if (I − π)u0 = 0. For k = −1 one has

(2.12) (I − π)w−1 = −(I − π)
(
Ayyu1 +Axyu0

)
.

Lemma 2.1 implies that

(2.13) πAyy = 0 and (1− π)Ayyuk = Ayy(1− π)uk for all k ≥ 0.

Using (2.13) along with u0 = πu0 and applying −A−1
yy to (2.12) yields

−A−1
yy (I − π)w−1 = (I − π)u1 +A−1

yy (I − π)Axyπu0 = (I − π)u1 − χ1πu0 .

Since (I − π)w−1 = 0 is equivalent to −A−1
yy (I − π)w−1 = 0, this proves the case k = −1

of the Theorem.

For k ≥ 0 reason by induction. Assume the case k−1 and prove the case k. The induction

hypothesis is

(2.14) (I − π)uℓ =
ℓ∑

n=1

χnπuℓ−n for 0 ≤ ℓ ≤ k + 1 ,

if and only if (I − π)wj = 0 for −2 ≤ j ≤ k− 1. For the inductive step one needs to treat

j = k and l = k + 2. For k ≥ 0 one has

(2.15) (I − π)wk = −(I − π)
(
Ayyuk+2 + Axyuk+1 + (Axx − ρ(y)∂2t )uk

)
.

Exploiting (2.13) and applying −A−1
yy yields

(2.16) −A−1
yy (I − π)wk = (I − π)uk+2 + A−1

yy (I − π)
(
Axyuk+1 + (Axx − ρ(y)∂2t )uk

)
.
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Expressing each profile in (2.16) as a sum of its oscillatory and non-oscillatory part and

recalling the definition χ1 = −A−1
yy (I − π)Axy, yields (2.16) as

−A−1
yy (I − π)wk = (I − π)uk+2 − χ1πuk+1 +A−1

yy (I − π)
(
(Axx − ρ(y)∂2t )πuk

)

+A−1
yy (I − π)

(
Axy(I − π)uk+1 + (Axx − ρ(y)∂2t )(I − π)uk

)
.(2.17)

Use that (I − π)wk = 0 if and only if A−1
yy (I − π)wk = 0. Thus (I − π)wk = 0 if and only

if the right hand side of (2.17) vanishes. Using the induction hypothesis, (2.14) holds for

(I − π)uk+1 and (I − π)uk. This yields

(I − π)uk+2 = χ1πuk+1 −A−1
yy (I − π)

(
(Axx − ρ(y)∂2t )πuk

)

−A−1
yy (I − π)

(
Axy

k+1∑

n=1

χnπuk+1−n + (Axx − ρ(y)∂2t )

k∑

n=1

χnπuk−n

)
.

= χ1πuk+1 −A−1
yy (I − π)

(
(Axx − ρ(y)∂2t )πuk +Axyχ1πuk

)

−A−1
yy (I − π)

(
Axy

k+1∑

n=2

χnπuk+1−n + (Axx − ρ(y)∂2t )
k∑

n=1

χnπuk−n

)
.

By definition −A−1
yy (I − π)

(
(Axx − ρ(y)∂2t )πuk +Axyχ1πuk

)
= χ2πuk. Therefore

(I − π)uk+2

=χ1πuk+1 + χ2πuk −A−1
yy (I − π)

(
Axy

k+1∑

n=2

χnπuk+1−n + (Axx − ρ(y)∂2t )
k∑

n=1

χnπuk−n

)

=χ1πuk+1 + χ2πuk +

k∑

n=1

(
−A−1

yy (I − π)
)[

Axyχn+1 + (Axx − ρ(y)∂2t )χn

]
πuk−n

=χ1πuk+1 + χ2πuk +
k∑

n=1

χn+2πuk−n =
k+2∑

n=1

χnπuk+2−n ,

where the last line uses the definition (2.7) of χn+2. The last identity is the desired formula

for (I − π)uk+2. The proof is complete. �

2.2.2. The nonoscillatory hierarchy. Next analyse the equations determining the non os-

cillatory parts πun of the profiles. Equations (2.2) and (2.3) are multiplied on the left by

π. Since πAyy = 0 and πAxyπ = 0, one has πw−2 = 0 and πw−1 = 0. For k ≥ 0 the Ayy

terms are eliminated and (2.3) with k ≥ 0 simplifies to

(2.18) πwk = π
[
ρ(y)∂2t uk − Axxuk −Axyuk+1

]
.
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Exploiting (2.18) with k = 0, writing u1 = πu1+(1− π)u1 and using the recurrence from

(2.11) yields

πAxyu1
πAxyπ=0

= πAxy(I − π)u1
(2.11)
= πAxyχ1πu0

(2.7)
= − πAxy A−1

yy (I − π)Axyπu0 .

Since u0 = πu0, this yields

πw0 = a∗2(∂t, ∂x)πu0

with the homogenized wave operator defined as

(2.19) a∗2(∂t, ∂x) := (πρ)∂2t − divx (πa) gradx + πAxy(I − π)A−1
yy (I − π)Axy π .

Remark 2.7. The homogenized wave operator a∗2 coincides with the formula from classical

homogenization theory [8], [10], [16], [22].

Definition 2.8. Scalar partial differential operators a∗n(∂t, ∂x) mapping functions of t, x

to functions of t, x are defined for n ≥ 1 by

(2.20) a∗n(∂t, ∂x) = π
((
ρ(y)∂2t −Axx

)
χn−2 −Axyχn−1

)
.

Remark 2.9. i. The operators a∗n have constant coefficients. ii. The operator a∗n is

homogeneous of degree n. iii. The symbol a∗n(∂t, ∂x) contains only even powers of ∂t. iv.

The definitions of χ0, χ−1 imply that a∗1 = 0.

Theorem 2.10. Suppose that the formal power series U and corresponding W satisfy the

conditions of Theorem 2.5 for some k ∈ Z with k ≥ −2. Then πw−2 = πw−1 = 0 and for

0 ≤ j ≤ k + 1,

(2.21) πwj =

j∑

n=0

a∗n+2(∂t, ∂x)πuj−n .

Remark 2.11. The result is particularly elegant for profiles so that (1 − π)wn = 0 for

all n. In that case the formal power series in ǫ for the residual is given in terms of the

nonosicllating parts by
∞∑

j=0

ǫjπwj =
( ∞∑

n=0

ǫna∗n+2

)( ∞∑

m=0

ǫmπum

)
.

The elliptic analogue was observed in [8].

Proof. The cases k = −2 and k = −1 have already been discussed at the beginning of

Subsection 2.2.2. Let k ≥ 0 and fix 0 ≤ j ≤ k + 1. Using πAxyπ = 0 and πAyy = 0

provides

(2.22) πwj = π
(
(ρ(y)∂2t −Axx)πuj + (ρ(y)∂2t −Axx)(I − π)uj −Axy(I − π)uj+1

)
.
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Since we assumed that the conditions of Theorem 2.5 hold for k and since j, j+1 ≤ k+2,

we can replace (I−π)ul in (2.22), for l = j, j+1 according to formula (2.11). This yields

πwj = π(ρ(y)∂2t −Axx)πuj + π
(
(ρ(y)∂2t −Axx)

j∑

n=1

χnπuj−n −Axy

j+1∑

n=1

χnπuj+1−n

)

= π
(
(ρ(y)∂2t −Axx)−Axyχ1

)
πuj + π

( j∑

n=1

(ρ(y)∂2t −Axx)χnπuj−n −
j+1∑

n=2

Axyχnπuj+1−n

)

Regrouping terms and recalling that χ0 = I yields

(2.23) πwj = π

j∑

n=0

(
(ρ(y)∂2t −Axx)χn −Axyχn+1

)
πuj−n .

By definition of the effective operators a∗n+2, Equation (2.23) is equivalent to

(2.24) πwj =

j∑

n=0

a∗n+2(∂t, ∂x)πuj−n .

This completes the proof. �

Remark 2.12. a∗n is a homogeneous polynomial of degree n in (∂t, ∂x) Formula (2.20)

shows that the highest degree of ∂t in a∗n comes from χn−1 or ∂2t χn−2. When ρ is inde-

pendent of y, Remark 2.4 yields that χn−1 and χn−2 are of degree ≤ n − 3 and ≤ n − 4,

respectively, with respect to time t. Therefore, when ρ is constant, a∗n is of order ≤ n− 2

in ∂t for n > 2.

The next result shows that the equation (2.24) has half as many terms as it seems. The

proof depends on a precise combinatorial formula for χk. The elliptic analogue of Theorem

2.13 was proved by a quite different variational argument in [24].

Theorem 2.13. For any odd n ≥ 1, the homogenized operator a∗n vanishes. That is for

m ≥ 0, a∗2m+1 = 0.

Proof. Introduce

C1 := −A−1
yy (I − π)Axy and C2 := −A−1

yy (I − π)(Axx − ρ(y)∂2t ) .

The operator A−1
yy (I − π) acts only on the y variable and is continuous from H−1(Td) →

H1(Td). The operators Cj are homogeneous polynomials of degree j in (∂t, ∂x), whose

coefficients are operators in y. In the proof we integrate by parts with respect to y and

not with respect to t, x. With these Cj, 2.7 yields

(2.25) χk = C1χk−1 + C2χk−2 , k ≥ 1 .
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Replace χk−1 and χk−2 using the two earlier instances of the recurrence. Continuing leads

to an expression

χk = Wkχ0,

where only the earliest operator χ0 appears. Equation (2.25) implies that

(2.26) Wk = C1Wk−1 + C2Wk−2 .

Equation (2.26) implies that Wk is the sum of all words written with the two ”letters”

C1 and C2 such that the number of letters satisfies #C1 + 2#C2 = k. Each word is

a homogeneous differential operator of degree k in ∂x. Separating the words into two

groups, those that end in C1 and those that end in C2 implies that

Wk = Wk−1C1 +Wk−2C2 .

Denote with an exponent T the L2(Td) adjoint. Integration by parts in y shows that

AT
xy = −Axy, while Ayy and Axx are selfadjoint. Define operators

D1 := −AxyA−1
yy (I − π) = −CT

1 ,

D2 := −(Axx − ρ(y)∂2t )A−1
yy (I − π) = CT

2 .

An induction shows that

W T
k = (−1)kZk with Zk = D1Zk−1 +D2Zk−2 .

Therefore Zk is the sum of all words written with the two letters D1 and D2 such that

the number of letters satisfy #D1 + 2#D2 = k.

Introduce G := A−1
yy (I − π) that satisfies

C1G = GD1, C2G = GD2, WkG = GZk .

Since χ0(y) = I, definition (2.20) can be rewritten, by using AT
xy = −Axy, (Axx−ρ∂2t )T =

(Axx − ρ∂2t ) and W
T
k = (−1)kZk, as

a∗k(∂t, ∂x) =

∫

Td

(
(ρ∂2t −Axx)Wk−2χ0(y)−AxyWk−1χ0(y)

)
χ0(y) dy

=

∫

Td

(
Wk−2χ0(y)(ρ∂

2
t −Axx)χ0(y) +Wk−1χ0(y)Axyχ0(y)

)
dy

= (−1)k
∫

Td

χ0(y)
(
Zk−2(ρ∂

2
t −Axx)χ0(y)− Zk−1Axyχ0(y)

)
dy .

The properties of Zk and Wk imply that

−Zk−1Axy =
(
D1Zk−2 +D2Zk−3

)
Axy

=
(
(ρ(y)∂2t −Axx)GZk−3 −AxyGZk−2

)
Axy

=
(
(ρ(y)∂2t −Axx)Wk−3G−AxyWk−2G

)
Axy

=
(
ρ(y)∂2t −Axx

)
Wk−3C1 −AxyWk−2C1.
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Similarly,

Zk−2

(
ρ(y)∂2t −Axx

)
=
(
D1Zk−3 +D2Zk−4

)(
ρ(y)∂2t −Axx

)

= ((ρ(y)∂2t −Axx)GZk−4 −AxyGZk−3)(ρ(y)∂
2
t −Axx)

= ((ρ(y)∂2t −Axx)Wk−4G−AxyWk−3G)(ρ(y)∂
2
t −Axx)

= (ρ(y)∂2t −Axx)Wk−4C2 −AxyWk−3C2 .

Summing yields

Zk−2(ρ(y)∂
2
t−Axx)− Zk−1Axy = (ρ(y)∂2t −Axx)(Wk−3C1 +Wk−4C2)

−Axy(Wk−2C1 +Wk−3C2) + (ρ(y)∂2t −Axx)Wk−2 −AxyWk−1.

Therefore

a∗k(∂t, ∂x) = (−1)k
∫

Td

χ0(y)
(
(ρ∂2t −Axx)Wk−2χ0(y)−AxyWk−1χ0(y)

)
dy

= (−1)ka∗k(∂t, ∂x) .

For odd k, this implies a∗k(∂t, ∂x) = 0. �

2.3. Leap frog and secular growth. So far our only assumption was (2.4), namely

(I − π)wk = 0 for all k ≥ −2. Theorem 2.5 then shows that the nonoscillating part of

(1.2) determines the osillatory part by

(2.27) (I − π)uℓ =

ℓ∑

n=1

χnπuℓ−n for all l ≥ 0.

Theorem 2.10 shows that when the non oscillatory parts πun satisfy (2.27), then

πwj =

j∑

n=0

a∗n+2(∂t, ∂x)πuj−n .

Theorem 2.13 implies that only terms of the same parity appear,

πwj = a∗2(∂t, ∂x)πuj +
∑

2≤n

2n+k=j+2

a∗2n(∂t, ∂x)πuk .

To go further in the classical strategy assume that for all t, x, y

w0(t, x, y) = f(t, x) , ∀ 0 6= n ≥ −2, wn = 0 .
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It yields the following hierarchy of equations for the πuk,

(2.28)

ǫ0 : a∗2(∂t, ∂x)πu0 = f

ǫ1 : a∗2(∂t, ∂x)πu1 = 0

ǫ2 : a∗2(∂t, ∂x)πu2 = −a∗4(∂t, ∂x)πu0
ǫ3 : a∗2(∂t, ∂x)πu3 = −a∗4(∂t, ∂x)πu1
ǫ4 : a∗2(∂t, ∂x)πu4 = −a∗4(∂t, ∂x)πu2 − a∗6(∂t, ∂x)πu0

ǫ5 : a∗2(∂t, ∂x)πu5 = −a∗4(∂t, ∂x)πu3 − a∗6(∂t, ∂x)πu1

ǫ6 : a∗2(∂t, ∂x)πu6 = −a∗4(∂t, ∂x)πu4 − a∗6(∂t, ∂x)πu2 − a∗8(∂t, ∂x)πu0

ǫ7 : a∗2(∂t, ∂x)πu7 = −a∗4(∂t, ∂x)πu5 − a∗6(∂t, ∂x)πu3 − a∗8(∂t, ∂x)πu1

In addition, for all n, πun = 0 for t < 0. The ǫ0-order equation yields the classical

homogenized wave equation a∗2(∂t, ∂x)πu0 = f.

The equations for the odd subscripts are decoupled from those with even subscripts in

(2.28). The equations repeat in pairs. This is the leap frog structure of the non oscillatory

hierarchy.

Lemma 2.14 (Leap frog). For every 0 ≤ k ∈ Z, πu2k+1 = 0.

Proof. The statement follows by inspection of (2.28) and using that the initial data are

zero. Starting with n = 1 one concludes by induction in steps of two, that πun = 0 for

all odd n. �

The leap frog structure implies that secular growth is slow. Without the leap frog structure

one would have 2 ‖un‖ . tn instead of the tn/2 in next theorem.

Theorem 2.15 (Secular growth). If there is a t > 0 so that f = 0 for t > t, then for

each non zero α ∈ N
1+d\{0} and every k = 0, 1, 2, . . . there exists a constant C depending

on f, α and k so that for all t ≥ 0,

(2.29)
∥∥∂αt,xu2k(t) , ∂αt,xu2k+1(t)

∥∥
L2(Rd×Td)

≤ C 〈t〉k , 〈t〉 :=
√
1 + t2 .

Remark 2.16. Estimate (2.29) provides a bound on the derivatives of the un but not on

the un themselves. To estimate u2k or u2k+1 use u = u(0) +
∫ t

0
∂tu dt to find

(2.30)
∥∥u2k(t) , u2k+1(t)

∥∥
L2(Rd×Td)

= O(〈t〉k+1) .

Proof. By Theorem 2.5 the leading term u0(t, x) satisfies u0 = πu0, and by Theorem 2.10

for w0 = f

a∗2(∂t, ∂x)u0 = f , u0 = 0 for t < 0 .

2The notation A . B means that there is a constant C > 0, independent of A and B, so that A ≤ C B.



21

Since f ∈ C∞
0 (R ; Hs(Rd)) for all s, it follows that for 0 6= α ∈ N

1+d, ∂αt,xu0 ∈ L∞(R ; L2(Rd×
T
d)).

One has πu1 = 0. Equation (2.5) implies that the oscillatory part of u1 satisfies

∂αt,x(I − π)u1 = −∂αt,xA−1
yy Axy u0 ∈ L∞(R ; L2(Rd × T

d)) .

This completes the analysis of u1 and therefore the case k = 0 of the Theorem.

The proof is by induction on k. Assuming the result for indices ≤ k it suffices to prove

the case k + 1.

First estimate the π projections. Since 2(k + 1) + 1 is odd, πu2(k+1)+1 = 0. To estimate

πu2k+2, use the equation

a∗2(∂t, ∂x)πu2k+2 = −
∑

2≤n

n+j=k+2

a∗2n(∂t, ∂x)πu2j .

The case k of (2.29) bounds the right hand side. Since a∗2n is a sum of derivatives, the

inductive hypothesis implies that for all β including β = 0,

∥∥∂βt,xa∗2(∂t, ∂x)πu2k+2

∥∥
L2(Rd×Td)

= O(〈t〉k) .

It is important that the right hand side of the equation determining a∗2(∂t, ∂x)πu2(k+1) in-

volves only derivatives of the earlier profiles and not the profiles themselves. The standard

energy estimate for a∗2(∂t, ∂x) implies that for α 6= 0,

∥∥∂αt,xπu2k+2

∥∥
L2(Rd×Td)

= O(〈t〉k+1) .

It remains to estimate (I − π)un for n = 2k + 2 and 2k + 3.

Equation (2.6) with index 2k + 2 in place of k + 2 expresses (I − π)u2k+2 in terms of the

profiles with indices ≤ 2k + 1. Those profiles are O(〈t〉k) by the inductive hypothesis.

This yields
∥∥∂αt,x(I − π)u2k+2

∥∥
L2(Rd×Td)

= O(〈t〉k)

an estimate stronger than the O(〈t〉k+1) required by the Theorem.

Equation (2.6) with index 2k + 3 in place of k + 2 expresses (I − π)u2k+3 in terms of the

profiles with indices ≤ 2k + 2. Those with index ≤ 2k + 1 are O(〈t〉k) by the inductive

hypothesis. All the derivatives of the profile u2k+2 have just been shown to be O(〈t〉k+1).

It follows that
∥∥∂αt,x(I − π)u2k+3

∥∥
L2(Rd×Td)

= O(〈t〉k+1) .

�
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3. High accuracy on t ∼ ǫ−2+δ without crimes

This section is devoted to a proof of the correctness of the traditional two scale ansatz

for times strictly smaller than ǫ−2. Even in the classical strategy, this result is new. The

example of Appendix A shows that this is optimal. For the example, the traditional two

scale ansatz is not a good approximation for longer times.

Theorem 3.1. For k ∈ N, define a truncated ansatz, constructed from the first non

oscillating profiles πu0, πu2, . . . , πu2k by

Uk(ǫ, t, x, y) :=

2k∑

n=0

ǫnun(t, x, y) + ǫ2k+1(I − π)u2k+1 + ǫ2k+2(I − π)u2k+2 .

The approximate solution is Uk(ǫ, t, x, x/ǫ). Denote by uǫ the exact solution of (1.1).

There is a constant C, independent of 0 < ǫ ≤ 1 and t ≥ 0, so the energy of the error is

bounded by

(3.1)
∥∥∇t,x

[
uǫ(t, x) − Uk(ǫ, t, x, x/ǫ)

]∥∥
L2(Rd

x)
≤ C min

{
ǫ2k+1〈t〉k+1, ǫ2k+2〈t〉k+2

}
.

Remark 3.2. i. The energy of uǫ is bounded uniformly in time so the right hand side of

(3.1) bounds the relative energy error.

ii. By choosing k large one gets arbitrarily high order accuracy on time intervals that grow

as 1/ǫ2−δ for any δ > 0. Indeed, on the time interval 0 ≤ t ≤ ǫ−γ with γ(k + 1) < 2k + 1

the term ǫ2k+1〈t〉k+1 is of order ǫ2k+1−γ(k+1) and tends to zero as ǫ → 0. Analogously

for γ(k + 2) < 2k + 2 the term ǫ2k+2〈t〉k+2 is of order ǫ2k+2−γ(k+2) → 0 as ǫ → 0. iii.

There are two terms in the error estimate (3.1). The first is the smaller for large times

〈t〉 > ǫ−1. The second is smaller for moderate times 〈t〉 < ǫ−1.

iv. The problem (1.1) is invariant by differentiation in time. The derivative ∂jtu
ǫ is

the solution of the same problem with source term ∂jt f . The profiles of the two scale

asymptotic solution of that problem are equal to the functions ∂jt un(t, x, y). Theorem 3.1

applied to that problem shows that with a constant C depending on j but independent of

t and ǫ,

(3.2)
∥∥∂jt∇t,x

[
uǫ(t, x) − Uk(ǫ, t, x, x/ǫ)

]∥∥
L2(Rd)

≤ C min
{
ǫ2k+1〈t〉k+1, ǫ2k+2〈t〉k+2

}
.

v. Estimate (3.1) does not give any convergence result for times of the order or larger

than ǫ−2. One could wonder if it could not be improved by using exponential error estimate

as in [17] for the elliptic setting with analyticity assumptions on the right hand side f .

The 1-d example in Appendix A shows that it is not possible to improve (3.1) for larger

times. The reason for this limitation is the secular growth in Theorem 2.15. Smoother

source terms do not mitigate the polynomial time growth of the ansatz.



23

The proof of Theorem 3.1 has three main ingredients. The first in §3.1 relies on all the

work done so far. It is a precise formula for the difference between f and ρ(x/ǫ)∂2t U
k −

div a(x/ǫ)gradUk. That difference has terms no more regular than H−1. They are es-

timated in §3.2. The error in energy with such singular source terms is bounded using

Proposition C.1.

3.1. Formula for the residual. Take Uk as the finite power series from Theorem 3.1.

Then

(3.3)

[
ρ(y)∂2t −Axx −

1

ǫ
Axy −

1

ǫ2
Ayy

]
Uk(ǫ, t, x, y) = W k(ǫ, t, x, y) =

2k+2∑

n=−2

ǫnwn(t, x, y).

The profiles wj are the same as those in (2.1), except for the last two, j = 2k+ 1, 2k+ 2.

For j < 2k + 1,

w0 = f, and for j 6= 0, −2 ≤ j ≤ 2k, wj = 0 .

Indeed, for j ≤ 2k − 2 one has

wj = (ρ(y)∂2t −Axx)uj − (Ayyuj+2 + Axyuj+1) = 0

by construction of the profiles uj. For j = 2k − 1 use the fact that πu2k+1 = 0 because

2k + 1 is odd to find that

w2k−1 = (ρ(y)∂2t −Axx)u2k−1 − (Ayy(I − π)u2k+1 + Axyu2k)

= (ρ(y)∂2t −Axx)u2k−1 − (Ayyu2k+1 + Axyu2k) = 0.

For j = 2k use πu2k+1 = 0 and Ayyπ = 0 to find

w2k = (ρ(y)∂2t −Axx)u2k − (Ayy(I − π)u2k+2 + Axy(I − π)u2k+1)

= (ρ(y)∂2t −Axx)u2k − (Ayyu2k+2 + Axyu2k+1) = 0.

Therefore [
ρ(y)∂2t − Axx − 1

ǫ
Axy − 1

ǫ2
Ayy

]
Uk(ǫ, t, x, y) − f

= ǫ2k+1w2k+1(t, x, y) + ǫ2k+2w2k+2(t, x, y) =: r(ǫ, t, x, y)

and thus
[
ρ(x/ǫ)∂2t − div a(x/ǫ) grad

]
Uk(ǫ, t, x, x/ǫ) − f = r(ǫ, t, x, x/ǫ) .

Equation (3.3) shows that

w2k+1 = (ρ(y)∂2t −Axx)(I − π)u2k+1 −Axy(I − π)u2k+2,

w2k+2 = (ρ(y)∂2t −Axx)(I − π)u2k+2.
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Using πu2k+1 = 0 the term w2k+1 can be rewritten as

w2k+1 = (ρ(y)∂2t −Axx)(I − π)u2k+1 −Axy(I − π)u2k+2

=
(
(ρ(y)∂2t −Axx)u2k+1 −Axyu2k+2 −Ayyu2k+3

)
+Axyπu2k+2 +Ayyu2k+3

= Axyπu2k+2 +Ayyu2k+3.

Therefore

r =
[
ρ(y)∂2t −Axx

]
(I − π)

(
ǫ2k+1u2k+1 + ǫ2k+2u2k+2

)
− ǫ2k+1Axy(I − π)u2k+2

= ǫ2k+2
[
ρ(y)∂2t −Axx

]
(I − π)u2k+2 + ǫ2k+1 [Axyπu2k+2 +Ayyu2k+3] .

(3.4)

The definitions of the operators A yield for the first line of (3.4)

r = ǫ2k+1
[(
ρ(y)∂2t − divx a(y)gradx

)
(I − π)u2k+1 + ǫρ(y)∂2t (I − π)u2k+2

]

− ǫ2k+1
(
divx a(y)grady + divy a(y)gradx + ǫdivx a(y)gradx

)
(I − π)u2k+2

:= ǫ2k+1 (I(ǫ, t, x, y) + II(ǫ, t, x, y))

(3.5)

and for the second line, using that gradyπu2k+2 = 0,

r =ǫ2k+2(ρ(y)∂2t −Axx)(I − π)u2k+2 + ǫ2k+1 [Axyπu2k+2 +Ayyu2k+3]

=ǫ2k+2
(
ρ(y)∂2t (I − π)u2k+2 −Axxu2k+2

)
+ ǫ2k+2

[(
1
ǫ
Axy +Axx

)
πu2k+2 +

1
ǫ
Ayyu2k+3

]

=ǫ2k+2
[
ρ(y)∂2t (I − π)u2k+2 − divx a(y)gradxu2k+2

]

+ ǫ2k+2
[
(1
ǫ
divy a(y)gradx + divx a(y)gradx)πu2k+2 +

1
ǫ
divy a(y)gradyu2k+3

]

=:ǫ2k+2
(
Ĩ(ǫ, t, x, y) + ĨI(ǫ, t, x, y)

)
.

(3.6)

In addition, for ℓ = 2k + 1, 2k + 2, 2k + 3, with χn given by (2.8),

(3.7) (I − π)uℓ =
ℓ∑

n=1, ℓ−n even

χn πuℓ−n =
ℓ∑

n=1, ℓ−n even

∑

|β|=n

cβ,n(y) ∂
β
t,xπuℓ−n .

3.2. Estimates for the residual. In view of (3.7) and Theorem 2.15, I(ǫ, t, x, y) in (3.5)

is a sum of terms of the form ǫpc(y)v(t, x) with p ≥ 0, c ∈ L2(Td) and

‖∂αt,xv‖L2(Rd) . 〈t〉k

for α ∈ N
1+d, including α = 0. Analogously, Ĩ(ǫ, t, x, y) in (3.6) is a sum of terms

ǫpc(y)v(t, x) with

‖∂αt,xv‖L2(Rd) . 〈t〉k+1 .

Proposition B.1 implies that the L2-norms of I(ǫ, t, x, x/ǫ) and Ĩ(ǫ, t, x, x/ǫ) satisfy

‖I(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. 〈t〉k,
‖Ĩ(ǫ, t, x, x/ǫ)‖L2(Rd

x)
. 〈t〉k+1 .

(3.8)
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The terms II(ǫ, t, x, y) in (3.5) and ĨI(ǫ, t, x, y) in (3.6) involve derivatives of a(·), so are

not square integrable. Equation (3.7) shows that II(ǫ, t, x, y) is equal to

−
(
divx a(y)grady + divy a(y)gradx + ǫdivx a(y)gradx

) [ 2k+2∑

n=1

∑

|β|=n

cβ,n(y)∂
β
t,xπu2k+2−n(t, x)

]
.

Evaluate at y = x/ǫ to show that, with div acting on functions depending on x as well as

on functions depending on x/ǫ,

II(ǫ, t, x, x/ǫ) = −ǫ
2k+2∑

n=1

∑

|β|=n

div
[
a(x/ǫ)cβ,n(x/ǫ)grad ∂

β
t,xπu2k+2−n(t, x)

]

+
2k+2∑

n=1

∑

|β|=n

(
a(x/ǫ)(gradycβ,n)(x/ǫ) · grad ∂βt,xπu2k+2−n(t, x)

)

:= div
(
II(1)(ǫ, t, x, x/ǫ)

)
+ II(2)(ǫ, t, x, x/ǫ).

(3.9)

Arguing exactly as for I, using that each cβ,n ∈ H1(Td), it follows that II(1)(ǫ, t, x, x/ǫ),

∂tII
(1)(ǫ, t, x, x/ǫ), and, II(2)(ǫ, t, x, x/ǫ) are in L2(Rd) with

‖∂tII(1)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

+ ‖II(1)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. ǫ〈t〉k

‖II(2)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. 〈t〉k.
(3.10)

For ĨI(ǫ, t, x, y) one finds, exploiting that πu2k+3 = 0,

ĨI(ǫ, t, x, y) =
(
1
ǫ
divy a(y)gradx + divx a(y)gradx

)
πu2k+2

+ 1
ǫ
divy a(y)grady

[ 2k+3∑

n=1

∑

|β|=n

cβ,n(y)∂
β
t,xπu2k+3−n(t, x)

]
.

Evaluate at y = x/ǫ to obtain

ĨI(ǫ, t, x, x/ǫ) =div [a(x/ǫ)gradπu2k+2(t, x)]

+

2k+3∑

n=1

∑

|β|=n

div
[
a(x/ǫ)(gradycβ,n)(x/ǫ)∂

β
t,xπu2k+3−n(t, x)

]

−
2k+3∑

n=1

∑

|β|=n

a(x/ǫ)(gradycβ,n)(x/ǫ) · grad ∂βt,xπu2k+3−n(t, x)

=:div
(
ĨI

(1)
(ǫ, t, x, x/ǫ)

)
+ ĨI

(2)
(ǫ, t, x, x/ǫ)

with

‖∂tĨI
(1)
(ǫ, t, x, x/ǫ)‖L2(Rd

x)
+ ‖ĨI(1)(ǫ, t, x, x/ǫ)‖L2(Rd

x)
. 〈t〉k+1

‖ĨI(2)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. 〈t〉k+1.
(3.11)
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Combining estimates (3.10), (3.11) with (3.8) yields the residual

r(ǫ, t, x, x/ǫ) = f(ǫ, t, x) + div g(ǫ, t, x)

= f̃(ǫ, t, x) + div g̃(ǫ, t, x) ,
(3.12)

with

f(ǫ, t, x) = ǫ2k+1(I + II(2))(ǫ, t, x, x/ǫ), f̃(ǫ, t, x) = ǫ2k+2(Ĩ + ĨI
(2)
)(ǫ, t, x, x/ǫ)

g(ǫ, t, x) = ǫ2k+1II(1)(ǫ, t, x, x/ǫ), g̃(ǫ, t, x) = ǫ2k+2ĨI
(1)
(ǫ, t, x, x/ǫ)

and the two estimates,

‖f(ǫ, t, ·)‖L2(Rd) . ǫ2k+1〈t〉k, ‖∂tg(ǫ, t, ·)‖L2(Rd) + ‖g(ǫ, t, ·)‖L2(Rd) . ǫ2k+2〈t〉k

‖f̃(ǫ, t, ·)‖L2(Rd) . ǫ2k+2〈t〉k+1, ‖∂tg̃(ǫ, t, ·)‖L2(Rd) + ‖g̃(ǫ, t, ·)‖L2(Rd) . ǫ2k+2〈t〉k+1 .

(3.13)

3.3. End of proof of Theorem 3.1. Denote by uǫ the exact solution and Uk the ap-

proximation from the statement of Theorem 3.1. We have proved that
[
ρ(x/ǫ)∂2t − div a(x/ǫ) grad

]
(uǫ(t, x)− Uk(ǫ, t, x, x/ǫ)) := r(ǫ, t, x, x/ǫ)

with r(ǫ, t, x, x/ǫ) satisfying (3.12) and (3.13). Apply Proposition C.1. In the estimate

of that Proposition, the L1
(
[0, t] ;L2(Rd)

)
norms of f, f̃ and ∂tg, ∂tg̃ are estimated by t

times the L∞
(
[0, t];L2(Rd)

)
norms, which are controlled by (3.13). This yields the desired

result (3.1). �

Remark 3.3. The results concerning the two scale expansions extend with only minor

changes in the proofs to the case of coefficients a(x, x/ǫ) provided that for all β, ∂βxa(x, y) ∈
L∞(Rd×T

d). In this case, the operators χk are of order k but are no longer homogeneous.

The coefficients cα(x, y) satisfy ∂
β
x cα ∈ L∞(Rd

x;H
1(Td)) by Lemma 2.3. The proofs of the

leap frog structure and slow secular growth are unchanged. The residual estimate for the

term II in (3.9) has a few additional terms treated using this regularity of c. For the

criminal path, the case a(x, x/ǫ) is work in progress.

4. The criminal path

The criminal path, briefly presented in Section 1.2, yields approximations valid for times

of order ǫ−N for arbitrary N .

Main idea. The criminal path changes the choice of the nonoscillatory parts πun. The

oscillatory parts (1 − π)un are given in terms of the nonoscillatory parts by (2.11) as in

classical homogenization.

We replace the traditional ansatz (1.2) for U by the criminal ansatz (1.10) for V . Since

the terms vn in (1.10) depend on ǫ, we commit the asymptotic crime of mixing different
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orders in ǫ. The terms of order ǫ2 in the criminal path are introduced in different but

related ways in the seminal articles [23], [18].

4.1. Derivation of criminal equations. According to Definition 1.2 the criminal ansatz

satisfies v0 = πv0, πvn = 0 for n ≥ 1 and (I − π)vn = χnv0. The leading term v0 = π v0
and profile V (ǫ, t, x, y) are constructed so that the two formal identities

(4.1)
(
a∗2(ǫ∂t,x) + · · ·+ a∗2n(ǫ∂t,x) + · · ·

)
v0(ǫ, t, x) = ǫ2f , v0 = 0 for t < 0 ,

(4.2) V (ǫ, t, x, y) =
(
1 +

∞∑

l=1

ǫlχl(y, ∂t,x)
)
v0(ǫ, t, x) ,

are satisfied up to an acceptable error. Even if (4.1) is truncated to be a finite sum, it is

high order in t. For each ǫ it usually defines an ill posed time evolution. In spite of this,

the next sections construct functions vk0 that satisfy (4.1) with small error.

Equation (4.1) can be understood in another way. Theorems 2.5 and 2.10 together with

their remarks show that the standard homogenization hierarchy is equivalent to the pair

of identities in the sense of formal power series,

( ∞∑

n=1

a∗2n(ǫ∂t,x)
)( ∞∑

m=0

ǫmπum

)
= ǫ2f, U =

(
1 +

∞∑

l=1

ǫlχl

)( ∞∑

n=0

ǫnπun

)
.

Equivalently

(4.3)
( ∞∑

n=1

a∗2n(ǫ∂t,x)
)
πU = ǫ2f , U =

(
1 +

∞∑

l=1

ǫlχl

)
πU.

If one does not insist that πU be a formal power series in ǫ, this suggests the criminal

equation (4.1) for v0 = πU and the criminal ansatz V = U =
(
1 +

∑∞
n=1 ǫ

nχn

)
v0.

In the next sections, equation (4.1) is converted to a normal form, truncated at order k

and filtered, leading to the solutions vk0 from Definition 1.2 with small enough error so

that the approximation is very accurate.

4.2. Elimination algorithms. The algorithms of this section eliminate the time deriva-

tives in (4.1), other than those in a∗2, while changing the x-derivatives in the high order

terms.

Proposition 4.1. There are uniquely determined homogeneous operators R2j(∂t,x) and

ã2j(∂x) of degree 2j, the latter involving only ∂x, so that (1.11) holds as an identity in the

sense of formal power series.

The heart of the proof is the following Lemma.
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Lemma 4.2. Suppose that m ≥ 2 and S2m(∂t,x) is homogeneous of degree 2m and contains

only even powers of ∂t. Then there exists a unique r2m−2(∂t,x), homogeneous of degree

2m− 2, so that r2m−2a
∗
2 + S2m is a differential operator in ∂x only.

Proof. Write

r2m−2(∂t,x) = q0∂
2m−2
t + q2(∂x)∂

2m−4
t + · · · + q2m−4(∂x)∂

2
t + q2m−2(∂x) .

The goal is to determine q0, . . . , q2m−2 in such a way that r2m−2a
∗
2 + S2m is a differential

operator in ∂x only. Order the terms in S2m according to the order of the time derivative

S2m = s0(∂x)∂
2m
t + s2(∂x)∂

2m−2
t + · · · + s2m−2(∂x)∂

2
t .

Define ρ := πρ and a2(∂x) so that a∗2 from (2.19) satisfies

(4.4) a∗2(∂t,x) = ρ∂2t + a2(∂x) .

In particular a2(∂x) is second order in ∂x. Then the terms containing time derivatives in

r2m−2a
∗
2 are equal to

ρ
(
q0∂

2m
t + q2(∂x)∂

2m−2
t + · · · + q2m−4(∂x)∂

4
t + q2m−2(∂x)∂

2
t

)

+
(
(q0a2)(∂x)∂

2m−2
t + (q2a2)(∂x)∂

2m−4
t + · · · + (q2m−6a2)(∂x)∂

4
t + (q2m−4a2)(∂x)∂

2
t

)
.

(4.5)

Regrouping in order of decreasing powers of ∂t yields that (4.5) equals

ρq0 ∂
2m
t +

(
ρq2 + q0a2

)
(∂x) ∂

2m−2
t + · · ·

+
(
ρq2m−4 + q2m−6a2

)
(∂x) ∂

4
t +

(
ρq2m−2 + q2m−4a2

)
(∂x) ∂

2
t .

The unique choice eliminating the time derivatives in r2m−2a
∗
2 + S2m is given by

q0 = −ρ−1s0, and for 1 ≤ j ≤ m− 1, q2j(∂x) = −ρ−1
(
s2j(∂x) + (q2j−2a2)(∂x)

)
.

This completes the proof of Lemma 4.2. �

Definition 4.3. Denote by ON the set of constant coefficient partial differential operators

in ∂t,x that are sums of terms homogeneous of degree at least N .

The operators in ON are those whose symbols vanish to order N at the origin.

Proof of Proposition 4.1. In the next expressions ON represents an element of ON . The

identity (1.11) holds if and only if for all k ≥ 2

(4.6)
(
1 +R2 +R4 + · · ·+R2k−2

)(
a∗2 + a∗4 + · · ·+ a∗2k

)
= a∗2 + ã4 + · · ·+ ã2k +O2k+2 .

The goal is to find R2j such that (4.6) holds. For k = 2 expanding yields

(4.7)
(
1 +R2

)(
a∗2 + a∗4

)
= a∗2 +R2a

∗
2 + a∗4 +O6.
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The term of order 4 is R2a
∗
2+a

∗
4. Choose R2 using Lemma 4.2 as the unique homogeneous

order 2 operator so that this fourth order term is independent of ∂t. Denote by ã4 that

differential operator.

The construction is recursive. Suppose that the R2, . . . , R2k−2 and ã4, · · · , ã2k have been

uniquely determined so that (4.6) holds. We show that R2k and ã2k+2 are uniquely

determined so that (4.6) is satisfied for k + 1.

For k+1 the terms of order ≤ 2k on the right of (4.6) are only influenced by R2, . . . , R2k−2.

Separating the lowest order term in O2k+2 the right hand side of (4.6) can be written as

(4.8) a∗2 + ã4 + · · ·+ ã2k + p2k+2 +O2k+4,

where p2k+2(∂t,x) is homogeneous of degree 2k + 2. To prove (4.6) for k + 1 one must

determine R2k and ã2k+2 such that

(4.9)
(
1+R2+R4+· · ·+R2k−2+R2k

)(
a∗2+a

∗
4+· · ·+a∗2k+2

)
= a∗2+ã4+· · ·+ã2k+2+O2k+4 .

The term of order 2k + 2 is R2ka
∗
2 + p2k+2, where p2k+2 is given by (4.8), in terms of the

R2j , ã2j that are known from the inductive step. Lemma 4.2 shows that there is a unique

R2k so that this term of order 2k+2 is independent of ∂t. That is the uniquely determined

R2k and the operator in ∂x is ã2k+2. The recursive construction is complete. �

Remark 4.4. The proof yields a recursive algorithm to compute R2j , ã2j from the a∗2j.

The computation of the coefficients of a∗2j requires the solution of ∼ d2j cell problems.

Remark 4.5. Proposition 4.1 implies that if

a∗2(∂t,x) + a∗4(∂t,x) + · · ·+ a∗2k(∂t,x) = E(∂t,x)

with E(∂t,x) ∈ O2k+2, then there is a Ẽ(∂t,x) ∈ O2k+2 so that

a∗2(∂t,x) + ã4(∂x) + · · ·+ ã2k(∂x) = Ẽ(∂t,x) .

The converse of Remark 4.5 is also true. In the ring of formal power series 1+
∑∞

j=1R2j(∂t,x)

has a unique multiplicative inverse

1 +
∞∑

j=1

R̃2j(∂t,x) = 1 +
∞∑

k=1

(
−

∞∑

j=1

R2j(∂t,x)
)k
,

satisfying

(
1 +

∞∑

j=1

R̃2j(∂t,x)
)(

1 +

∞∑

j=1

R2j(∂t,x)
)
=
(
1 +

∞∑

j=1

R2j(∂t,x)
)(

1 +

∞∑

j=1

R̃2j(∂t,x)
)
= 1.

The next Corollary is an immediate consequence.
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Corollary 4.6. Define R̃k(∂t,x) :=
∑k

j=1 R̃2j(∂t,x) . Then

(4.10)

(
1 + R̃k(∂t,x)

)[
a∗2(∂t,x) + ã4(∂x) + · · ·+ ã2k+2(∂x)

]

=
[
a∗2(∂t,x) + a∗4(∂t,x) + · · ·+ a∗2k+2(∂t,x)

]
+O2k+4 .

4.3. Criminal equation with time derivatives eliminated. Having constructed the

operators R2j , the elimination algorithm is used to transform equation (4.1) to the normal

form (1.12). Then equation (1.12) is truncated at order k yielding equation (1.13) repeated

here,

[
a∗2(∂t, ∂x) +

k+1∑

j=2

ǫ2j−2 ã2j(∂x)
]
vk0(ǫ, t, x) =

[
1 +Rk

(
ǫ∂t,x

)]
f, vk0 = 0 for t < 0 .

The operator in brackets on the left may define an ill posed time evolution because the

sign of the coefficients of the higher order space derivatives may be wrong (for example,

it is known [13], [18], [4] that the operator ã4 has the wrong sign). This instability does

not hinder the construction of good approximations. Committing an error, which is high

order in ǫ, we filter the source term [1 +Rk
(
ǫ∂t,x

)
]f .

Choose cutoff functions ψj ∈ C∞
0 (Rd) for j = 1, 2 with ψ1 = 1 on a neighborhood of the

origin and ψ2 = 1 on a neighborhood of suppψ1. Choose 0 < α < 1. We compute a

profile vk0 that satisfies with D := (1/i)∂x,

(4.11)
[
a∗2(∂t, ∂x) + ǫ2ã4(∂x) + · · ·+ ǫ2kã2k+2(∂x)

]
vk0 = ψ1(ǫ

αD)
(
1 +Rk(ǫ∂t,x)

)
f.

The ill posed evolutions remain. However, for the filtered sources on the right in (4.11),

there exist nice solutions. Fourier transformation in x yields ordinary differential equations

in time parametrized by ξ for any tempered solution of (4.11). It shows that a tempered

solution must have transform with support in ǫ−α{suppψ1}. Such a solution satisfies

ψ2(ǫ
αD)vk0 = vk0 . Therefore it also satisfies

(4.12)[
a∗2(∂t, ∂x) +

[
ǫ2ã4(∂x) + · · ·+ ǫ2kã2k+2(∂x)

]
ψ2(ǫ

αD)
]
vk0 = ψ1(ǫ

αD)
(
1 +Rk(ǫ∂t,x)

)
f.

4.4. Stability Theorem. The operator applied to vk0 in (4.12) is,

a∗2(∂t, ∂x) + Mα(ǫ, k, ∂x) , Mα(ǫ, k, ∂x) :=

k+1∑

j=2

ǫ2j−2 ã2j(∂x) ψ2(ǫ
αD) , 0 < α < 1 .

The operator Mα depends on the choice of ψ2 and α.

Theorem 4.7. For any k ∈ N and any α0 < 1 there is an ǫ0 > 0 so that for each ǫ ≤ ǫ0
and any 0 < α < α0 the following holds.
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1. For any g0, g1 ∈ H1(Rd) × L2(Rd) there is a unique solution v with ∂jt v ∈
C(R ; H1−j(Rd)) for j ≥ 0 to
[
a∗2(∂t,x) + Mα(ǫ, k, ∂x)

]
v = 0 , v(0, ·) = g0 , ∂tv(0, ·) = g1 .

This solution satisfies with a constant C = C(α0, ǫ0, k) independent of 0 < ǫ ≤ ǫ0
and 0 < α ≤ α0,

sup
t∈R

(
‖∇xv(t)‖L2(Rd) + ‖∂tv(t)‖L2(Rd)

)
≤ C

(
‖∇xv(0)‖L2(Rd) + ‖∂tv(0)‖L2(Rd)

)
.

2. For any f ∈ L1
loc([0,∞[ ; L2(Rd)) there is a unique w with {w,∇t,xw} ∈ C([0,∞[ , L2(Rd))

satisfying
[
a∗2(∂t,x) + Mα(ǫ, k, ∂x)

]
w = f , w(0, ·) = ∂tw(0, ·) = 0 .

This solution satisfies with the same constant C from 1 and for all t > 0,

‖∇t,xw(t)‖L2(Rd) ≤ C ‖f‖L1([0,t];L2(Rd)).

Proof. 1. Mα is bounded from Hs → Hs+σ for all s, σ with bound independent of s. The

bound tends to infinity as ǫ → 0. The boundedness implies the existence statement of

the Theorem. The uniform bounds lie deeper.

With the notation from (4.4), the equation (a∗2 +Mα)v = 0 has the form ρvtt = −µ(D)v

with

(4.13) −µ(ξ) := a2(iξ) + ψ(ǫαξ)
∑

2≤j≤k+1

ǫ2j−2 ã2j(iξ) .

Each summand on the right is real valued. Statement 1. follows from the following

estimate. For each α0 ∈]0, 1[ there is an ǫ0 > 0 and constants 0 < c < C so that for all

0 < ǫ ≤ ǫ0, 0 < α ≤ α0 and all ξ ∈ R
d,

(4.14) c |ξ|2 ≤ −µ(ξ) ≤ C |ξ|2 .

By ellipticity of a2, there exists 0 < c1 < C1 such that, for all ξ ∈ R
d, c1 |ξ|2 ≤ a2(iξ) ≤

C1 |ξ|2 . Therefore, to prove (4.14) it suffices to show that the modulus of the second

summand on the right hand side of (4.13) is o(|ξ|2). In the support of the second summand

|ξ| . ǫ−α. Then
∣∣ǫ2j−2ã2j(iξ)

∣∣ . ǫ2j−2|ξ|2j = (ǫα|ξ|)2j−2 ǫ(2j−2)(1−α) |ξ|2

The first factor on the right is bounded and the second tends to zero as ǫ → 0. This

proves the desired inequality. The Fourier transform of the solution satisfies

ρ
∂2v̂

∂2t
+ µ(ξ) v̂ = 0 .
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Multiplying by the complex conjugate of ∂tv̂ and taking the real part proves the conser-

vation laws

∀ξ ∈ R
d,

∂

∂t

(
ρ |∂tv̂(t, ξ)|2

2
+

µ(ξ) |v̂(t, ξ)|2
2

)
= 0 .

The estimate (4.14) implies that the conserved quantity
∫

Rd

(
ρ
∣∣∂tv̂(t, ξ)

∣∣2 + µ(ξ)
∣∣v̂(t, ξ)

∣∣2
)
dξ

is uniformly equivalent to ‖∂tv(t)‖2L2(Rd)
+ ‖∇xv(t)‖2L2(Rd)

. This completes the proof of

statement 1.

2. Uniqueness follows from 1. Multiplying by a constant it suffices to consider the case

of a∗2 for which the coefficient of ∂2t is equal to 1. Define S(t, g0, g1) := v(t, ·), where v is

provided by 1. A solution with the desired estimates is given by Duhamel’s formula

w(t) :=

∫ t

0

S(t− s, 0, f(s)) ds .

�

Corollary 4.8. Let 0 < α0 < 1, k ∈ N and f ∈ H∞(R×R
d) supported in [0, 1]×R

d. Then

for and all 0 < α ≤ α0 and 0 < ǫ < ǫ0 there is a unique solution ζ ∈ C∞(R ; H∞(Rd)) of

(4.11). It satisfies supp ζ̂ ⊂ ǫ−α suppψ1 and

(4.15) sup
t∈[0,∞[

∥∥∂βt,xζ
∥∥
L2(Rd)

≤ C(k, f, β) < ∞ , β 6= 0 ,

(4.16)
∥∥ζ(t)

∥∥
L2(Rd)

≤ C(k, f) 〈t〉 .

Proof. Uniqueness. Taking the Fourier transform shows that any solution ζ ∈ C∞(R ; H∞(Rd))

to (4.11) satisfies supp ζ̂ ⊂ ǫ−α suppψ1. Therefore ζ also satisfies (4.12). The solutions of

those equations are uniquely determined thanks to Theorem 4.7.

Existence. Define ζ as the solution to (4.12). The same Fourier transform argument

as for uniqueness shows that this function satisfies supp ζ̂ ⊂ ǫ−α suppψ1. In particular

ψ2(ǫ
αD)ζ = ζ . This implies that ζ satisfies (4.11). Theorem 4.7 implies that it has the

additional properties claimed in Corollary 4.8 establishing existence. �

4.5. Criminal approximation error. This section performs the computations that are

the main ingredients in the proof of Theorem 1.3.

Remark 4.9. The profile vk0 = πvk0 from Definition 1.2 satisfies ψ2(ǫ
αD)vk0 = vk0 so is the

unique tempered solution supported in t ≥ 0 of

(4.17)
[
a∗2(∂t,x) +

( k+1∑

j=2

ǫ2j−2ã2j(∂x)
)
ψ2(ǫ

αD)
]
πvk0 =

[
1 +Rk(ǫ∂t,x)

]
ψ1(ǫ

αD)f .
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§4.5.1 computes a precise formula for the residual.

4.5.1. Formula for the residual. Recall the criminal approximation V k from (1.15),

V k(ǫ, t, x, y) =
2k+2∑

n=0

ǫnvkn(ǫ, t, x, y) =

(
I +

2k+2∑

n=1

ǫnχn(y, ∂t, ∂x)

)
vk0(ǫ, t, x) .

Define

(4.18) Z(ǫ, t, x, y) :=

[
ρ(y)∂2t − 1

ǫ2
Ayy − 1

ǫ
Axy − Axx

]
V k(ǫ, t, x, y) .

This is regrouped in powers of ǫ as if the vkn did not depend on ǫ.3 This yields

(4.19) Z =

2k+2∑

j=−2

ǫj Zj =

2k∑

j=−2

ǫj Zj +

2k+2∑

j=2k+1

ǫj Zj =:

2k∑

j=−2

ǫj Zj + E1 .

The term E1 is the first error term. It is estimated in Lemma 4.10. Theorem 2.5 shows

that the definition of the nonoscillatory part of vkn is equivalent to

(4.20)
(
I − π

)
Zn = 0 , −2 ≤ n ≤ 2k.

Since πvkn = 0 for 1 ≤ n ≤ 2k + 2 and vk0 = πvk0 , Theorem 2.10 yields

π
2k∑

j=−2

ǫjZj =
2k∑

j=0

ǫja∗j+2(∂t,x)v
k
0 = ǫ−2

2k∑

j=0

ǫja∗j+2(ǫ∂t,x)v
k
0 .

Equation (4.10) of Corollary 4.6 implies

π
2k∑

j=−2

ǫjZj = ǫ−2
(
1 + R̃k(ǫ∂t,x)

)[
a∗2(ǫ∂t,x) +

k+1∑

n=2

ã2n(ǫ∂x)
]
vk0 + ǫ−2O2k+4(ǫ∂t,x)v

k
0 ,

=
(
1 + R̃k(ǫ∂t,x)

)[
a∗2(∂t,x) +

k+1∑

n=2

ǫ2n−2ã2n(∂x)
]
vk0 + ǫ−2O2k+4(ǫ∂t,x)v

k
0 .

Since vk0 satisfies equation (4.11),

π
2k∑

j=−2

ǫjZj =
(
1 + R̃k(ǫ∂t,x)

)
ψ1(ǫ

αD)
(
1 +Rk(ǫ∂t,x)

)
f + ǫ−2O2k+4(ǫ∂t,x)v

k
0

=:
(
1 + R̃k(ǫ∂t,x)

)(
1 +Rk(ǫ∂t,x)

)
ψ1(ǫ

αD)f + E2 .

3That is, the computations are made in the ring of Laurent expansions in ǫ whose coefficients are
functions of ǫ, t, x, y. In ǫnvkn, the function vkn is a coefficient of ǫn. If for instance vkn = ǫ2 the power from
vkn must not be combined with the ǫn, the expression ǫnvkn is still a term in ǫn.
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Use (1 + R̃k(∂t,x))(1 +Rk(∂t,x)) = 1 +O2k+2 to continue the computation,

(
1 + R̃k(ǫ∂t,x)

)(
1 +Rk(ǫ∂t,x)

)
ψ1(ǫ

αD)f =
(
1 +O2k+2(ǫ∂t,x))ψ1(ǫ

αD)f

=: ψ1(ǫ
αD)f + E3

= f + (ψ1(ǫ
αD)− 1)f + E3

=: f + E4 + E3.

Therefore,

(4.21) Z(ǫ, t, x, y)− f(t, x) = E1(ǫ, t, x, y) +

4∑

j=2

Ej(ǫ, t, x) .

with

E1 = ǫ2k+1Z2k+1 + ǫ2k+2Z2k+2, E2 = ǫ−2O2k+4(ǫ∂t,x)v
k
0 ,

E3 = O2k+2(ǫ∂t,x)ψ1(ǫ
αD)f, E4 = (ψ1(ǫ

αD)− 1)f.
(4.22)

4.6. Residual estimates and proof of Theorem 1.3. The error uǫ(t, x)−V k(ǫ, t, x, x/ǫ)

satisfies

(4.23)

[
ρ(x/ǫ)∂2t − div a(x/ǫ) grad

](
uǫ(t, x)− V k(ǫ, t, x, x/ǫ)

)

= E1(ǫ, t, x, x/ǫ) +

4∑

j=2

Ej(ǫ, t, x).

Lemma 4.10. The error term E1(ǫ, t, x, x/ǫ) from (4.22) is of the form

E1(ǫ, t, x, x/ǫ) = f(ǫ, t, x) + div g(ǫ, t, x)

with f, g satisfying uniformly in t ≥ 0,

‖f(ǫ, t, ·)‖L2(Rd) + ‖∂tg(ǫ, t, ·)‖L2(Rd) + ‖g(ǫ, t, ·)‖L2(Rd) . ǫ2k+2.(4.24)

Proof. As for the residual in the non criminal approximation, using πvk2k+1 = πvk2k+2, write

E1(ǫ, t, x, y) =ǫ2k+1Z2k+1(t, x, y) + ǫ2k+2Z2k+2(t, x, y)

=
[
ρ(y)∂2t −Axx

]
(I − π)

(
ǫ2k+1vk2k+1 + ǫ2k+2vk2k+2

)
− ǫ2k+1Axy(I − π)vk2k+2

=ǫ2k+1
(
(ρ(y)∂2t −Axx)v

k
2k+1 −Axyv

k
2k+2 −Ayyv

k
2k+3

)

+ ǫ2k+1Ayyv
k
2k+3 + ǫ2k+2(ρ(y)∂2t −Axx)v

k
2k+2 .

Moreover, by construction

(ρ(y)∂2t −Axx)v
k
2k+1 −Axyv

k
2k+2 −Ayyv

k
2k+3 = a∗2k+3πv

k
0 = 0,
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since the odd order operators have been shown to vanish. As a consequence,

E1(ǫ, t, x, y) = ǫ2k+2(ρ(y)∂2t −Axx)v
k
2k+2 + ǫ2k+2

(
1

ǫ
Ayyv

k
2k+3

)

=: ǫ2k+2 (I(ǫ, t, x, y) + II(ǫ, t, x, y)) .

In addition, for l = 2k + 2, 2k + 3,

vkl = χl πv
k
0 =

∑

|β|=l

cβ,l(y) ∂
β
t,xπv

k
0

Use that cβ,2k+2, cβ,2k+3 ∈ H1(Td
y) to show that I(ǫ, t, x, y) is a sum of terms of the form

c(y)v(t, x), c ∈ L2(Td). Corollary 4.8 implies that each v satisfies, uniformly in t ≥ 0,

‖∂αt,xv(t, x)‖L2(Rd) . 1

for α ∈ N
1+d, including α = 0. Proposition B.1 in the appendix implies that uniformly

for t ≥ 0,

‖I(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. 1.

The second term, II(ǫ, t, x, y), involves derivatives of a(·). Write

II(ǫ, t, x, y) =
1

ǫ
divy a(y)grady

[ ∑

|β|=2k+3

cβ,2k+3(y)∂
β
t,xπv

k
0(ǫ, t, x)

]
.

Evaluate at y = x/ǫ to show that, with div acting on functions depending on x as well as

on x/ǫ,

II(ǫ, t, x, x/ǫ) =
∑

|β|=2k+3

div
[
a(x/ǫ)(gradycβ,2k+3)(x/ǫ)∂

β
t,xπv

k
0 (ǫ, t, x))

]

−
∑

|β|=2k+3

a(x/ǫ)(gradycβ,2k+3)(x/ǫ)grad ∂
β
t,xπv

k
0 (ǫ, t, x)

=:div
(
II(1)(ǫ, t, x, x/ǫ)

)
+ II(2)(ǫ, t, x, x/ǫ)

As for I it follows that, uniformly in t ≥ 0,

‖∂tII(1)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

+ ‖II(1)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. 1

‖II(2)(ǫ, t, x, x/ǫ)‖L2(Rd
x)

. 1
(4.25)

Defining f(ǫ, t, x) := ǫ2k+2(I + II(2))(ǫ, t, x, x/ǫ) and g(ǫ, t, x) := ǫ2k+2II(1)(ǫ, t, x, x/ǫ)

completes the proof of Lemma 4.10. �

End of proof of Theorem 1.3. Estimate the error terms E2, E3, E4 from (4.22). Since

vk0 and all of its derivatives are uniformly bounded in L2(Rd
x), one has

(4.26)
∥∥E2(ǫ, t, x)

∥∥
L2(Rd)

+
∥∥E3(ǫ, t, x)

∥∥
L2(Rd)

. ǫ2k+2 .
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The error from E4 is smaller. For any N one has

(4.27)
∥∥E4(ǫ, t, x)

∥∥
L2(Rd)

. ǫN .

Theorem 1.3 is a consequence of Lemma 4.10, (4.26), (4.27), and Proposition B.1 in the

appendix. �

Remark 4.11. In the same way as in part iv of Remark 3.2, one finds a constant C

depending on j but independent of ǫ ≤ 1, t ≥ 0 so that

(4.28)
∥∥∂jt∇t,x

(
uǫ(t) − V k(ǫ, t, x, x/ǫ)

)∥∥
L2(Rd

x)
≤ C ǫ2k+2 〈t〉 .

5. Sources growing polynomially in time

The error estimates for sources with compact support in 0 < t < 1 (Theorem 3.1 for the

classical case and Theorem 1.3 in the criminal case) easily imply similar estimates (5.1)

and (5.2) for sources that grow at most polynomially in time. Suppose that f = 0 for

t ≤ 0 and

∃m, ∀α, ∃C, ∀t ,
∥∥∂αt,xf(t)

∥∥
L2(Rd

x)
≤ C tm.

Use a partition of unity to write f =
∑∞

j=1 fj with fj supported in [j−1, j] and such that

∃C, ∀α, j, ∀t, sup
t∈R

∥∥ ∂αt,xfj(t)
∥∥
L2(Rd

x)
≤ C sup

j−1≤t≤j

∥∥∂αt,xf(t)
∥∥
L2(Rd

x)
.

Denote by uǫj the exact solution with right hand side fj and by uǫj,approx either the classical

or the criminal approximation. Then uǫ =
∑
uǫj and u

ǫ
approx =

∑
uǫj,approx. With eǫj(t) :=∥∥∇t,x

[
uǫj(t) − uǫj,approx(t)

]∥∥
L2(Rd

x)
, the triangle inequality implies that the error in energy

satisfies ∥∥∇t,x

[
uǫ(t)− uǫapprox(t)

]∥∥
L2(Rd

x)
≤

∑

j−1≤t

eǫj(t) .

5.1. Classical homogenization. Fix the index k in the classical approximation. Apply

Theorem 3.1 with initial time shifted to j − 1. Since fj has size O(jm), and the error in

Theorem 3.1 depends linearly on f ,

∃C, ∀j, t, eǫj(t) ≤ C min
{
ǫ2k+1

〈
(t− (j − 1))+

〉k+1
, ǫ2k+2

〈
(t− (j − 1))+

〉k+2
}
jm .

This implies∥∥∇t,x

[
uǫ(t)− uǫapprox(t)

]∥∥
L2(Rd

x)

. min

{
ǫ2k+1

∫ t

0

〈(t− s)+〉k+1 sm ds, ǫ2k+2

∫ t

0

〈(t− s)+〉k+2 sm ds

}

. min
{
ǫ2k+1 〈t〉k+2+m, ǫ2k+2 〈t〉k+3+m

}
.

(5.1)

Given N > 0 and 0 < δ < 2, choosing k so large that 2k + 1 ≥ N + (k + 2 +m)(2 − δ)

guarantees that the total error is O(ǫN) for times t ≤ 1/ǫ2−δ.
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5.2. Criminal path. Applying Theorem 1.3 with a time shift yields eǫj(t) . ǫ2k+2
〈
(t −

(j − 1))+
〉
jm, so

(5.2)
∥∥∇t,x

[
uǫ(t)− uǫapprox(t)

]∥∥
L2(Rd

x)
. ǫ2k+2

∫ t

0

〈
(t− s)+

〉
sm ds . ǫ2k+2 〈t〉m+2 .

Choosing k so large that 2k + 2 ≥ N +N(m+ 2) shows that the total error is O(ǫN) on

intervals t ≤ ǫ−N .

6. Sketch of some generalizations

6.1. Schrödinger equation. Consider the homogenization of Schrödinger’s equation

i ρ(x/ǫ) ∂tu
ǫ − div

(
a(x/ǫ) grad uǫ

)
= f(t, x) .

With only the most minor modifications of the proof one finds an anologue of Theorem

2.13. This yields a leap frog structure and slow secular growth as in Theorem 2.15. The

elimination is as for the wave equation case with ∂2t replaced by i∂t. The result is
(
I +

∑

j≥1

R2j(∂t, ∂x)
)(∑

n≥1

a∗2n(∂t, ∂x)
)

= a∗2(∂t, ∂x) + ã4(∂x) + · · ·

where the a∗2n denote the high order homogenizations of the Schrödinger operator. The

R2j , a
∗
2j , and ã2n are equal to the polynomials from the wave equation case bearing the

same name, but with ∂2t replaced by i∂t. The polynomials R2j and a∗2j are homogeneous

in the sense that they contain only monomials ∂mt ∂
α
x with 2m + |α| = 2j. The analogue

of Proposition C.1 is that if g ∈ L∞(R;L2(Rd)) ∩ L1(R;L2(Rd)) vanishes for t ≤ 0 and

gt ∈ L1(R;L2(Rd)), then the solution of i ρ(x/ǫ)∂tu = div(a(x/ǫ)gradu) + divg vanishing

for t ≤ 0 is uniformly bounded in L∞(R;H1(Rd)). The classical approximation is accurate

for times ∼ 1/ǫ−2+δ for any small δ > 0. The criminal approach yields approximations

with error ≤ ǫN for times 1/ǫN .

6.2. Systems of wave equations. For systems of wave equations the leap frog structure

can fail. There are convincing numerical examples of systems of linear elastodynamics for

which the third order homogenized operator does not vanish. The secular growth of un
is as tn instead of tn/2. The standard approximation loses its validity at time scale 1/ǫ.

A result that is true and reduces to the leap frog structure in the scalar case is that the

operators a∗n(i∂t, i∂x) are all self-adjoint for both, odd and even n.

The elimination strategy encounters a difficulty. The term ψ(ǫαD)
∑

k≥3 ǫ
k ãk(Dx) is a

small real perturbation of the spatial part of a∗2. However it need not be self-adjoint. In

the scalar case self-adjointness is a consequence of reality. The lack of self-adjointness can

lead to exponential growth in time destroying the stability proof. The system analogue

of stability is work in progress.
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Appendix A. Examples with maximal secular growth

A.1. Saturated secular growth. Theorem 2.15 gives an upper bound on the growth

in time of the profiles. This appendix shows that the upper bound is attained for generic

problems in dimension d = 1. Consider

∂2t u − ∂x
(
a(x/ǫ) ∂xu

)
= f(t, x) ∈ C∞

0 (]0, 1[×R) .

with a(y) 1-periodic and not identically constant. Denote

a∗2(∂t, ∂x) := ∂2t − c2∂2x =
(
∂x − c∂t

)(
∂x + c∂t

)
,

the homogenized operator. Then u0 = u0(t, x) is the solution of a∗2(∂t, ∂x)u0 = f that

vanishes for t < 0. Therefore for t > 1 there are uniquely determined g0, h0 ∈ C∞(R)

with g0(s) = 0 for s≫ 1 and h0(s) = 0 for s≪ −1 so that for t > 1 one has

u0 = g0(x− ct) + h0(x+ ct) .

For most f , both g0 and h0 are not identically equal to zero. This is true in particular if

f ≥ 0 and not identically equal to zero. In that case both g0 and h0 are non negative and

not identically zero. The profile πu2 satisfies of

a∗2(∂t, ∂x)πu2 = −a∗4(∂t, ∂x)u0 .
The fourth order homogeneous polynomial −a∗4(τ, ξ) contains no odd powers of τ . For

t > 1, u0 satisfies a
∗
2(∂t, ∂x)u0 = 0. In this domain, replacing systematically ∂2t u0 by c

2∂2xu0
and equivalently τ 2 by c2ξ2 yields a new polynomial q(ξ) so that −a∗4(∂t, ∂x)u0 = q(∂x)u0.

As soon as a(y) is not constant one has q(∂x) = γ∂4x with γ 6= 0 (see [13]). This shows

that

− a∗4(±c, 1) = γ 6= 0 .

The equation for πu2 for t > 1 is

(A.1) a∗2(∂t, ∂x)πu2 = (γ∂4g0)(x− ct) + (γ∂4h0)(x+ ct) .

Writing a∗2(∂t, ∂x) = (∂t − c∂x)(∂t + c∂x) one verifies that the function

z2(t, x) =
1

4c2

[
(ct+ x) (γ∂3g0)(x− ct) + (ct− x) (γ∂3h0)(x+ ct)

]
.

satisfies (A.1). Choose a cutoff function χ ∈ C∞(Rt) equal to zero for t < 1/2 and equal

to 1 for t ≥ 1. Then

a∗2(∂t, ∂x)
(
πu2 − χ(t)z2

)

is compactly supported in 0 ≤ t ≤ 1. Therefore

πu2 = χ(t) z2(t, x) + r2(t, x), and, ∀α, ∂αt,xr2 ∈ L∞(R1+1).

The equation for πu4 is

a∗2(∂t, ∂x)πu4 = − a∗4(∂t, ∂x)πu2 − a∗6(∂t, ∂x)πu0 .
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Only the πu2 term on the right is unbounded. Furthermore, if any of the derivatives in

a∗4(∂t, ∂x) fall on the factors ct± x in πu2 the resulting function is bounded. Therefore

a∗4(∂t, ∂x)
[
(ct+ x) (γ∂3g0)(x− ct) + (ct− x) (γ∂3h0)(x+ ct)

]

= (ct+ x) (γ2∂7g0)(x− ct) + (ct− x)(γ2∂7h0)(x+ ct) + L∞(R1+1).

Reasoning as above yields with ∂αt,xr3 ∈ L∞(R1+1),

πu4 =
1

(4c2)2

[(ct + x)2

2
((γ∂3)2g0)(x− ct) +

(ct− x)2

2
((γ∂3)2h0(x+ ct)

]
+ 〈t〉r3 .

An induction yields

πu2n =
(ct+ x)n

n!
gn(x− ct) +

(ct− x)n

n!
hn(x+ ct) + 〈t〉n−1rn ,

gn :=
(γ∂3
4c2

)n
g0 , hn :=

(γ∂3
4c2

)n
h0 , ∂αt,xrn ∈ L∞(R1+1) .

The un saturate the upper bounds of Theorem 2.15.

In addition note that u2n grows with n as the (3n)th derivative of g0, h0. This implies that

for generic real analytic g0, h0, the series
∑
ǫnun is divergent.

A.2. Classic homogenization is inaccurate beyond t = ǫ−2. One could imagine that

by including many correctors, the classical algorithm might be accurate for times beyond

ǫ−2. The example of the preceding subsection shows that that is not the case. For that

example the exact solution satisfies sup0<ǫ<1 supR1+1 |u| < ∞. For c > 0, δ > 0 as small

as one likes define tǫ = c/ǫ2+δ. To show the inaccuracy of the classical approximation it

suffices to show that for any 0 < N ∈ Z,

(A.2) lim
ǫ→0

∥∥∥
2N∑

j=0

ǫj uj(tǫ)
∥∥∥
L∞(Rx)

= ∞ .

For the example one has for t large

(A.3) ǫ2j tj . ‖ǫ2jπu2j(t)‖L∞(Rx) . ǫ2j tj .

For N fixed, formula (1.6) implies that

(A.4) ‖ǫk(I − π)uk(t)‖L∞(Rx) . ǫk−1 tk−1 .

Therefore, with λǫ := ǫ−δ one has

∥∥∥ǫ2N (I − π)u2N(tǫ) +
2N−1∑

k=0

ǫkuk(tǫ)
∥∥∥
L∞(Rx)

. λ2N−1
ǫ and λ2Nǫ .

∥∥ǫ2Nπu2N(tǫ)
∥∥
L∞(Rx)

.



40 GRÉGOIRE ALLAIRE, AGNES LAMACZ, AND JEFFREY RAUCH

It follows that with Cj > 0,

∥∥∥
2N∑

j=0

ǫj uj(tǫ)
∥∥∥
L∞(Rx)

≥ C1 λ
2N
ǫ − C2 λ

2N−1
ǫ .

The limit ǫ→ 0 yields (A.2).

Appendix B. Two scale L2 estimate

This appendix contains a proof of a classical estimate for oscillating two scale functions.

It is used in the error estimates in Sections 3.2 and 4.5.

Proposition B.1. For each integer s > d/2, there is a constant C so that for all v ∈
Hs(Rd) and c ∈ L2(Td),

(B.1)

∫

Rd

| v(x) c(x/ǫ) |2 dx ≤ C ‖c‖2L2(Td)

∑

|α|≤s

∫

Rd

|(ǫ∂x)αv(x)|2 dx .

Proof. Denote by Y := [0, 1)d the unit box. Then R
d is a disjoint union of boxes Yk :=

k + Y , Rd =
⋃

k∈Zn Yk. Scaling by ǫ yields R
d =

⋃
k∈Zn ǫ Yk. Sobolev’s inequality for Yk

reads

(B.2)
∥∥w
∥∥2
L∞(Yk)

≤ C(s, d)
∑

|α|≤s

∫

Yk

|∂αy w(y)|2 dy , w ∈ Hs(Yk) .

When y ∈ Yk, x := ǫy ∈ ǫYk. For v ∈ Hs(ǫYk), apply (B.2) to w(y) := v(ǫy) ∈ Hs(Yk) to

find

(B.3) ‖v‖2L∞(ǫYk)
≤ C(s, d) ǫ−d

∑

|α|≤s

∫

ǫYk

|(ǫ∂x)αv(x)|2 dx .

Estimate, using (B.3) in the last line,
∫

ǫYk

|v(x) c(x/ǫ)|2 dx ≤
∥∥v
∥∥2
L∞(ǫYk)

∫

ǫYk

|c(x/ǫ)|2 dx

≤ C(s, d) ǫ−d
∑

|α|≤s

∫

ǫYk

|(ǫ∂x)αv(x)|2 dx ǫd
∥∥c
∥∥2
L2(Td)

.

Summing over k yields (B.1). �

Appendix C. Stability estimate for the wave equation

This appendix contains an estimate for wave equations with sources in L∞
loc(R;H

−1(Rd)).

The weak regularity in x is compensated by additional regularity in time. The residuals

in the criminal and the non criminal approximation are of that form. For completeness

the proof is included. The systems case is exactly analogous.
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Proposition C.1. Suppose that 0 < m1 < m2 < ∞ are real numbers and a, ρ ∈ L∞(Rd)

satisfy m1 ≤ a, ρ ≤ m2. There is a constant C > 0 depending only on m1, m2 so that

for all f ∈ L1
loc
(R;L2(Rd)) and g ∈ L∞

loc
(R;L2(Rd;Rd)) with ∂tg ∈ L1

loc
(R;L2(Rd;Rd)) and

f = g = 0 for t ≤ 0 the solution of
(
ρ ∂2t − div(a grad)

)
u = f + div g , u = 0 for t ≤ 0 ,

satisfies for all t > 0,

‖∇t,xu(t)‖L2(Rd) ≤ C
[∥∥f

∥∥
L1([0,t] ;L2(Rd))

+
∥∥∂tg

∥∥
L1([0,t];L2(Rd))

+
∥∥g‖L∞([0,t];L2(Rd))

]
.(C.1)

Proof. Approximating a, ρ, f, g by smooth functions it suffices to prove the estimate for

solutions and right hand side that belong to Hs([0, t]×R
d) for all s, t > 0 with a constant

that depends only on the mj. Introduce continuous functions

E(t) :=
1

2

∫

Rd

(
ρ(x)

∣∣∂tu(t, x)
∣∣2 + a(x)

∣∣∇u(t, x)
∣∣2
)
dx , and M(t) := sup

0≤t≤t
E(t).

Testing the equation with ∂tu yields the standard energy identity

E(t) =

∫ t

0

∫

Rd

∂tu
(
f + divg

)
dx dt .

Estimate the first of the two summands on the right as

∣∣∣
∫ t

0

∫

Rd

f∂tu dxdt
∣∣∣ ≤

∥∥f
∥∥
L1([0,t] ;L2(Rd))

∥∥∂tu
∥∥
L∞([0,t] ;L2(Rd))

≤ C
∥∥f
∥∥
L1([0,t] ;L2(Rd))

M(t)1/2

with a constant depending only on the mj . For the second summand two integrations by

parts yield
∫ t

0

∫

Rd

div g ∂tu dxdt = −
∫ t

0

∫

Rd

g · grad ∂tu dxdt

=

∫ t

0

∫

Rd

∂tg · gradu dxdt −
∫

Rd

g(t, x) · gradu(t, x) dx .

Therefore
∣∣∣
∫ t

0

∫

Rd

divg ∂tu dxdt
∣∣∣ ≤

∥∥∂tg
∥∥
L1(]0,t[;L2(Rd))

∥∥grad u
∥∥
L∞([0,t] ;L2(Rd))

+ ‖g‖L∞([0,t];L2(Rd))‖gradu‖L∞([0,t];L2(Rd))

≤ C
(∥∥∂tg

∥∥
L1(]0,t[ ;L2(Rd))

+
∥∥g‖L∞([0,t];L2(Rd))

)
M(t)1/2 .

Combining yields

(C.2) E(t) ≤ C
(∥∥f

∥∥
L1([0,t] ;L2(Rd))

+
∥∥∂tg

∥∥
L1([0,t] ;L2(Rd))

+
∥∥g‖L∞([0,t];L2(Rd))

)
M(t)1/2 .
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For each t > 0, choose 0 < t ≤ t so that E(t) =M(t). Estimate (C.2) at time t yields

M(t) ≤ C
(∥∥f

∥∥
L1([0,t] ;L2(Rd))

+
∥∥∂tg

∥∥
L1([0,t] ;L2(Rd))

+
∥∥g‖L∞([0,t];L2(Rd))

)
M(t)1/2

≤ C
(∥∥f

∥∥
L1([0,t] ;L2(Rd))

+
∥∥∂tg

∥∥
L1([0,t] ;L2(Rd))

+
∥∥g‖L∞([0,t];L2(Rd))

)
M(t)1/2 .

If M(t) 6= 0, dividing by M(t)1/2 yields (C.1). If M(t) = 0, (C.1) holds with C = 0. �
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