A minimality property of the value function in optimal control over the Wasserstein space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A minimality property of the value function in optimal control over the Wasserstein space

Résumé

An optimal control problem with (possibly) unbounded terminal cost is considered in P2(Rd), the space of Borel probability measures with finite second moment. We consider the metric geometry associated with the Wasserstein distance, and a suitable weak topology rendering P2(Rd) locally compact. In this setting, we show that the value function of a control problem is the minimal viscosity supersolution of an appropriate Hamilton-Jacobi-Bellman (HJB) equation. Additionally, if the terminal cost is bounded and continuous, we show that the value function is the unique viscosity solution of the HJB equation.
Fichier principal
Vignette du fichier
Hermosilla_Prost.pdf (485.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04427139 , version 1 (30-01-2024)

Identifiants

  • HAL Id : hal-04427139 , version 1

Citer

Cristopher Hermosilla, Averil Prost. A minimality property of the value function in optimal control over the Wasserstein space. 2024. ⟨hal-04427139⟩
64 Consultations
62 Téléchargements

Partager

More