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A MINIMALITY PROPERTY OF THE VALUE FUNCTION IN
OPTIMAL CONTROL OVER THE WASSERSTEIN SPACE *

CRISTOPHER HERMOSILLAT AND AVERIL PROST?

Abstract. An optimal control problem with (possibly) unbounded terminal cost is considered in
2 (Rd), the space of Borel probability measures with finite second moment. We consider the metric
geometry associated with the Wasserstein distance, and a suitable weak topology rendering 5 (R%)
locally compact. In this setting, we show that the value function of a control problem is the minimal
viscosity supersolution of an appropriate Hamilton-Jacobi-Bellman (HJB) equation. Additionally, if
the terminal cost is bounded and continuous, we show that the value function is the unique viscosity
solution of the HJB equation.

Key words. Wasserstein space, Optimal control problems, viscosity solutions, weak topology

MSC codes. 35F21, 35R06, 49Lxx

1. Introduction. We consider a Hamilton-Jacobi-Bellman (HJB) equation aris-
ing from an optimal control problem whose state space is a set of measures. More
precisely, the unknown of our equation belongs £, (R?), the space of Borel probability
measures with finite second moment. It is well-known that this setting is suitable for
the modelling of optimal control of population dynamics in crowd motion [29, 13] or
biology [11]. In these approaches, the configuration at time s € [0, 7T of a population
is represented by a measure p, € Z5(RY), and the evolution in time is assumed to
satisfy a continuity equation of the form

(11) 89”’5 + le (f#“s) = 07 s € [OaT]v p’O =V

The equation (1.1) is understood in the sense of distributions, and is the measure
counterpart of an ODE with initial term v € Z225(R%), and dynamic f € C(RY; TRY).
In this work, we study a controlled version of the continuity equation. Given some
compact control set U C R” and a function u € L°([0,T]; U), we consider a controlled
dynamic f: U — C(RY; TRY) and the associated controlled continuity equation

(1.2) Doty + div (flu(s)[#,) =0, s€0,T),  py=r.
Let (“g’u’u)se[o,T]
be discussed in Section 3. We are concerned with a Mayer type problem associated
with a terminal cost J : Z9(RY) — R U {+co}, which may enforce terminal state
constraints when taking the value +co. To compute the optimal control, a general
approach is to study the value function V : [0,T] x Z3(R?) — R U {£o0} of the
problem

(1.3) V(t,v) = inf { J(u"") | we LO(t, T];U) }.

From the theory in finite-dimensional and Hilbert spaces, it is expected that (1.3) is
linked to an HJB equation of the form

(1.4) =0V (t,n) + H (p, D,V (¢, p)) =0, V(T ) = J(n)-

be the solution of (1.2), whose meaning and well-posedness will
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2 C. HERMOSILLA AND A. PROST

More precisely, a classical result of the HJB theory in Euclidian spaces is that whenever
J is real-valued and uniformly continuous, the value function V' is the unique solution
of (1.4) in the sense of viscosity solutions [14, 15]. In the case where J may take infinite
values, the value function may still be characterized as the smallest supersolution in
the classical (Euclidean) sense. The purpose of this work is to transpose these results
to problems where the state evolves in the space of Wasserstein measures, that is,
our main results is concerned with showing that the value function V is the smallest
supersolution of (1.4) in an ad-hoc sense for the space Z(R?).

The HJB equation we are interested in is a particular instance of a PDE on the
Wasserstein space, which has attracted a lot of interest since the seminal work of
Otto [28] on the porous media equation. The corpus of results of the theory concerns
gradient flows in the space of measures [4, 1, 12], the master equation in the theory
of mean-field games [9, 10, 7], Hamiltonian systems and flow equations [3, 2] and
optimal control problems [27, 24, 16]. As far as classical solutions are concerned, the
dominating theory is the Lions differentiability, that gives a proper definition of the
gradient of an application ¢ : Z5(RY) — R [25, 6]. The strength of this idea is to
embed measures into an external Hilbert space L2, and use the Hilbertian structure
therein. This strategy proved successful to study the master equation whenever the
data is sufficiently smooth to expect a C' solution [8, Theorem 1.5].

In the case when such regularity is not achievable, the most effective strategy so
far uses semidifferentials defined in an appropriate tangent space. Indeed, viscosity
solutions may be defined by imposing some sign conditions on the sub and superdiffer-
ential of the solution at any point, thus accounting for the non-existence of a gradient.
A standard choice in the literature is the regular tangent space, defined as

L2 (RY;TRY
Tan, Z5(RY) = [V | ¢ € CLRER)] ).

This space comes from the study of continuity equations, and may be used to define
viscosity solutions [17, 23]. However, it appears that Tan, is too small to contain
all the directions issued from p, since it does not allow the splitting of mass. One
could instead consider a general tangent space Tan,, build from the geodesics, whose
definition and properties are delayed to Subsection 2.2. However, using Tan,, does
not bring any additional smoothness, but significantly complexifies the manipulation.
Hence some authors adopted the strategy to restrict by penalization to regular mea-
sures p where Tan, and Tan, coincide, to obtain comparison principles; see [16].

In this work, we consider directional derivatives as our available infinitesimal
information over the variations of a function. This corresponds to a step back in
the theory of partial differential equations: instead of considering equations over
a gradient V¢ in some appropriate dual space, we consider an equation over the
application ¢ — (V, q) defined over the tangent directions g. This point of view allow
us to avoid altogether gradients and semidifferentials, since we only need to manipulate
functions ¢ that are directionally differentiable. The notation D,V (¢, 1) in (1.4) refers
to the application that to each £ € Tan,, &5 (RY), associates the directional derivative
of V at (t,u) in the direction . The control Hamiltonian can be defined over the
maps p : Tan, 25(RY) — R as follows

H(p,p) = sup —p (mh(f [u]#p)) -

Here 7/ denotes the projection over Tan,,. Note that whenever p(q) = (Vo, g), the
Hamiltonian H coincides with the classical control Hamiltonian. A similar definition
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MINIMALITY OF THE VALUE FUNCTION 3

of D,V and H is used in [21] to study viscosity solutions of general HJ equations in
CAT(0) spaces, and in [20, 22] to treat the Wasserstein space by using its curvature.

The results of [22] include a strong comparison principle in the case of measure-
dependant dynamics and locally uniformly continuous terminal costs J : &5(R%) — R.
To do so, a restrictive notion of upper semicontinuity is introduced, that corresponds
to the upper semicontinuity of the function U : B + sup,cpu(p) in the space of
nonempty bounded and closed subsets of #5(RY) endowed with the Hausdorff dis-
tance. This semicontinuity is not equivalent to upper semicontinuity in Wasserstein
nor narrow topology. Although it is clear that semicontinuity in the Wasserstein
topology is not sufficient to provide a good notion, the question stays open in the case
of the narrow topology. Indeed, the Wasserstein space is narrowly locally compact,
and many of the technicalities of [22] could be avoided using this property. This ques-
tion is the first aim of the present paper: we consider a particularly interesting weak
topology 7, built as the inductive limits of the narrow topology on each Wasserstein
ball (see Subsection 2.4). Additionally, we consider the case of state constraints at the
final time, and use ideas from [26] to show, mutatis mutandis, that the (discontinuous)
value function can be characterized by the HJB equation in this case.

1.1. Main contributions and standing assumptions. The main results of
the paper are the following. First, assume that the dynamic f is Lipschitz, that
the set f[U] C C(RY; TRY) is convex, and that J : Z9(RY) — R U {400} is proper,
lower bounded and 7-lower semicontinuous. Then the value function V is the minimal
supersolution of the HJB equation (1.4) in the sense of Definition 4.1; see Theorem 5.5.
Second, in the case where J is additionally bounded and 7-continuous, we are able to
prove that V is actually the unique viscosity solution of (1.4).

We furthermore provide a strong comparison principle by a rather direct gener-
alization of the arguments of [14]. The difficulty then lies in proving that the value
function is itself 7-lower semicontinuous. In particular, we have to restrict to measure-
independent dynamics: this may be understood with the analogy of the weak topology
over L? spaces, where in general, the composition of a convex function J with the flow
of an ODE stays convex only if the flow is linear.

In the sequel, we make the following standing assumptions.

Hypothesis 1.1 (on the dynamic). The set f[U] € C(RY; TRY) is nonempty,
convex as a set of functions, and closed in the topology of local uniform convergence.
Moreover, there exists Cy > 0 such that |f[u](0)| + Lip (f[u]) < C for each u € U.

Hypothesis 1.2 (on the terminal cost). The function J : #5(RY) — R U {+oc}
is proper, lower bounded and 7-lower semicontinuous.

The rest of the paper is organized as follows. Section 2 gathers the definition of the
Wasserstein space and the metric differential structure over it, as well as the topologies
in use over the dynamic and the state space. In Section 3, we study the trajectories
of (1.2) and the continuity properties of the reachable sets in the topology 7. The
HJB equation (1.4) is revisited in Section 4, where we define viscosity solutions and
prove a strong comparison principle. Section 5 is devoted to the link between the
value function and the HJB equation, and contains our main results.

2. Preliminary material. If X and Y are two measure spaces, the symbol
# is used to denote the pushforward operator, which to any probability measure
u € P(X) and measurable application g : X — Y, associates another probability
measure g#p € P(Y) given by (9#u) (A) = p (g~ (A)) for any measurable A C Y.

This manuscript is for review purposes only.
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4 C. HERMOSILLA AND A. PROST

2.1. The Wasserstein space. Let 7,7, : (RY)? — R denote the canoni-
cal projections, i.e. m.(a,b) = a. Given pu,v € P(RY), let T'(u,v) C P((RY)?)
denote the set of transport plans n = n(z,y) with first marginal 7, #n equal to p,
and second marginal m,#n equal to v. We say that u has finite second moment
if [ g lz|” du(z) < oo, and denote P5(RY) the set of such measures. This set is
endowed with so-called Wasserstein distance, defined by

2 ._ . 2
dhy(ur) = inf /( )
The set of optimal transport plans is denoted I',(p, V). Notice that the curves ¢t —
= ((1 —t)m, + tm,)#n parametrized by n € T', (i, v) exactly describe the geodesics
linking i to v. The squared Wasserstein distance happens to be semiconcave along
geodesics, i.e. for all 0 € Z5(RY) and 1 € T'y(u, ), it follows that

(2.1) iy (e,0) = (1= )y (n, 0) + tdy(v,0) = t(1 = )y (u,v), Ve [0,1].

This curvature property implies the existence of directional derivatives of d%/v(" o)
along geodesics. However geodesics are parameterized over [0, 1], and may not be
extended over [0,00). This poses a conceptual problem, since the positive multiples
of directional derivatives may not always be represented as directional derivatives
over "scaled” directions. To overcome this issue, the definition of directions is rather
understood through the concept of a tangent cone.

2.2. Tangent and cotangent bundles. We refer the reader to [18, Chap. 4]
for details in this section. We denote TRY := J, cga {z} X T, R the tangent bundle of
RY, endowed with the distance |(z,v) — (y, w)|* = |z — y|* 4 |v — w|*. For the sake of
notation, when it is clear from the context, we will identify applications f : R — T R4
with their second-coordinate applications f defined by f(z) = (z, f(x)).

To manipulate tangent directions instead of transport plans, we perform an equiv-
alent of the change of variable (z,y) — (z,y — ). Namely, for any n € T'(u,v), let
§=¢(z,v) € QZ(TRd) be given by & = (’/Tma'/Ty — ) #1.

For a given p € 25(RY), we write Z5(TRY),, == {¢{ € 2,(TRY) ‘ To#E =}
This set can be understood as the largest set of velocities issued from u, that can be
scaled with the operation A-& :== (7, Am,)#E€. Then the curve t — ((1—¢)7, +1tmy)#n
coincides with ¢ + exp,,(t-&) = (7, +tm,)#&. This curve generalizes the applications
t — = + tv, by sending the mass that £ puts over (z,v) to the point z + tv. The
exponential map exp,, admits a partial inverse

exp, (O v [

(z,v)€T R

exp, ! (v) = {f € Z,5(TRY)

[of* dé = diy(p, V)}-

To measure the distance between &, ¢ € Z5(TRY),, one introduces a set of 3-plans
Fu(gaC) = {a = a(x,v,w) € f@(TQ Rd) ‘ (7(:1077'(1))#04 =g, (Wszw)#a = C} )

where T? R4 := {(w,v,w) ‘ zeRY v, weT, ]Rd}, and the application

2 : 2
W, : (25(TRY),)” - RT, W2 (£¢) = oeel'l‘il(ff C)/( g lv —w|” da(z,v,w),
) T,0,w

This manuscript is for review purposes only.
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MINIMALITY OF THE VALUE FUNCTION 5

which turns out to be a distance in Z5(TRY),. Let 0#u € P2(TRY), be the
probability over the tangent space concentrated on the null velocity. We denote

|'|u5=@2(TRd)u%R+v €] = W, (€,04p) .

In particular, if £ = f#u and ¢ = g#p for some fields f,g € Lf (RY; TRY), then

"

W (f#uw, g#1) = ||f — g”Lﬁ' The general tangent cone to a measure y is defined by

WF‘

Tan, Z5(TR?) = {a- £ € 25(TRY) | a € Rt and € € expy ' (P3(RY))}
It is stable by scaling, and (7, (1 — t)m, + tm,)#a € Tan, 25(RY) for t € [0,1] and
a € T,(&,¢) whenever £, ¢ € Tan,, #5(RY). The orthogonal projection is well-defined
as the unique application

T Po(TRY), — Tan, P5(RY)  such that W, (&, 7€) = . min W, (£,¢).
c€Tan,,

Intuitively, the set Tan,, represents the set of available directions issued from p, and
lays the path for the metric counterpart of the dual space.

DEFINITION 2.1. For a function p : Tan, Z5(RY) — R, set

1P|l = sup {[p(€)| | £ € Tan, P5(RY), |¢], =1} .

We define the metric cotangent bundle T as T == J, {p} x Ty, where

_ .. d 1Pl < 00, P(AE) = Ap(§) VA >0,
Ty = {p + Tany, 25(R%) = R and p is Lipschitz w.r.t. W,,. ’

We then recover [p(¢)| < ||pll,lél,, for any € € Tan, 23(RY) and p € T,. El-
ements of T,, may be built from directional derivatives of sufficiently smooth maps.
As an important example, let p,0 € Z5(RY). Due to the semiconcavity (2.1), the
application [0,1] 3 h — £ (d3y,(exp,(h - £),0) — d3y, (1, 0)) is bounded and monotone,
so that d},(-,0) is directionally differentiable along all elements ¢ € Tan, %5(RY),
and there holds

D,dyy(-,0)(€) =  inf inf / (v, w) do(z, v, w).
(z,v,w)€T2 R

n€expy, ' (o) @€TL(€,m)

It turns out that the squared distance is directionally differentiable along any £ in
P5(TRY),, and by [20, Theorem 3.8], there holds D, d},(+,0)(§) = D,di, (-, o) (7€)
for all £ € Z5(TRY),,. Moreover, ||D,d%,(-,0)|,, = 2dw(u, o).

2.3. The topology over the dynamics. For convenience, denote

(22)  Ploe = BOI+ 327 sup ()] | 2l <}, b e CRYGTRY),
neN zeRd

The topology induced by ||, .. onC (Rd; T ]Rd) is that of the uniform convergence over
compact sets, and (C (R TRY), || ..) is a Banach space. As f[U] is a set of equiLip-
schitz and equibounded maps (Hypothesis 1.1), it is compact in (C(RY; TRY), || .)-
Indeed, by Arzela-Ascoli, the set {b|x | b€ f[U]} is compact in (C(K; TRY);|-|,.)

for any compact K, and then a diagonal argument proves the claim.

This manuscript is for review purposes only.



6 C. HERMOSILLA AND A. PROST

LEMMA 2.2 (Weak compactness). For each nontrivial compact I C R, the set
LY(I; fIU)) is weakly compact in L* (I; (C(RY; TRY), |-],..)) -

Proof. Let X = (C(RG; TRY),|-|,..). As f[U] is nonempty, convex and closed
in X, it is weakly closed by Hahn-Banach. As it is weakly closed and compact, it is
weakly compact by James’ Theorem [19, Theorem 5]. Consequently, L' (I; f[U]) is rel-
atively weakly compact by Diestel’s Theorem [30, Proposition 7]. Finally, L(I; f[U])
is closed and convex, hence weakly closed, thus weakly compact in L!(I; X). d

2.4. The topology 7 over #5(R%). The set #3(RY) may be endowed with
several topologies, for example the narrow topology and the topology induced by dyy.
The main advantage of the narrow topology is that closed balls for the Wasserstein
distance are compact. However, it does not hold that any narrowly converging se-
quence is bounded w.r.t. the Wasserstein distance. To circumvent this issue, we
consider another intermediate topology on Z5(RY), obtained as the inductive limit
of the narrow topology induced on each closed ball of radius n € N.

DEFINITION 2.3 (Topology 7 ([18, Definition 2.16])). For each n € N, let K,, =
By (60,n) the Wasserstein closed ball centered in 5y of radius n, and denote T, the
topology on K, induced by the narrow topology. Let i, : K, — P2(RY) be the
canonical injection. The topology T is the finest topology on P5(R9Y) that lets each i,
be continuous from (K, 7,) to (Z2(R%), 7).

In other words, 7 is the strict inductive limit of the topologies 7,. Let us collect
the principal characteristics of 7 from [18, Definition 2.16].

LEMMA 2.4 (Properties of (22(R%),7)). Let T be given by Definition 2.3.

1. A set A C P5(RY) is closed in 7 if and only if each AN K,, is closed in T,.
2. A sequence (p1,), C P2(RY) converges in T towards some p € Po(R?) if and
only if pn —n 1 and sup, ey dw(in, do) < 0o. We then denote i RN

3. Wasserstein closed balls are compact and sequentially compact in T.
4. (P2(RY),7) is not first-countable.
5. The squared Wasserstein distance is sequentially T-lower semicontinuous.

Observe that from Item 4, the topology 7 is not metrizable, and we do not di-
rectly have that sequential lower semicontinuity is equivalent to lower semicontinuity
in this topology. However, the class of spaces where these two properties coincide
(the Fréchet-Urysohn spaces) is larger than first-countable spaces, and (ﬂg(Rd),T)
happens to be one of these. In particular, it implies that the squared Wasserstein
distance is also 7-lower semicontinuous.

LEMMA 2.5. Assume that each (K, Ty,) is Fréchet-Urysohn, and let K = J,, Kp,.
Then the inductive limit (K, T) is also Fréchet-Urysohn.

Proof. Since each closed set is also sequentially closed, it is enough to prove the
converse in (K , Py (Rd)). Let A C K be sequentially closed. For each n € N, consider
(Tm),, C Ay, = ANK, asequence converging in 7, to some z € K,,. By the continuity
of iy, the sequence (tn (%)), C A converges towards ¢, (z), and as A is sequentially
closed, ¢, (z) € A. Then A, is sequentially closed, and as (K, 7,,) is Fréchet-Urysohn,
A, is closed in 7,,. But Item 1 in Lemma 2.4 implies that A is closed. 0

Consequently, in the sequel, we make no distinction between lower (resp. upper)
semicontinuity and sequential lower (resp. upper) semicontinuity for the topology 7.

3. Trajectories in the Wasserstein space.

This manuscript is for review purposes only.
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MINIMALITY OF THE VALUE FUNCTION 7

3.1. Existence and properties of the trajectories. Let 0 < t < T < o0,
v € P5(RY) and consider the continuity inclusion

(3.1) Osps € —div (f[Ul#nm,),  selt.T], p =v.

A curve (“Z’V)se[t,T] is a solution of (3.1) if it is absolutely continuous in &5(RY), and

if there exists a measurable map b € L!([t, T]; f[U]) such that dsp, = — div (bs#pu,)
in the sense of distributions, that is,

/ / Buip(s, 2) + (Vols,2), ba())] dpty (1) =0 Vip € € ((.T) x RY) .
s€[0,T] JzeR4

The following result stems from the combination of [5, Theorems 4.2 and 4.5].

ProPOSITION 3.1 (Existence, uniqueness and representation). Assume Hypoth-
esis 1.1. For each (t,v) € [0,T) x P5(R?), the set S" C AC ([t,T]; Z2(RY)) of
solutions of (3.1) is nonempty and compact in C ([t, T]; P2(R%)). Moreover, it holds

(32) 8 = {(S"#0) iy | b€ LT FUD }

where for each b € L1([t, T); f[U]), the semigroup St : [t, T] x RY — RY is the unique
solution of the underlying Cauchy problem

(3.3) %Sz’b(x) = b (St(2)), Sp'(x) = a.

Remark 3.2. Denote again C; an upper bound over |b(0)| + Lip (b) for each b €
flU]. By a Grénwall Lemma, for any b € L([t, T|; f[U]), the solution of (3.3) satisfies

(3.4) St (2) — 2| < (1 + ) (eCMH) - 1) . Vselt,T).

Consequently, for each p € St we have dyy (s, v) < (1 + dyw (8o, v)) (€7~ — 1),

We now turn to qualitative properties of the trajectories in (3.2). First, as the set
of dynamics f[U] does not depend on the measure variable, the trajectories enjoy a
linear structure. More precisely, let S : [t, T]x RY — R be the semigroup solution of
(3.3) for some b € LY([0,T]; f[U]). Then for each v € P5(R9), the curve s > SL0#v
is a solution of (3.1), and for all vy, v; € P5(R?) and ¢ € [0, 1], there holds

SO (1 —t vy +tvy) = (1 — t)SEH#uy + tSL #uy.

Here addition and product are understood in the Banach space of measures, that
is, [(1—t)vg +tn] (A) = (1 — t)vo(A) + tv1(A) for each measurable A C R, This
linearity property is the key point to prove the lower semicontinuity of the value
function in the topology 7.

3.2. Continuity properties of reachable sets. For each 0 <t < s < T and
v € P5(RY), define the reachable set of the continuity inclusion via the formula

(3.5) RY ={p, | pesS}.

We now investigate the behavior of the reachable sets under convergence in 7.

This manuscript is for review purposes only.
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8 C. HERMOSILLA AND A. PROST

LEMMA 3.3 (Sequential 7-lower semicontinuity). Assume Hypothesis 1.1. Let
(tn, Vn)n C [0, T] x Po(RY) such that t,, —t € [0,T] and v,, = v € P2(R?). For any
e Rél”, there is (tin)n C Po(RY) such that p, € Rgl“'/" and [l —p .

Proof. Let b € L([t,T]; f[U]) such that y = Sfp’b#u. Define a sequence (by,), by
bn € Ll([tnaT]mf[U])a bn(S) = bmax(s,t) Vs € [tnaT]

Consider , € R given by Sk #uv,. Using (3.4), one has

dW(Mran) < \//
r€Rd

As (vp)n is bounded in dyy by the definition of T-convergence, so is the sequence
(ftn),,- Moreover, for any ¢ € Cy(RY;R), we have

/mele 4 (Sl}”’b” (1‘)) dvn = /zE]Rd 7 <S§lb($)) dv

where A7 = ‘<gp 0 8krbtn — o ShP, l/n> and A3 = ’<<p 0 SL v, — u>‘ On the one

hand, the composition ¢ o Sfp’b is continuous, so that A% goes to 0 when n — co. On
the other hand, for each z € RY and s € [max(t,,),T] we have

/ Dmax(r,t) (S5 (2)) drr — / by (SL(x)) dr

r=t, r=t
t s
<[ sl [ crls - )
r=min(t,,t) r=t

<CpBn(z)|t —t,| + / Cy |Sﬁ"’b" (z) — Sﬁ’b(aj)| dr,
r=t

2
StT"’b” (z) — x‘ dvy, < (T —t,)Cf (14 dw(vn, 60)) eCr(T=tn)

[{0s pin) = (s )| = S AT+ A3,

|Szn,b Stb | _

where the last inequality follows (3.4), with 3, (x) = € (*=tD)(1 4 |z|). Applying a
Gronwall Lemma, one has S;”’b" (x) — S}’b(z) < OB ()|t —t,|eC7(T=1). Therefore,

if  is in addition Lipschitz continuous we get

(s ttn) — (@, )| < Lip () [t — tn| Cper It T=0) (1 4 dyy (v, 60)) + A5 — 0.

n— oo
By a density argument (e.g. [4, Section 5.1]) we can conclude that (p, ) — < u) for
any ¢ € Cp(RY;R). Furthermore, since (u1,),, bounded in dyy, there holds i, —, p.0

LEMMA 3.4 (Sequential 7-upper semicontinuity). Assume Hypothesis 1.1. Let
(tns Vn)n C [0,T] x Po(RY) such that t, — t € [0,T] and v,, =, v € Po(RY). For
each n, let w, € Rt”’””. Then there is w € Rél" and a subsequence so that wy, L w.

Proof. For each n, let p* € St»"» such that p% = w,, and denote b*" €
LY([tn, T); fIU]) a driving field for u™. Using (3.4), there holds

2
dW(wm Vn) < \// S;"Mbn ($) —z| dv, < (T - tn)cf \/ 14 d%/v(VmaO)ecf(Tit").
zeR4

As the convergence of (v,), in the topology 7 implies that d3, (v, dp) is bounded in-
dependently of n, we deduce that (w;, ), stays in a Wasserstein ball. From Lemma 2.4,
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Wasserstein balls are sequentially compact in 7, so that up to a non relabeled subse-
quence, w,, —, w for some w € F5(R?). Stays to prove that w € R;LV. We divide the
rest of the proof into several parts.

Extracting a dynamic Let b € L([t,T]; f[U]) defined by b" = b?ﬁzx(s ) for any
s € [t,T]. Denote (Sﬁ’b")se[t T
B () = eCrt=tl)(1 4 |z|), one has by (3.4) that

the semigroup related to the dynamic b™. Setting

|52 (@) = S0 (@) < CpBu(@)[t = tal + Cy / |53 (@) = iV (@) dr,

max(t,ty,)

so that by a Gronwall Lemma, for each s € [max(t,t,),T], there holds
(3:6) S (@) = 5100" @)] < CyBa(a)t = taeCriemextan,

Recall that f[U] is endowed with the topology of uniform convergence on compact
sets. By Lemma 2.2, L'([t,T]; f[U]) is weakly compact in L!(I; X), where X equals
(C(RLTRY), || o) and ||, is defined in (2.2). Then, up to a further (non relabeled)

subsequence, b" —,, b for some b € L'(I; f[U]). Let us show that w = S;:b#z/, or
equivalently, that

(3.7) <<p7 Sl}’b#V> =(p,w), Ve CCRYLR).

Estimates Let ¢ € C°(R;R), and denote Lip () its Lipschitz constant. As the
convergence in 7 implies weak convergence, we have that (p,w) = lim, o (@, wy) =

limy, 00 <g0, StT"’bn#Vn>. For each fix n, decompose

38) (oSt — (oS5 Hvn ) + AT+ AL,

< ‘<gpoS€,lb,l/—l/n>

where

Al = ‘<g0, S;’b#un — S;bn#un>

and Ay = ‘<g0, S;’bn H#vp — S’tT"“bn#un> .

Asz — S?b(x) is continuous, then ¢ o Sélb belongs to Cp(RY; R), and the convergence
Up An v ensures that <g0 o Sé:b, v — un> — 0. Moreover, using (3.6) we get
Az < Lip (i) [t = t] CpeCrUmtnlHTmmaxtbt)) (1 4 dyyy (v, 80)) — 0.

n—oQ

We turn to A7. Let Q C RY be the fattened compact

Q::{xeRd

Jy € supp (v), |z —y| < TCy (1 + sup |z|> eCfT} .
(#)

zEsupp

By (3.4), Q contains every trajectory s — S%#(x) such that Srf,lﬁ(x) € supp (p) for
some (3 € LY([t,T]; f[U]). As ¢ vanishes outside its support,

A7 < Lip () /

zEQ

S (@) = S (@) dvn(@).
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10 C. HERMOSILLA AND A. PROST

The application ¢ : s+ | S48 (z) — SLY" (2)] satisfies

T T
/ b(Sﬁ’b(x))ds—/ b (Shh(x)) ds| .

=t s=t

T
B9 w0 [ st

Since S4?(z) € Q for all s € [t, T], the linear map /3 — fstt B (S%*(z)) ds is continuous
in L*([t,T]; f]U]). By weak convergence, ‘fST:t b(Sth(x)) ds — fST:t b (S0 (x)) ds‘ =

en(x) — 0, and using a Grénwall Lemma on (3.9), we obtain that
n—o0

AP < Lip (gp)/ en(x)eS 1T dy, ().
zeQ
Using the compactness of 2, the application &, (x) is uniformly bounded and converges

pointwise to 0, so that by Lebesgue dominated convergence theorem, A} — 0. From
n—oo

here, we conclude that the right hand-side of (3.8) vanishes with n, proving the claim.0

3.3. Approximation along a subsequence. Recall that exp#(h < bftp) =
(7 + hbo (my)) #u for each b € f[U]. Since the trajectories of the controlled sys-
tem may lack C' regularity in time, we are not allowed to linearize them. However,
we can still approximate a trajectory issued from y by a ”linear” curve h — exp“(h -b)
along some given subsequence.

LEMMA 3.5 (Sequential approximation). Assume Hypothesis 1.1. Let (fty)sep 1]
be a solution of (3.1). Then there exists b € f[U] and a sequence (hy)nen such that

dyy (ll't+hn » €XDPy, (hn 'g#ﬂ't))
lim =

n—00 hn,

Proof. Let b e L'([t, T]; f[U]) and (p,)seft, 7] such that O, + div (bs#p,) = 0.
For h > 0 such that t + h < T, consider

b (r):= th ds = 1 t+hb d Vz € RY
x) = s(x)ds = . s(x)ds, x e R%.
s s=t

—h
Here b € f[U] by convexity. By compactness of f[U] in the topology of uniform
convergence over compact sets, there exists a sequence (hy,),, \, 0 and some b € f[U]

7}7/71, . —
such that b " converges uniformly over compact sets towards b. From (3.4) we get

1 - 1
I W\ Bith, expﬂt( #hy) o \/ o
2

\/

/zele
< /
z€R4

_ 2
SPhy (x) = (z + hnb(2))| dp,

t+h, _
F o nst s < ba)| duy

=t

N

t+hn, 2
][ SEP(2)ds — x| dp,

=t

t+hy, Rk
][ bs(z)ds — b(x)

=t

dpy + Cy /
z€Rd

() = 5| di + (e — 1)1+ do (pt b0).

B
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MINIMALITY OF THE VALUE FUNCTION 11

Let € > 0. Since pu, € Z5(R?), there exists R > 0 large enough so that

[ @ -] du < [ o) due) < <
|z[>R |z|>R

T DN Thn 7. . .
On the compact %£(0, R), the convergence b * — b is uniform with a modulus denoted
wpg. Summarizing the above, we have

1/2

dw (Ht+hn,expm(hn -B#Nt)) < (2 + ()
e2 + wi(hy,

h < +Cp(e™ = 1)(1 + dy(py, 00))-

Taking the limsup in n — oo, we get that

_dw (Ht+hn,eXPut (hn, 'E#H’t))

S P s
and € > 0 being arbitrary, we conclude. ]
4. The Hamilton-Jacobi equation. Let H : T — R, and consider the HJ

equation
(4.1) — Ow(t,p) + H (i, Dyo(t,p)) =0 te(0,7T), o(T,-) =73.

This section is devoted to the notion of solution adapted to (4.1). We first introduce
a definition of viscosity solutions using test functions, and then prove a comparison
principle that implies the uniqueness of the viscosity solution of (4.1).

4.1. Definition of viscosity solutions. We employ two distinct sets of test
functions for the sub and supersolutions. Denote

a €CY((0,T):R), N € N,
Ty = {(tvﬂ) = Y(t) £ z;aidfxv(l%l/i) and gf)‘i,yi)i(e([u,zv]? C)R+ X P3(RY). }
In particular, test functions in 7, are 7-lower semicontinuous, locally Lipschitz and
directionally differentiable everywhere, and J_ = —7,. As each term of the finite
sum of the measure component is directionally differentiable, so is each ¢(¢,-) for
¢ € i, and there holds D, p(t,-)(€) = £ XN | a;D,d2, (-, vi)(€).
We consider the following definition.
DEFINITION 4.1 (Viscosity solution). v :[0,T] x Z9(RY) — RU {40} is called
— a viscosity subsolution of (4.1) if it is T-upper semicontinuous, does not take
the value +oo, v(T, 1) < J(u), and for each ¢ € T} such that v — ¢ reaches
a finite mazimum in (t,u) € (0,T) x Po(RY), there holds

(4.2) = Opp(t, ) + H (1, Dypp(t, ) < 0.

— a wviscosity supersolution of (4.1) if it is T-lower semicontinuous, does not
take the value —oo, v(T, ) = J(n), and for each ¢ € J_ such that v — ¢
reaches a finite minimum in (t, u) € (0,T) x Po(RY), there holds

(4.3) = Op(t, 1) + H (1, Dup(t, 1)) = 0.

— a viscosity solution of (4.1) if it is both a sub and supersolution.
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12 C. HERMOSILLA AND A. PROST

4.2. Comparison principle. The comparison principle is the key result in the
viscosity theory. It essentially says that subsolutions are always smaller than superso-
lutions in the pointwise sense. This gives the uniqueness of the viscosity solution, and
in the classical theory, also allows to obtain existence for general nonconvex Hamil-
tonians. Owing to the local compactness of (Bzg(Rd),T), our strategy to obtain a
comparison principle is quite close to that of [14]. We begin by the adaptation of [14,
Proposition 3.7] in our case.

LEMMA 4.2 (Penalization lemma). Let (X,0) be a topological space, O C X
be nonempty, ® : O — RU {—occ} be O-upper semicontinuous and proper in O,
U : O — R be O-lower semicontinuous an nonnegative. For any a > 0, set 'y =
sug [®(z) — a¥(x)]. Assume that —oco < aan;o I'y < o0, and let z, € O be chosen such

xTE
that lim (T — (®(z,) — a¥(z,))) = 0. Then the following holds:
a—r o0
1. lim a¥(z,) =0,
a— o0
2. whenever & € O is a limit point of (x4)a in (X,0), then ¥(&) = 0 and
lim Ty, = ®(2) = sup P(z).

a— o0 \I/(I):O
Proof. Let
€a =T — (P(x,) — a¥(z,)),

so that lim, ,, e, = 0. Since ¥ > 0, the map a — I', decreases when a increases,
and lim, .o I', exists and is finite. Furthermore,

a a a
a2 = ®(2,) — E\I'(xa) > P(x,) —a¥(x,) + 5\11(%) =T, —¢eq+ §W(xa),

which implies that a¥(x,) < 2 (sa + g2 — Fa), hence lim, 00 a¥(z,) = 0.
Suppose now that a,, — oo and x4, —, & € O. Then lim,, 00 ¥(z,,) = 0, and
by lower semicontinuity, ¥(z) = 0. Moreover, since

D(xqa,) —an¥(ze,) =T0, —€a, = sup @(z) —e,,,
W (z)=0

and @ is upper semicontinuous, the result holds. 0
The comparison principle will rely on the next assumptions on the Hamiltonian.

Hypothesis 4.3 (Structure of the Hamiltonian). Assume that there exists a con-
stant Cgr > 0 such that for all p, v € Z9(R?) and p,q € T,

(4.4) |H (u,p+q) — H (1, p)| < Cr (L4 dw(p,60)) [|pll
and for all a > 0,
(4.5) H (1, —aDydyy(-,v)) — H (v,aDudyy (1, ) < aCrdiy(p, v).

The fact that the Hamiltonian issued from the control problem (1.3) satisfies
Hypothesis 4.3 is proved in [22, Section 6, Lemmata 6 and 7]. We are now in a
position to state our comparison principle.

PROPOSITION 4.4 (Comparison principle). Assume Hypotheses 1.1, 1.2, and 4.3.
Let v : [0,T] x Z3(RY) — R U {—00} be a subsolution of (4.1) bounded from above,
and w : [0,T] x Z3(RY) — RU{+o0} be a supersolution of (4.1) bounded from below.
Assume that there exists 0 € Po(RY) such that v(T, o) — w(T,0) € R. Then

= sup (w(t,p) —wt,p) < sup  (u(T,p) —w(T,p) =Tr.
(t,1)€[0,T] x P (R4) RE P2 (RY)
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MINIMALITY OF THE VALUE FUNCTION 13

Proof. By assumption, 'y and T are finite. Denote [[v]], [—w] upper bounds on
v and —w. Up to replacing v by v — I'p, we may assume that 'y = 0. Assume by
contradiction that I' > 0. Consider

v¥(t, p) =v(t,p) +alt—T)
for some « > 0 small enough so that

r*.:= sup (va(ta /u’) - w(t,/i)) > 0.
(t,m)€E[0,TIx 2 (R9)

Let now o € Z25(R9Y) be as in the statement, and gy > 0 so that for all 0 < & < &,

re = sup (UO‘(LM) —w(t,pu) — 2 (d%v(a, W) + 1)) > 0.

(t,1)€[0,T]x Z2(RY)

The sequence (I'?)_ is uniformly bounded, nondecreasing when € \, 0 and converges
towards I'“. For each €,a > 0, let

() + |t — 5
2

1 1
—¢ <d$,v(a, W) + d%\,(m v)+ n + s) .

(ba,a((thu')a (87V)) = ’Ua(tﬁl') - w(s,y) —a

The proof involves taking subsequences and diagonal sequences in ¢ and a. In
order to lighten the notation, let I, := R™ for all ¢ > 0, and I := U0<6<60 I. a set of
indexes that will be refined further on. For a fixed €, we denote 2. 4 —I> ze if 2. is

ac

€

the limit of the family (2c,q),c; When a — oo. We divide the rest of the proof into
several parts.

Point of maximum Notice that if ®. ,((¢, u), (s,v)) = D o((T,0),(T,0)), then
2
= (dhv(op) + diy(o,0) < o + [—wll + 2 = (0*(T,0) — w(T,0)) < oo.

Then there exists R. > 0 such that {®., > ®.,(T,0),(T,0))} C B((T,0), Re)>.
As balls of [0,T] x P2(RY) x [0,T] x P5(RY) are compact in the product topology
Bio,r) X T X Bjo, 1) X T, and ®. , is proper, upper bounded and upper semicontinuous in
this topology, there exists a maximum point z. o = (tc.a; te.a; Se,ar Ve,a) Of Pe q OVer
its domain. As R. is independant of a, we may extract a subsequence of a such that
Ze,q CONVeErges to some ze € ([O,T] x Pq (Rd))Q. Redefining each I, to only keep the
indexes of the said subsequence, we may assume that

. 2 . .
Ze,a aG—IZ Zze in (B[O,T] X 7') , and glerg D, o(2:,q) exists.
Applying Lemma 4.2, we get that possibly along a further refinement of I,

(4.6) (}161}1 a (d%,v(,u&a, Vea)+ |tea — ssya\Q) =0 and (}161}1 D, o(2:0) =TE.

Staying away from the boundary By construction, ., > 0 and s., > 0 for
each (e,a) € I. On the other hand, for each e, there exists a. large enough so that
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14 C. HERMOSILLA AND A. PROST

te.asSe,o < T for all a € I, N [ag, 00). Indeed, if it was not the case, then there would
exist (al), C I. going to +o0o with n — oo such that T' € {t. 4n,5cqn}. Since by
(4.6), |t5,a? — Sc,ar| vanishes when n — oo, using the upper semicontinuity of the
semisolutions, we would have

F? = n@o (I)&a? (25711?) < n@o v (ta,a;‘ s Ne,ag) _w(SE,agy Ve,ag) < Ch (T7 ZE) —’U)(T, ZE)'

This is absurd because I'? > 0 and v*(T,z.) — w(T,z:) < 0, and we get that
(te.as Se.a) € (0,T)% for a large enough. Up to refining the index set, we may as-
sume that this holds for all (g,a) € I.

Applying the definition of semisolutions For each (¢, a) € I, define

a 1
= (B Guvea) + 1t scal?) = (o) + 7 ) —

a 1
s, v) = =5 (@ (e v) + ltea = o) = (dw v)+ ) .
Since the squared Wasserstein distance is semiconcave, ¢ € 74 and ¥ € J_. As
u — ¢ reaches a maximum in (t. 4, fte.o) € (0,T) x P5(RY), applying the definition of
subsolution, we get

gDua,ad%/\}(-7 Ve,a> + EDHE,ad%\/(U7 )) < 0.

g
o+ tT - a(te,a - Ss,a) + H (Me,av 9

€,a

Using that -&— > 0, the assumption (4.4) on the Hamiltonian and the estimate

2
tsa

||Dud%/v(>V)||u < 2dW(:U’7V)7 we get

a
a — a(ts,a - 55,a) +H (ﬂs,aa §Dlts,ad%/v('7 Vs,a))

—2edyy (o, [LE,a)OH(l + dyy (do, Ns,a)) <0.

(4.7)

Similarly, w—1) reaches a minimum in (s. o, V¢ ). Using the same reasoning as above,

a
a(sc,a —tea) + H (Ve,m _§Dys,ad‘2/\}</’1’€ya7 ))

+2€dw(0’, VE’G)CH(l + dw<(50, Ve’a)) > 0.

(4.8)

Combining (4.7) and (4.8) and using the assumption (4.5), there holds V (¢,a) € T

(49)  a<aCudiy(pearVea) +2eCa Y, dw(o,@)(1 + dw(do, @)).

We{ﬂs,a,l’z,a}

Vanishing perturbation Recall that z. = limger. 2¢,4, Where the convergence is
understood in 7 for the measure coordinates. Passing to the limit in I. 5 a — oo in
(4.9) will not give useful information, since the squared Wasserstein distance is only
T-lower semicontinuous, and we will not obtain an inequality on z.. Therefore, we
extract a diagonal sequence of I. Let ng be large enough so that 27" < g¢, and
denote &,, := 27" for n > ng. Proceeding by induction and using (4.6), we may build
a sequence (&, an)n C I such that a, < a,41 for which

(e

1 1
a’nd‘%\} (I’Lgnvan7y€n7an) g E’ sup ((I)Envan) 2 FEn - E’ sup ((I)En+17an+1) 2 sup ((I)anvan) .
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MINIMALITY OF THE VALUE FUNCTION 15

The sequence (sup (P, 4, )),, is nondecreasing and upper bounded by I'*, thus con-
verges. On the other hand,

€n
0< (A3 (0, teran) + A (0, Ve an) +0) < @ yanis (20) — ey an (20)

g sup ((I)En+17an+1) — sup ((I)En,an) n:Zo 0.

Evaluating (4.9) along the subsequence (g, an), C I and passing to the limit in
n — 00, we obtain a < 0, which is absurd. Consequently, I' < 0. O

5. Characterisation of the solution in the case of control problems. We
now study the properties of the value function V : [0,T] x Z5(R?Y) — R U {c}
associated to the control problem (1.3), given by

V(t,v) = inf J(w).

t,
weRRY

Let us illustrate our setting with an example. Let J : Z5(RY) — R U {400} be
given by

3(0) 1= by 41, 60) = / 2l ds(z).

r€Rd

The domain dom J = Z4(RY) is closed in 7, since the 4—Wasserstein distance
dw 4(+,80) is narrowly lower semicontinuous. Take the dynamic f : U — C(RY; TRY)
parametrized by U = [0, 1] as

flu](z) = —uzx.
Then f[U] is convex, compact in the topology of uniform convergence on compact sets,
and each f[u] satisfies | f[u](0) + Lip (f[u])| < 1. For each u(:) € L([0,T]; U), the flow
of the underlying ODE is given by gLt (z) =exp (- f::t u(r)dr) z. Consequently,

3(se0) = [ e (= [ utrar )bt duto) =esp (<4 [ utyir) 30,

and minimizing over u(-) € LO([t, T]; U), the value function is given by
V(t, 1) = exp(=4(T = 1))3(n) € RU {oo}.

Gathering intuition from the available theory in finite dimension and Hilbert
spaces, we may expect V to be a viscosity supersolution of the HIJB equation (4.1)
for the Hamiltonian

(5.1) H:T—R,  H(upp) = Sup —p (' (f [ul#1)) ,

and a solution whenever J is real-valued and 7-continuous. From this point on-
ward, unless otherwise stated, we assume that the Hamiltonian of the HJB equation
(4.1) is given by (5.1).

Let us verify that it is indeed the case in our example. If (t,u) € dom V =
[0,T] x 224(RY), then the map V(¢,-) is directionally differentiable along trajectories
of the form s — exp,, (7(s - flu]#u)) and its derivative satisfies

DV (t, ) (7 (s - flulgtp)) = exp(=4(T = ))(—4u)I(1)-
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16 C. HERMOSILLA AND A. PROST

Hence in this case, we may compute the Hamiltonian and see that V(¢, ) € dom V|
=0V (t, 1) + sup =D,V (¢, ) (7 (f [ul#w))
ue

— —dexp(—A(T — 1)3(x) + sup duexp(—4(T — )3() = 0.
u€[0,1]

This directly implies that V is a viscosity supersolution in the sense of Definition 4.1.

Indeed, if ¢ € J_ is such that V — ¢ reaches a finite minimum in (¢, x) € (0,7) x

P5(RY), then dpp(t, n) < 9,V (t,u) and D,p(t,-)(€) < D,V(t,-)(€) along each & €

Tan,, Z5(RY) such that D,V (¢t,-)(£) exists. Hence the supersolution inequality

—0pp(t, 1) + sup =Dyp(t, ) (mH (f[ul#4)) = 0.

This section shows that this situation is generic in our setting. We begin by the
general case where J may be unbounded, and then restrict to a more regular case.

5.1. General case.

LEMMA 5.1 (Regularity of the value function). Assume Hypotheses 1.1 and 1.2.
Then each V(t,-) is proper, and V is lower bounded and T-lower semicontinuous.
Moreover, if J is bounded and T-continuous, then so is V.

Proof. Lower boundedness of V follows from that of J and by its definition. Let
w € dom J C P(RY), and let b € f[U] be fixed. As —b is Lipschitz-continuous, the
reversed continuity equation

Osprg + div (=b# ) = 0, Po=0

admits an unique solution (g, )se[o,7] such that gz, == pr_ is a solution of the forward
equation dsp, + div(b#m,) = 0, and i = 0. Hence V(t,1r;) < J(o) < co. Thus,
V(t,-) is proper.

Since closedness and sequential closedness coincide in (@Q(Rd),T) (see Defini-
tion 2.3), we only have to show that V is sequentially lower semicontinuous. Let
(tns Un)n C [0,T] x Po(RY) such that ¢, — t € [0,T] and v, =, v € P5(R?). For
each n, let w, € Ry such that V(t,,v,) = J(wn) — 1/n. Using Lemma 3.4, pos-
sibly along a subsequence, there exists w € Rgl" such that w, —, @. Then, by lower
semicontinuity of J in 7,

lim V(tn,vy) > lim J(w,) —

n—0o0 n—oo

> J(@) 2 inf Jw)=V(tv).
wERLY

S|

Assume now that J is bounded and 7-continuous. Then V shares the same bound
by definition. To prove that V is 7-upper semicontinuous, it is enough to show that
for any (t,v) € [0,T] x P(RY), any [0,T] > t,, — t and v,, -, v,

im Vtn,vn) < V(t,v).

n

Up to extraction, we may assume that lim V(t,,v,) = lim V(t,,v,). For each
n—r oo n—oo

e >0, let u. € Rﬁ,l” such that V(¢t,v) > J(ue) — e. By Lemma 3.3, there exists

o Un

Hen € R7™ such that y. N, te. Then, since J is 7-continuous,

lim V(tn, 1) < t@t?(ﬂe,n) =J(pe) < V(t,p) + e

n—oo

Letting € N\, 0, we conclude that V is T-continuous. 0
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THEOREM 5.2 (Supersolution). The value function is a supersolution of (4.1)
in the sense of Definition 4.1.

Proof. By Lemma 5.1, V is lower bounded and 7-lower semicontinuous, and by
definition, V(T,-) = J > —oo. Let ¢ € J_ such that V — ¢ reaches a minimum in
(t,v) € (0,T) x Po(RY). By Proposition 3.1, the set of trajectories S* is compact in
C ([t,T); 25(RY)) endowed with the topology of uniform convergence. Therefore, Ry
is compact in (392 (RY), dw)7 hence in (932 (RY), T). Since J is T-lower semicontinuous,
there exists (pu’")sep,7) such that

V(t,v) =V (t+h,puy) Vh e [0,T —t].

Recall that ¢(t, ) = ¥(t) + g(u), where ¢ € C1((0,T);R) and g is locally Lipschitz,
directionally differentiable and 7-lower semicontinuous. Thus, for any h € [0,T —¢] it
follows that

Dt +h) =)+ g (meyy) —9) SV (¢+hply) = Vit,v) =0.

Using Lemma 3.5, there exists a subsequence (hy,), C (0,7 — t] with h,, N\, 0, and
some b € f[U] such that dyy (ui’jhn,expu(hn -b#v)) = o(hy). Dividing the above by
hn, > 0, and denoting Lip (¢g) a local Lipschitz constant of g in a ball centered in v
and containing all u;fh and exp, (h, - b#v), we have

_dyy (exp, (hn - b#V),
< Llp (g) ( t+h) )

Y(t + hy) —Y(t) N glexp, (hy - b#v)) — g(v)
hn

hn hn,

Taking the limit in n — oo and using the respective differentiabilities of 1 and g,

o(t) + D,g(v) (b#v) < 0.

By the construction of test functions, D,g(v)(§) = D,g(m#€) for all £ € ZP5(TRY),.
multiplying by —1 and taking the maximum over all b € f[U], we obtain that
—0pp(t,v) + H (v, D,yp(t,v)) > 0, which is the desired property. |

5.2. Case of continuous and bounded terminal cost. We show that in the
case where J is bounded and 7-continuous, the value function is also a subsolution of
(4.1). Owing to the comparison principle, it will then be the unique solution.

THEOREM 5.3 (Subsolution property). Assume Hypotheses 1.1 and 1.2, and that
J is bounded and T-continuous. Then the value function is a subsolution of (4.1).

Proof. By Lemma 5.1, the value function is bounded and 7-upper semicontinuous.
As V(T,-) = 3, we only have to prove the viscosity inequality (4.2). Let ¢ =9 &g €
T, and (t,p) € (0,T) x P5(R?) such that V — ¢ reaches a maximum in (¢, u1). Let
any b € f[U] be fixed. Then the flow Sttf of the autonomous ODE Ly, = b(y,) is of
class C!, and there holds

dyy (Sffh#m exp,, (h- b#u))
lim

= 0.
h\0 h

Denote p, := S“*#u. Using the dynamic programming principle,

0< V(s ) = VI(EY) < (s, 1) — @(t,v) = d(s) = d(t) = [g(s) —g(v)] -
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As g is locally Lipschitz, dividing by s — ¢ and sending s — ¢, we get

oY(t) — Dug(b#,u) 2 0.

Since D, g(v)(§) = D,g(m"¢) if £ € P5(TRY), by definition of 7, multiplying by
—1 and taking the supremum over b € f[U], we get that V is a subsolution of (4.1).0

In the general case, V may take the value +o0o and has no chance to be a viscosity
subsolution of the HIB equation (4.1). However, we may still prove that it is the
smallest supersolution in the pointwise sense. The argument proceeds by truncature
and regularization, relying on the following result.

LEMMA 5.4 (Inf-convolution in 7). LetJ: #5(RY) — RU{oo} be lower bounded
and T-lower semicontinuous. Then for each B > 0, there is a nondecreasing sequence

of bounded T-continuous maps J, : P5(RY) — R that converge pointwise towards J
over %Bw(do, B).

Proof. Denote T : P9(RY) — R U {00} the characteristic function of the closed
ball Zyy (80, B), i.e. Tp(v) = 0 if dw(do,v) < B, and I(v) = +o0o otherwise. Since
closed Wasserstein balls are 7—compact, Ip is 7—lower semicontinuous. Moreover,
the function v — J(v) + Ip(v) is narrowly lower semicontinuous. Indeed, this is due
to the fact that the topology 7 coincides with the narrow topology on closed balls. Let
d: P5(RY) x Z5(R?Y) — R be a metric inducing the topology of narrow convergence
over Z9(RY) (e.g. [4, Section 5.1]), and

3o(n) =min (n, inf (34 T5)(0) +nd(w ) ) .
Jn(p) = min (n Veglfg(Rd)(d B)(v) 4+ nd(p V))

We directly have J,(¢) < min (n,J(1)) < J(p) for all u € P9(RY). Moreover, for
each o, 111 € yz(Rd)a

Jn(po) = Jn(p1) < max <0, sup  n (d(po,v) — dl(mw))) < nd(po, pi1)-
vePo(R)

By symmetry, J, is n-Lipschitz with respect to d, thus 7-continuous. It is moreover
bounded with values in [min (0, inf (J)),n]. To prove pointwise convergence, let 1 €
Pw (8o, B) be fixed. Assume by contradiction that there exists M < J(u) such that
Jn(p) < M for all n. Let ¢ := min(1,J () — M) > 0. Since J + g is narrowly lower
semicontinuous, there exists r > 0 such that d(u, v) < r implies (J+1g)(v) > M+e/2.
Taking n large enough so that nr > M + 5§ — inf(J) and n > M +€/2, we get

d(pv)<r d(pw)>r

Jn(p) > min (n, inf (J+1Ip)(v)+nd(p,v), inf (J+ Ip)(v)+ nd(u, V))
>min (M + 2, inf ”(u)+0+M+§—inf(”) > M+ S
= 2701](#,1/)27"! 2 d = 27
which is absurd. Thus the claim. a0
Using this regularization, we obtain the following characterization.

THEOREM 5.5 (Minimality property in the general case). Assume Hypotheses 1.1
and 1.2. Then for any supersolution v : [0,T] x P2(RY) — RU {oc} of (4.1) such
that v(T,-) is proper, there holds

(5.2) v(t,v) = V(t,v), V(t,v) € 0,T] x Z5(RY).

Consequently, the value function V is the smallest viscosity supersolution of (4.1).
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Proof. Let (£,7) € [0,T] x 25(RY). From Remark 3.2, the reachable set R%” is
contained in %y (8o, B) for some sufficiently large B. If v(f,7) = oo, the inequality
(5.2) is trivially satisfied. Assume now that v(t,7) < co. Let (J,), be given by
Lemma 5.4. By Theorems 5.2 and 5.3, the HJB equation

(5:3) = 0u0n(t, p) + H (p, Dpn (b, 1)) = 0, In(T, ) = Jn(p1)
admits a unique solution given by

Vo(t,v) = inf J,(u), Y(t,v) € [0,T] x Po(RY).

t,
MGRTV

Since v(T,v) = J(v) = Jn(v), the map v is a supersolution of each regularized problem
(5.3). Let 0 € P5(RY) such that v(T,0) € R: since v(T,0) = J(o) = Jn(o) =
Vo(T,0), we have —oco < V,,(T,0) — v(T,0) < 0. In consequence, we can apply
Proposition 4.4, and deduce that v(t,v) > V,,(¢,v) for any (t,v) € Z5(R9).

By Proposition 4.4, the solutions V;, are ordered in the sense that V,11(¢,v) >
Vo(t,v) for all n. Moreover, J, < J implies that the subsolutions V,, are smaller
than the supersolution V. Hence the sequence (V,, (¢, 7)), is nondecreasing and upper
bounded by v(f, ) < 0o, and converges. For each n, let p,, € Rgl'j such that V, (¢, v) >

Jnlpn) — L. Using Lemma 3.4, some (non relabeled) subsequence converges in 7

towards some 1 € Réi’_'. Using the monotonicity of the family (J,,),, and the continuity
in 7 of each J,, for a fixed m,

. ~ |

n—oo,n>=>m

S

n—00 n—o00

As [i € Bw(do, B), the conclusion follows from taking the limit in m — oo to obtain

o(t,v) 2 lim Vo(t,v) > 3(m) 2 V(2 p).

n— oo D
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