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A MINIMALITY PROPERTY OF THE VALUE FUNCTION IN1

OPTIMAL CONTROL OVER THE WASSERSTEIN SPACE ∗2

CRISTOPHER HERMOSILLA† AND AVERIL PROST‡3

Abstract. An optimal control problem with (possibly) unbounded terminal cost is considered in4
P2(Rd), the space of Borel probability measures with finite second moment. We consider the metric5
geometry associated with the Wasserstein distance, and a suitable weak topology rendering P2(Rd)6
locally compact. In this setting, we show that the value function of a control problem is the minimal7
viscosity supersolution of an appropriate Hamilton-Jacobi-Bellman (HJB) equation. Additionally, if8
the terminal cost is bounded and continuous, we show that the value function is the unique viscosity9
solution of the HJB equation.10
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1. Introduction. We consider a Hamilton-Jacobi-Bellman (HJB) equation aris-13

ing from an optimal control problem whose state space is a set of measures. More14

precisely, the unknown of our equation belongs P2(Rd), the space of Borel probability15

measures with finite second moment. It is well-known that this setting is suitable for16

the modelling of optimal control of population dynamics in crowd motion [29, 13] or17

biology [11]. In these approaches, the configuration at time s ∈ [0, T ] of a population18

is represented by a measure µs ∈ P2(Rd), and the evolution in time is assumed to19

satisfy a continuity equation of the form20

(1.1) ∂sµs + div (f#µs) = 0, s ∈ [0, T ], µ0 = ν.21

The equation (1.1) is understood in the sense of distributions, and is the measure22

counterpart of an ODE with initial term ν ∈ P2(Rd), and dynamic f ∈ C(Rd; TRd).23

In this work, we study a controlled version of the continuity equation. Given some24

compact control set U ⊂ Rκ and a function u ∈ L0([0, T ];U), we consider a controlled25

dynamic f : U → C(Rd; TRd) and the associated controlled continuity equation26

(1.2) ∂sµs + div (f [u(s)]#µs) = 0, s ∈ [0, T ], µ0 = ν.27

Let
(
µ0,ν,u

s

)
s∈[0,T ]

be the solution of (1.2), whose meaning and well-posedness will28

be discussed in Section 3. We are concerned with a Mayer type problem associated29

with a terminal cost J : P2(Rd) → R ∪ {+∞}, which may enforce terminal state30

constraints when taking the value +∞. To compute the optimal control, a general31

approach is to study the value function V : [0, T ] × P2(Rd) → R ∪ {±∞} of the32

problem33

(1.3) V (t, ν) := inf
{
J(µt,ν,u

T )
∣∣ u ∈ L0([t, T ];U)

}
.34

From the theory in finite-dimensional and Hilbert spaces, it is expected that (1.3) is35

linked to an HJB equation of the form36

(1.4) − ∂tV (t, µ) +H (µ,DµV (t, µ)) = 0, V (T, µ) = J(µ).37
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2 C. HERMOSILLA AND A. PROST

More precisely, a classical result of the HJB theory in Euclidian spaces is that whenever38

J is real-valued and uniformly continuous, the value function V is the unique solution39

of (1.4) in the sense of viscosity solutions [14, 15]. In the case where Jmay take infinite40

values, the value function may still be characterized as the smallest supersolution in41

the classical (Euclidean) sense. The purpose of this work is to transpose these results42

to problems where the state evolves in the space of Wasserstein measures, that is,43

our main results is concerned with showing that the value function V is the smallest44

supersolution of (1.4) in an ad-hoc sense for the space P2(Rd).45

The HJB equation we are interested in is a particular instance of a PDE on the46

Wasserstein space, which has attracted a lot of interest since the seminal work of47

Otto [28] on the porous media equation. The corpus of results of the theory concerns48

gradient flows in the space of measures [4, 1, 12], the master equation in the theory49

of mean-field games [9, 10, 7], Hamiltonian systems and flow equations [3, 2] and50

optimal control problems [27, 24, 16]. As far as classical solutions are concerned, the51

dominating theory is the Lions differentiability, that gives a proper definition of the52

gradient of an application φ : P2(Rd) → R [25, 6]. The strength of this idea is to53

embed measures into an external Hilbert space L2
P, and use the Hilbertian structure54

therein. This strategy proved successful to study the master equation whenever the55

data is sufficiently smooth to expect a C1 solution [8, Theorem 1.5].56

In the case when such regularity is not achievable, the most effective strategy so57

far uses semidifferentials defined in an appropriate tangent space. Indeed, viscosity58

solutions may be defined by imposing some sign conditions on the sub and superdiffer-59

ential of the solution at any point, thus accounting for the non-existence of a gradient.60

A standard choice in the literature is the regular tangent space, defined as61

Tanµ P2(Rd) := {∇φ | φ ∈ C1
c (Rd;R)}

L2
µ(R

d;TRd)
.62

This space comes from the study of continuity equations, and may be used to define63

viscosity solutions [17, 23]. However, it appears that Tanµ is too small to contain64

all the directions issued from µ, since it does not allow the splitting of mass. One65

could instead consider a general tangent space Tanµ build from the geodesics, whose66

definition and properties are delayed to Subsection 2.2. However, using Tanµ does67

not bring any additional smoothness, but significantly complexifies the manipulation.68

Hence some authors adopted the strategy to restrict by penalization to regular mea-69

sures µ where Tanµ and Tanµ coincide, to obtain comparison principles; see [16].70

In this work, we consider directional derivatives as our available infinitesimal71

information over the variations of a function. This corresponds to a step back in72

the theory of partial differential equations: instead of considering equations over73

a gradient ∇φ in some appropriate dual space, we consider an equation over the74

application q 7→ ⟨∇φ, q⟩ defined over the tangent directions q. This point of view allow75

us to avoid altogether gradients and semidifferentials, since we only need to manipulate76

functions φ that are directionally differentiable. The notationDµV (t, µ) in (1.4) refers77

to the application that to each ξ ∈ Tanµ P2(Rd), associates the directional derivative78

of V at (t, µ) in the direction ξ. The control Hamiltonian can be defined over the79

maps p : Tanµ P2(Rd) → R as follows80

H(µ, p) := sup
u∈U

−p (πµ(f [u]#µ)) .81

Here πµ denotes the projection over Tanµ. Note that whenever p(q) = ⟨∇φ, q⟩, the82

Hamiltonian H coincides with the classical control Hamiltonian. A similar definition83
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MINIMALITY OF THE VALUE FUNCTION 3

of DµV and H is used in [21] to study viscosity solutions of general HJ equations in84

CAT(0) spaces, and in [20, 22] to treat the Wasserstein space by using its curvature.85

The results of [22] include a strong comparison principle in the case of measure-86

dependant dynamics and locally uniformly continuous terminal costs J : P2(Rd) → R.87

To do so, a restrictive notion of upper semicontinuity is introduced, that corresponds88

to the upper semicontinuity of the function U : B 7→ supµ∈B u(µ) in the space of89

nonempty bounded and closed subsets of P2(Rd) endowed with the Hausdorff dis-90

tance. This semicontinuity is not equivalent to upper semicontinuity in Wasserstein91

nor narrow topology. Although it is clear that semicontinuity in the Wasserstein92

topology is not sufficient to provide a good notion, the question stays open in the case93

of the narrow topology. Indeed, the Wasserstein space is narrowly locally compact,94

and many of the technicalities of [22] could be avoided using this property. This ques-95

tion is the first aim of the present paper: we consider a particularly interesting weak96

topology τ , built as the inductive limits of the narrow topology on each Wasserstein97

ball (see Subsection 2.4). Additionally, we consider the case of state constraints at the98

final time, and use ideas from [26] to show, mutatis mutandis, that the (discontinuous)99

value function can be characterized by the HJB equation in this case.100

1.1. Main contributions and standing assumptions. The main results of101

the paper are the following. First, assume that the dynamic f is Lipschitz, that102

the set f [U ] ⊂ C(Rd; TRd) is convex, and that J : P2(Rd) → R ∪ {+∞} is proper,103

lower bounded and τ -lower semicontinuous. Then the value function V is the minimal104

supersolution of the HJB equation (1.4) in the sense of Definition 4.1; see Theorem 5.5.105

Second, in the case where J is additionally bounded and τ -continuous, we are able to106

prove that V is actually the unique viscosity solution of (1.4).107

We furthermore provide a strong comparison principle by a rather direct gener-108

alization of the arguments of [14]. The difficulty then lies in proving that the value109

function is itself τ -lower semicontinuous. In particular, we have to restrict to measure-110

independent dynamics: this may be understood with the analogy of the weak topology111

over L2 spaces, where in general, the composition of a convex function J with the flow112

of an ODE stays convex only if the flow is linear.113

In the sequel, we make the following standing assumptions.114

Hypothesis 1.1 (on the dynamic). The set f [U ] ⊂ C(Rd; TRd) is nonempty,115

convex as a set of functions, and closed in the topology of local uniform convergence.116

Moreover, there exists Cf ⩾ 0 such that |f [u](0)|+ Lip (f [u]) ⩽ Cf for each u ∈ U .117

Hypothesis 1.2 (on the terminal cost). The function J : P2(Rd) → R ∪ {+∞}118

is proper, lower bounded and τ -lower semicontinuous.119

The rest of the paper is organized as follows. Section 2 gathers the definition of the120

Wasserstein space and the metric differential structure over it, as well as the topologies121

in use over the dynamic and the state space. In Section 3, we study the trajectories122

of (1.2) and the continuity properties of the reachable sets in the topology τ . The123

HJB equation (1.4) is revisited in Section 4, where we define viscosity solutions and124

prove a strong comparison principle. Section 5 is devoted to the link between the125

value function and the HJB equation, and contains our main results.126

2. Preliminary material. If X and Y are two measure spaces, the symbol127

# is used to denote the pushforward operator, which to any probability measure128

µ ∈ P(X) and measurable application g : X → Y , associates another probability129

measure g#µ ∈ P(Y ) given by (g#µ) (A) = µ
(
g−1(A)

)
for any measurable A ⊂ Y .130
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4 C. HERMOSILLA AND A. PROST

2.1. The Wasserstein space. Let πx, πy : (Rd)2 → Rd denote the canoni-131

cal projections, i.e. πx(a, b) = a. Given µ, ν ∈ P(Rd), let Γ(µ, ν) ⊂ P((Rd)2)132

denote the set of transport plans η = η(x, y) with first marginal πx#η equal to µ,133

and second marginal πy#η equal to ν. We say that µ has finite second moment134

if
´
x∈Rd |x|2 dµ(x) < ∞, and denote P2(Rd) the set of such measures. This set is135

endowed with so-called Wasserstein distance, defined by136

d2W(µ, ν) := inf
η∈Γ(µ,ν)

ˆ
(x,y)∈(Rd)2

|x− y|2 dη(x, y).137

The set of optimal transport plans is denoted Γo(µ, ν). Notice that the curves t 7→138

ηt := ((1− t)πx + tπy)#η parametrized by η ∈ Γo(µ, ν) exactly describe the geodesics139

linking µ to ν. The squared Wasserstein distance happens to be semiconcave along140

geodesics, i.e. for all σ ∈ P2(Rd) and η ∈ Γo(µ, ν), it follows that141

(2.1) d2W (ηt, σ) ⩾ (1− t)d2W(µ, σ) + td2W(ν, σ)− t(1− t)d2W(µ, ν), ∀t ∈ [0, 1].142

This curvature property implies the existence of directional derivatives of d2W(·, σ)143

along geodesics. However geodesics are parameterized over [0, 1], and may not be144

extended over [0,∞). This poses a conceptual problem, since the positive multiples145

of directional derivatives may not always be represented as directional derivatives146

over ”scaled” directions. To overcome this issue, the definition of directions is rather147

understood through the concept of a tangent cone.148

2.2. Tangent and cotangent bundles. We refer the reader to [18, Chap. 4]149

for details in this section. We denote TRd :=
⋃

x∈Rd{x}×Tx Rd the tangent bundle of150

Rd, endowed with the distance |(x, v)− (y, w)|2 = |x− y|2 + |v − w|2. For the sake of151

notation, when it is clear from the context, we will identify applications f : Rd → TRd152

with their second-coordinate applications f defined by f(x) = (x, f(x)).153

To manipulate tangent directions instead of transport plans, we perform an equiv-154

alent of the change of variable (x, y) → (x, y − x). Namely, for any η ∈ Γ(µ, ν), let155

ξ = ξ(x, v) ∈ P2(TRd) be given by ξ := (πx, πy − πx)#η.156

For a given µ ∈ P2(Rd), we write P2(TRd)µ :=
{
ξ ∈ P2(TRd)

∣∣ πx#ξ = µ
}
.157

This set can be understood as the largest set of velocities issued from µ, that can be158

scaled with the operation λ ·ξ := (πx, λπv)#ξ. Then the curve t 7→ ((1−t)πx+tπy)#η159

coincides with t 7→ expµ(t ·ξ) := (πx+ tπv)#ξ. This curve generalizes the applications160

t 7→ x + tv, by sending the mass that ξ puts over (x, v) to the point x + tv. The161

exponential map expµ admits a partial inverse162

exp−1
µ (ν) :=

{
ξ ∈ P2(TRd)

∣∣∣∣∣ expµ(ξ) = ν,

ˆ
(x,v)∈TRd

|v|2 dξ = d2W(µ, ν)

}
.163

To measure the distance between ξ, ζ ∈ P2(TRd)µ, one introduces a set of 3-plans164

Γµ(ξ, ζ) :=
{
α = α(x, v, w) ∈ P(T2 Rd)

∣∣ (πx, πv)#α = ξ, (πx, πw)#α = ζ
}
,165

where T2 Rd :=
{
(x, v, w)

∣∣ x ∈ Rd, v, w ∈ Tx Rd
}
, and the application166

Wµ :
(
P2(TRd)µ

)2 → R+, W 2
µ (ξ, ζ) := inf

α∈Γµ(ξ,ζ)

ˆ
(x,v,w)∈T2 Rd

|v − w|2 dα(x, v, w),167
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MINIMALITY OF THE VALUE FUNCTION 5

which turns out to be a distance in P2(TRd)µ. Let 0#µ ∈ P2(TRd)µ be the168

probability over the tangent space concentrated on the null velocity. We denote169

| · |µ : P2(TRd)µ → R+, |ξ|µ :=Wµ (ξ, 0#µ) .170

In particular, if ξ = f#µ and ζ = g#µ for some fields f, g ∈ L2
µ(Rd; TRd), then171

Wµ(f#µ, g#µ) = ∥f − g∥L2
µ
. The general tangent cone to a measure µ is defined by172

Tanµ P2(TRd) :=
{
α · ξ ∈ P2(TRd)

∣∣ α ∈ R+ and ξ ∈ exp−1
µ (P2(Rd))

}Wµ

.173

It is stable by scaling, and (πx, (1− t)πv + tπw)#α ∈ Tanµ P2(Rd) for t ∈ [0, 1] and174

α ∈ Γµ(ξ, ζ) whenever ξ, ζ ∈ Tanµ P2(Rd). The orthogonal projection is well-defined175

as the unique application176

πµ : P2(TRd)µ → Tanµ P2(Rd) such that Wµ (ξ, π
µξ) = min

ζ∈Tanµ

Wµ (ξ, ζ) .177

Intuitively, the set Tanµ represents the set of available directions issued from µ, and178

lays the path for the metric counterpart of the dual space.179

Definition 2.1. For a function p : Tanµ P2(Rd) → R, set180

∥p∥µ := sup
{
|p(ξ)| | ξ ∈ Tanµ P2(Rd), |ξ|µ = 1

}
.181

We define the metric cotangent bundle T as T :=
⋃

µ{µ} × Tµ, where182

Tµ :=

{
p : Tanµ P2(Rd) → R

∣∣∣∣ ∥p∥µ <∞, p(λξ) = λp(ξ) ∀λ ⩾ 0,
and p is Lipschitz w.r.t. Wµ.

}
.183

We then recover |p(ξ)| ⩽ ∥p∥µ|ξ|µ, for any ξ ∈ Tanµ P2(Rd) and p ∈ Tµ. El-184

ements of Tµ may be built from directional derivatives of sufficiently smooth maps.185

As an important example, let µ, σ ∈ P2(Rd). Due to the semiconcavity (2.1), the186

application [0, 1] ∋ h 7→ 1
h

(
d2W(expµ(h · ξ), σ)− d2W(µ, σ)

)
is bounded and monotone,187

so that d2W(·, σ) is directionally differentiable along all elements ξ ∈ Tanµ P2(Rd),188

and there holds189

Dµd
2
W(·, σ)(ξ) = inf

η∈exp−1
µ (σ)

inf
α∈Γµ(ξ,η)

ˆ
(x,v,w)∈T2 Rd

⟨v, w⟩ dα(x, v, w).190

It turns out that the squared distance is directionally differentiable along any ξ in191

P2(TRd)µ, and by [20, Theorem 3.8], there holds Dµd
2
W(·, σ)(ξ) = Dµd

2
W(·, σ)(πµξ)192

for all ξ ∈ P2(TRd)µ. Moreover, ∥Dµd
2
W(·, σ)∥µ = 2dW(µ, σ).193

2.3. The topology over the dynamics. For convenience, denote194

(2.2) |b|ucc := |b(0)|+
∑
n∈N

2−n sup
x∈Rd

{|b(x)| | ∥x∥ ≤ n} , ∀b ∈ C(Rd; TRd).195

The topology induced by |·|ucc on C
(
Rd; TRd

)
is that of the uniform convergence over196

compact sets, and
(
C
(
Rd; TRd

)
, |·|ucc

)
is a Banach space. As f [U ] is a set of equiLip-197

schitz and equibounded maps (Hypothesis 1.1), it is compact in
(
C(Rd; TRd), |·|ucc

)
.198

Indeed, by Arzelà-Ascoli, the set {b|K | b ∈ f [U ]} is compact in
(
C(K; TRd); |·|ucc

)
199

for any compact K, and then a diagonal argument proves the claim.200
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6 C. HERMOSILLA AND A. PROST

Lemma 2.2 (Weak compactness). For each nontrivial compact I ⊂ R, the set201

L1(I; f [U ]) is weakly compact in L1
(
I;
(
C(Rd; TRd), |·|ucc

))
.202

Proof. Let X :=
(
C(Rd; TRd), |·|ucc

)
. As f [U ] is nonempty, convex and closed203

in X, it is weakly closed by Hahn-Banach. As it is weakly closed and compact, it is204

weakly compact by James’ Theorem [19, Theorem 5]. Consequently, L1(I; f [U ]) is rel-205

atively weakly compact by Diestel’s Theorem [30, Proposition 7]. Finally, L1(I; f [U ])206

is closed and convex, hence weakly closed, thus weakly compact in L1(I;X).207

2.4. The topology τ over P2(Rd). The set P2(Rd) may be endowed with208

several topologies, for example the narrow topology and the topology induced by dW .209

The main advantage of the narrow topology is that closed balls for the Wasserstein210

distance are compact. However, it does not hold that any narrowly converging se-211

quence is bounded w.r.t. the Wasserstein distance. To circumvent this issue, we212

consider another intermediate topology on P2(Rd), obtained as the inductive limit213

of the narrow topology induced on each closed ball of radius n ∈ N.214

Definition 2.3 (Topology τ ([18, Definition 2.16])). For each n ∈ N, let Kn :=215

BW (δ0, n) the Wasserstein closed ball centered in δ0 of radius n, and denote τn the216

topology on Kn induced by the narrow topology. Let ιn : Kn → P2(Rd) be the217

canonical injection. The topology τ is the finest topology on P2(Rd) that lets each ιn218

be continuous from (Kn, τn) to
(
P2(Rd), τ

)
.219

In other words, τ is the strict inductive limit of the topologies τn. Let us collect220

the principal characteristics of τ from [18, Definition 2.16].221

Lemma 2.4 (Properties of
(
P2(Rd), τ

)
). Let τ be given by Definition 2.3.222

1. A set A ⊂ P2(Rd) is closed in τ if and only if each A ∩Kn is closed in τn.223

2. A sequence (µn)n ⊂ P2(Rd) converges in τ towards some µ ∈ P2(Rd) if and224

only if µn ⇀n µ and supn∈N dW(µn, δ0) <∞. We then denote µn
τ
⇀n µ.225

3. Wasserstein closed balls are compact and sequentially compact in τ .226

4.
(
P2(Rd), τ

)
is not first-countable.227

5. The squared Wasserstein distance is sequentially τ -lower semicontinuous.228

Observe that from Item 4, the topology τ is not metrizable, and we do not di-229

rectly have that sequential lower semicontinuity is equivalent to lower semicontinuity230

in this topology. However, the class of spaces where these two properties coincide231

(the Fréchet-Urysohn spaces) is larger than first-countable spaces, and
(
P2(Rd), τ

)
232

happens to be one of these. In particular, it implies that the squared Wasserstein233

distance is also τ -lower semicontinuous.234

Lemma 2.5. Assume that each (Kn, τn) is Fréchet-Urysohn, and let K =
⋃

nKn.235

Then the inductive limit (K, τ) is also Fréchet-Urysohn.236

Proof. Since each closed set is also sequentially closed, it is enough to prove the237

converse in
(
K,P2(Rd)

)
. Let A ⊂ K be sequentially closed. For each n ∈ N, consider238

(xm)m ⊂ An := A∩Kn a sequence converging in τn to some x ∈ Kn. By the continuity239

of ιn, the sequence (ιn(xm))m ⊂ A converges towards ιn(x), and as A is sequentially240

closed, ιn(x) ∈ A. Then An is sequentially closed, and as (Kn, τn) is Fréchet-Urysohn,241

An is closed in τn. But Item 1 in Lemma 2.4 implies that A is closed.242

Consequently, in the sequel, we make no distinction between lower (resp. upper)243

semicontinuity and sequential lower (resp. upper) semicontinuity for the topology τ .244

3. Trajectories in the Wasserstein space.245
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MINIMALITY OF THE VALUE FUNCTION 7

3.1. Existence and properties of the trajectories. Let 0 ⩽ t ⩽ T < ∞,246

ν ∈ P2(Rd) and consider the continuity inclusion247

(3.1) ∂sµs ∈ −div (f [U ]#µs) , s ∈ [t, T ], µt = ν.248

A curve (µt,ν
s )s∈[t,T ] is a solution of (3.1) if it is absolutely continuous in P2(Rd), and249

if there exists a measurable map b ∈ L1([t, T ]; f [U ]) such that ∂sµs = − div (bs#µs)250

in the sense of distributions, that is,251

ˆ
s∈[0,T ]

ˆ
x∈Rd

[∂sφ(s, x) + ⟨∇φ(s, x), bs(x)⟩] dµs(x) = 0 ∀φ ∈ C∞
c

(
(t, T )× Rd

)
.252

The following result stems from the combination of [5, Theorems 4.2 and 4.5].253

Proposition 3.1 (Existence, uniqueness and representation). Assume Hypoth-254

esis 1.1. For each (t, ν) ∈ [0, T ) × P2(Rd), the set St,ν ⊂ AC
(
[t, T ];P2(Rd)

)
of255

solutions of (3.1) is nonempty and compact in C
(
[t, T ];P2(Rd)

)
. Moreover, it holds256

(3.2) St,ν =
{(
St,b
s #ν

)
s∈[t,T ]

∣∣∣ b ∈ L1([t, T ]; f [U ])
}
,257

where for each b ∈ L1([t, T ]; f [U ]), the semigroup St,b : [t, T ]×Rd → Rd is the unique258

solution of the underlying Cauchy problem259

(3.3)
d

ds
St,b
s (x) = bs

(
St,b
s (x)

)
, St,b

t (x) = x.260

Remark 3.2. Denote again Cf an upper bound over |b(0)| + Lip (b) for each b ∈261

f [U ]. By a Grönwall Lemma, for any b ∈ L1([t, T ]; f [U ]), the solution of (3.3) satisfies262

(3.4)
∣∣St,b

s (x)− x
∣∣ ⩽ (1 + |x|)

(
eCf (s−t) − 1

)
, ∀s ∈ [t, T ].263

Consequently, for each µ ∈ St,ν , we have dW (µs, ν) ⩽ (1 + dW(δ0, ν)) (e
Cf (s−t) − 1).264

We now turn to qualitative properties of the trajectories in (3.2). First, as the set265

of dynamics f [U ] does not depend on the measure variable, the trajectories enjoy a266

linear structure. More precisely, let St,b : [t, T ]×Rd → Rd be the semigroup solution of267

(3.3) for some b ∈ L1([0, T ]; f [U ]). Then for each ν ∈ P2(Rd), the curve s 7→ St,b
s #ν268

is a solution of (3.1), and for all ν0, ν1 ∈ P2(Rd) and t ∈ [0, 1], there holds269

St,b
s #((1− t)ν0 + tν1) = (1− t)St,b

s #ν0 + tSt,b
s #ν1.270

Here addition and product are understood in the Banach space of measures, that271

is, [(1− t)ν0 + tν1] (A) = (1 − t)ν0(A) + tν1(A) for each measurable A ⊂ Rd. This272

linearity property is the key point to prove the lower semicontinuity of the value273

function in the topology τ .274

3.2. Continuity properties of reachable sets. For each 0 ⩽ t ⩽ s ⩽ T and275

ν ∈ P2(Rd), define the reachable set of the continuity inclusion via the formula276

(3.5) Rt,ν
s :=

{
µs

∣∣ µ ∈ St,ν
}
.277

We now investigate the behavior of the reachable sets under convergence in τ .278
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8 C. HERMOSILLA AND A. PROST

Lemma 3.3 (Sequential τ -lower semicontinuity). Assume Hypothesis 1.1. Let279

(tn, νn)n ⊂ [0, T ]×P2(Rd) such that tn → t ∈ [0, T ] and νn
τ
⇀ ν ∈ P2(Rd). For any280

µ ∈ Rt,ν
T , there is (µn)n ⊂ P2(Rd) such that µn ∈ Rtn,νn

T and µn
τ
⇀n µ.281

Proof. Let b ∈ L1([t, T ]; f [U ]) such that µ = St,b
T #ν. Define a sequence (bn)n by282

bn ∈ L1([tn, T ]; f [U ]), bn(s) := bmax(s,t) ∀s ∈ [tn, T ].283

Consider µn ∈ Rtn,νn

T given by Stn,bn
T #νn. Using (3.4), one has284

dW(µn, νn) ⩽

√ˆ
x∈Rd

∣∣∣Stn,bn
T (x)− x

∣∣∣2 dνn ⩽ (T − tn)Cf (1 + dW(νn, δ0)) e
Cf (T−tn).285

As (νn)n is bounded in dW by the definition of τ -convergence, so is the sequence286

(µn)n. Moreover, for any φ ∈ Cb(Rd;R), we have287

|⟨φ, µn⟩ − ⟨φ, µ⟩| =
∣∣∣∣ˆ

x∈Rd

φ
(
Stn,bn
T (x)

)
dνn −

ˆ
x∈Rd

φ
(
St,b
T (x)

)
dν

∣∣∣∣ ⩽ An
1 +An

2 ,288

where An
1 :=

∣∣∣〈φ ◦ Stn,bn
T − φ ◦ St,b

T , νn

〉∣∣∣ and An
2 :=

∣∣∣〈φ ◦ St,b
T , νn − ν

〉∣∣∣. On the one289

hand, the composition φ ◦ St,b
T is continuous, so that An

2 goes to 0 when n→ ∞. On290

the other hand, for each x ∈ Rd and s ∈ [max(t, tn), T ] we have291 ∣∣Stn,bn
s (x)− St,b

s (x)
∣∣ = ∣∣∣∣ˆ s

r=tn

bmax(r,t)

(
Stn,bn
r (x)

)
dr −

ˆ s

r=t

br
(
St,b
r (x)

)
dr

∣∣∣∣292

⩽
ˆ t

r=min(tn,t)

∣∣bt (Stn,bn
r (x)

)∣∣ dr + ˆ s

r=t

Cf

∣∣Stn,bn
r (x)− St,b

r (x)
∣∣ dr293

⩽Cfβn(x)|t− tn|+
ˆ s

r=t

Cf

∣∣Stn,bn
r (x)− St,b

r (x)
∣∣ dr,294

295

where the last inequality follows (3.4), with βn(x) := eCf (|t−tn|)(1 + |x|). Applying a296

Grönwall Lemma, one has
∣∣∣Stn,bn

T (x)− St,b
T (x)

∣∣∣ ⩽ Cfβn(x)|t− tn|eCf (T−t). Therefore,297

if φ is in addition Lipschitz continuous we get298

|⟨φ, µn⟩ − ⟨φ, µ⟩| ⩽ Lip (φ) |t− tn|Cfe
Cf (|t−tn|+(T−t)) (1 + dW(νn, δ0)) +An

2 −→
n→∞

0.299

By a density argument (e.g. [4, Section 5.1]) we can conclude that ⟨φ, µn⟩ → ⟨φ, µ⟩ for300

any φ ∈ Cb(Rd;R). Furthermore, since (µn)n bounded in dW , there holds µn
τ
⇀n µ.301

Lemma 3.4 (Sequential τ -upper semicontinuity). Assume Hypothesis 1.1. Let302

(tn, νn)n ⊂ [0, T ] × P2(Rd) such that tn → t ∈ [0, T ] and νn
τ
⇀n ν ∈ P2(Rd). For303

each n, let ωn ∈ Rtn,νn

T . Then there is ω ∈ Rt,ν
T and a subsequence so that ωnk

τ
⇀k ω.304

Proof. For each n, let µn ∈ Stn,νn such that µn
T = ωn, and denote b0,n ∈305

L1([tn, T ]; f [U ]) a driving field for µn. Using (3.4), there holds306

dW(ωn, νn) ⩽

√ˆ
x∈Rd

∣∣∣Stn,bn
T (x)− x

∣∣∣2 dνn ⩽ (T − tn)Cf

√
1 + d2W(νn, δ0)e

Cf (T−tn).307

As the convergence of (νn)n in the topology τ implies that d2W(νn, δ0) is bounded in-308

dependently of n, we deduce that (ωn)n stays in a Wasserstein ball. From Lemma 2.4,309
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Wasserstein balls are sequentially compact in τ , so that up to a non relabeled subse-310

quence, ωn
τ
⇀n ω for some ω ∈ P2(Rd). Stays to prove that ω ∈ Rt,ν

T . We divide the311

rest of the proof into several parts.312

Extracting a dynamic Let bn ∈ L1([t, T ]; f [U ]) defined by bns = b0,nmax(s,tn)
for any313

s ∈ [t, T ]. Denote
(
St,bn

s

)
s∈[t,T ]

the semigroup related to the dynamic bn. Setting314

βn(x) := eCf (|t−tn|)(1 + |x|), one has by (3.4) that315

|St,bn

s (x)− Stn,b
n

s (x)| ⩽ Cfβn(x)|t− tn|+ Cf

ˆ s

max(t,tn)

|St,bn

r (x)− Stn,b
n

r (x)|dr,316

so that by a Grönwall Lemma, for each s ∈ [max(t, tn), T ], there holds317

(3.6)
∣∣∣St,bn

s (x)− Stn,b
n

s (x)
∣∣∣ ⩽ Cfβn(x)|t− tn|eCf (s−max(t,tn)).318

Recall that f [U ] is endowed with the topology of uniform convergence on compact319

sets. By Lemma 2.2, L1([t, T ]; f [U ]) is weakly compact in L1(I;X), where X equals320 (
C(Rd; TRd), |·|ucc

)
and |·|ucc is defined in (2.2). Then, up to a further (non relabeled)321

subsequence, bn ⇀n b for some b ∈ L1(I; f [U ]). Let us show that ω = St,b
T #ν, or322

equivalently, that323

(3.7)
〈
φ, St,b

T #ν
〉
= ⟨φ, ω⟩ , ∀φ ∈ C∞

c (Rd;R).324

Estimates Let φ ∈ C∞
c (Rd;R), and denote Lip (φ) its Lipschitz constant. As the325

convergence in τ implies weak convergence, we have that ⟨φ, ω⟩ = limn→∞ ⟨φ, ωn⟩ =326

limn→∞

〈
φ, Stn,b

n

T #νn

〉
. For each fix n, decompose327

(3.8)
∣∣∣〈φ, St,b

T #ν
〉
−
〈
φ, Stn,b

n

T #νn

〉∣∣∣ ⩽ ∣∣∣〈φ ◦ St,b
T , ν − νn

〉∣∣∣+An
1 +An

2 ,328

where329

An
1 :=

∣∣∣〈φ, St,b
T #νn − St,bn

T #νn

〉∣∣∣ and An
2 :=

∣∣∣〈φ, St,bn

T #νn − Stn,b
n

T #νn

〉∣∣∣ .330

As x 7→ St,b
T (x) is continuous, then φ ◦St,b

T belongs to Cb(Rd;R), and the convergence331

νn
τ
⇀n ν ensures that

〈
φ ◦ St,b

T , ν − νn

〉
→ 0. Moreover, using (3.6) we get332

An
2 ⩽ Lip (φ) |t− tn|Cfe

Cf (|t−tn|+(T−max(t,tn))) (1 + dW(νn, δ0)) −→
n→∞

0.333

We turn to An
1 . Let Ω ⊂ Rd be the fattened compact334

Ω :=

{
x ∈ Rd

∣∣∣∣∣ ∃y ∈ supp (φ), |x− y| ⩽ TCf

(
1 + sup

z∈supp (φ)

|z|

)
eCfT

}
.335

By (3.4), Ω contains every trajectory s 7→ St,β
s (x) such that St,β

T (x) ∈ supp (φ) for336

some β ∈ L1([t, T ]; f [U ]). As φ vanishes outside its support,337

An
1 ⩽ Lip (φ)

ˆ
x∈Ω

∣∣∣St,b
T (x)− St,bn

T (x)
∣∣∣ dνn(x).338
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10 C. HERMOSILLA AND A. PROST

The application ψ : s 7→
∣∣St,b

s (x)− St,bn

s (x)
∣∣ satisfies339

(3.9) ψ(T ) ⩽ Cf

ˆ T

s=t

ψ(s)ds+

∣∣∣∣∣
ˆ T

s=t

b
(
St,b
s (x)

)
ds−

ˆ T

s=t

bn
(
St,b
s (x)

)
ds

∣∣∣∣∣ .340

Since St,b
s (x) ∈ Ω for all s ∈ [t, T ], the linear map β 7→

´ T

s=t
β
(
St,b
s (x)

)
ds is continuous341

in L1([t, T ]; f [U ]). By weak convergence,
∣∣∣´ T

s=t
b
(
St,b
s (x)

)
ds−

´ T

s=t
bn
(
St,b
s (x)

)
ds
∣∣∣ =:342

εn(x) −→
n→∞

0, and using a Grönwall Lemma on (3.9), we obtain that343

An
1 ⩽ Lip (φ)

ˆ
x∈Ω

εn(x)e
CfT dνn(x).344

Using the compactness of Ω, the application εn(x) is uniformly bounded and converges345

pointwise to 0, so that by Lebesgue dominated convergence theorem, An
1 −→

n→∞
0. From346

here, we conclude that the right hand-side of (3.8) vanishes with n, proving the claim.347

3.3. Approximation along a subsequence. Recall that expµ(h · b#µ) =348

(πx + hb ◦ (πx))#µ for each b ∈ f [U ]. Since the trajectories of the controlled sys-349

tem may lack C1 regularity in time, we are not allowed to linearize them. However,350

we can still approximate a trajectory issued from µ by a ”linear” curve h 7→ expµ(h ·b)351

along some given subsequence.352

Lemma 3.5 (Sequential approximation). Assume Hypothesis 1.1. Let (µs)s∈[t,T ]353

be a solution of (3.1). Then there exists b ∈ f [U ] and a sequence (hn)n∈N such that354

lim
n→∞

dW

(
µt+hn

, expµt
(hn · b#µt)

)
hn

= 0.355

Proof. Let b ∈ L1([t, T ]; f [U ]) and (µs)s∈[t,T ] such that ∂sµs + div (bs#µs) = 0.356

For h > 0 such that t+ h ⩽ T , consider357

b
h
(x) :=

 t+h

s=t

bs(x)ds =
1

h

ˆ t+h

s=t

bs(x)ds, ∀x ∈ Rd .358

Here b
h ∈ f [U ] by convexity. By compactness of f [U ] in the topology of uniform359

convergence over compact sets, there exists a sequence (hn)n ↘ 0 and some b ∈ f [U ]360

such that b
hn

converges uniformly over compact sets towards b. From (3.4) we get361

1

hn
dW

(
µt+hn

, expµt
(hn · b#µt)

)
⩽

1

hn

√ˆ
x∈Rd

∣∣∣St,b
t+hn

(x)− (x+ hnb(x))
∣∣∣2 dµt362

=

√√√√ˆ
x

∣∣∣∣∣
 t+hn

s=t

bs(S
t,b
s (x))ds− b(x)

∣∣∣∣∣
2

dµt363

⩽

√√√√ˆ
x∈Rd

∣∣∣∣∣
 t+hn

s=t

bs(x)ds− b(x)

∣∣∣∣∣
2

dµt + Cf

√√√√ˆ
x∈Rd

∣∣∣∣∣
 t+hn

s=t

St,b
s (x)ds− x

∣∣∣∣∣
2

dµt364

⩽

√ˆ
x∈Rd

∣∣∣bhn
(x)− b(x)

∣∣∣2 dµt + Cf (e
hn − 1)(1 + dW(µt, δ0)).365

366
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Let ε > 0. Since µt ∈ P2(Rd), there exists R ⩾ 0 large enough so that367

ˆ
|x|>R

∣∣∣bhn
(x)− b(x)

∣∣∣2 dµt(x) ⩽
ˆ
|x|>R

(2Cf (1 + |x|))2 dµt(x) ⩽ ε2.368

369

On the compact B(0, R), the convergence b
hn → b is uniform with a modulus denoted370

ωR. Summarizing the above, we have371

dW

(
µt+hn

, expµt
(hn · b#µt)

)
hn

⩽
(
ε2 + ω2

R(hn)
)1/2

+ Cf (e
hn − 1)(1 + dW(µt, δ0)).372

Taking the limsup in n→ ∞, we get that373

lim
n→∞

dW

(
µt+hn

, expµt
(hn · b#µt)

)
hn

⩽ ε,374

and ε > 0 being arbitrary, we conclude.375

4. The Hamilton-Jacobi equation. Let H : T → R, and consider the HJ376

equation377

(4.1) − ∂tv(t, µ) +H (µ,Dµv(t, µ)) = 0 t ∈ (0, T ), v(T, ·) = J.378

This section is devoted to the notion of solution adapted to (4.1). We first introduce379

a definition of viscosity solutions using test functions, and then prove a comparison380

principle that implies the uniqueness of the viscosity solution of (4.1).381

4.1. Definition of viscosity solutions. We employ two distinct sets of test382

functions for the sub and supersolutions. Denote383

T± :=

{
(t, µ) 7→ ψ(t)±

N∑
i=1

αid
2
W(µ, νi)

∣∣∣∣∣ ψ ∈ C1((0, T );R), N ∈ N,
and (αi, νi)i∈J1,NK ⊂ R+ × P2(Rd).

}
384

In particular, test functions in T+ are τ -lower semicontinuous, locally Lipschitz and385

directionally differentiable everywhere, and T− = −T+. As each term of the finite386

sum of the measure component is directionally differentiable, so is each φ(t, ·) for387

φ ∈ T±, and there holds Dµφ(t, ·)(ξ) = ±
∑N

i=1 αiDµd
2
W(·, νi)(ξ).388

We consider the following definition.389

Definition 4.1 (Viscosity solution). v : [0, T ]×P2(Rd) → R ∪ {±∞} is called390

− a viscosity subsolution of (4.1) if it is τ -upper semicontinuous, does not take391

the value +∞, v(T, µ) ⩽ J(µ), and for each φ ∈ T+ such that v − φ reaches392

a finite maximum in (t, µ) ∈ (0, T )× P2(Rd), there holds393

(4.2) − ∂tφ(t, µ) +H (µ,Dµφ(t, µ)) ⩽ 0.394

− a viscosity supersolution of (4.1) if it is τ -lower semicontinuous, does not395

take the value −∞, v(T, µ) ⩾ J(µ), and for each φ ∈ T− such that v − φ396

reaches a finite minimum in (t, µ) ∈ (0, T )× P2(Rd), there holds397

(4.3) − ∂tφ(t, µ) +H (µ,Dµφ(t, µ)) ⩾ 0.398

− a viscosity solution of (4.1) if it is both a sub and supersolution.399
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4.2. Comparison principle. The comparison principle is the key result in the400

viscosity theory. It essentially says that subsolutions are always smaller than superso-401

lutions in the pointwise sense. This gives the uniqueness of the viscosity solution, and402

in the classical theory, also allows to obtain existence for general nonconvex Hamil-403

tonians. Owing to the local compactness of
(
P2(Rd), τ

)
, our strategy to obtain a404

comparison principle is quite close to that of [14]. We begin by the adaptation of [14,405

Proposition 3.7] in our case.406

Lemma 4.2 (Penalization lemma). Let (X,Θ) be a topological space, O ⊂ X407

be nonempty, Φ : O → R ∪ {−∞} be Θ-upper semicontinuous and proper in O,408

Ψ : O → R be Θ-lower semicontinuous an nonnegative. For any a > 0, set Γa :=409

sup
x∈O

[Φ(x)− aΨ(x)] . Assume that −∞ < lim
a→∞

Γa <∞, and let xa ∈ O be chosen such410

that lim
a→∞

(Γa − (Φ(xa)− aΨ(xa))) = 0. Then the following holds:411

1. lim
a→∞

aΨ(xa) = 0,412

2. whenever x̂ ∈ O is a limit point of (xa)a in (X,Θ), then Ψ(x̂) = 0 and413

lim
a→∞

Γa = Φ(x̂) = sup
Ψ(x)=0

Φ(x).414

Proof. Let415

εa := Γa − (Φ(xa)− aΨ(xa)) ,416

so that lima→∞ εa = 0. Since Ψ ⩾ 0, the map a 7→ Γa decreases when a increases,417

and lima→∞ Γa exists and is finite. Furthermore,418

Γa/2 ⩾ Φ(xa)−
a

2
Ψ(xa) ⩾ Φ(xa)− aΨ(xa) +

a

2
Ψ(xa) = Γa − εa +

a

2
Ψ(xa),419

which implies that aΨ(xa) ⩽ 2
(
εa + Γa/2 − Γa

)
, hence lima→∞ aΨ(xa) = 0.420

Suppose now that an → ∞ and xan →n x̂ ∈ O. Then liman→∞ Ψ(xan) = 0, and421

by lower semicontinuity, Ψ(x̂) = 0. Moreover, since422

Φ(xan
)− anΨ(xan

) = Γan
− εan

⩾ sup
Ψ(x)=0

Φ(x)− εan
,423

and Φ is upper semicontinuous, the result holds.424

The comparison principle will rely on the next assumptions on the Hamiltonian.425

Hypothesis 4.3 (Structure of the Hamiltonian). Assume that there exists a con-426

stant CH ⩾ 0 such that for all µ, ν ∈ P2(Rd) and p, q ∈ Tµ,427

(4.4) |H (µ, p+ q)−H (µ, p)| ⩽ CH (1 + dW(µ, δ0)) ∥p∥µ428

and for all a ⩾ 0,429

(4.5) H
(
µ,−aDµd

2
W(·, ν)

)
−H

(
ν, aDµd

2
W(µ, ·)

)
⩽ aCHd

2
W(µ, ν).430

The fact that the Hamiltonian issued from the control problem (1.3) satisfies431

Hypothesis 4.3 is proved in [22, Section 6, Lemmata 6 and 7]. We are now in a432

position to state our comparison principle.433

Proposition 4.4 (Comparison principle). Assume Hypotheses 1.1, 1.2, and 4.3.434

Let v : [0, T ] × P2(Rd) → R ∪ {−∞} be a subsolution of (4.1) bounded from above,435

and w : [0, T ]×P2(Rd) → R∪{+∞} be a supersolution of (4.1) bounded from below.436

Assume that there exists σ ∈ P2(Rd) such that v(T, σ)− w(T, σ) ∈ R. Then437

Γ := sup
(t,µ)∈[0,T ]×P2(Rd)

(v(t, µ)− w(t, µ)) ⩽ sup
µ∈P2(Rd)

(v(T, µ)− w(T, µ)) =: ΓT .438
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Proof. By assumption, ΓT and Γ are finite. Denote VvW,V−wW upper bounds on439

v and −w. Up to replacing v by v − ΓT , we may assume that ΓT = 0. Assume by440

contradiction that Γ > 0. Consider441

vα(t, µ) := v(t, µ) + α(t− T )442

for some α > 0 small enough so that443

Γα := sup
(t,µ)∈[0,T ]×P2(Rd)

(vα(t, µ)− w(t, µ)) > 0.444

Let now σ ∈ P2(Rd) be as in the statement, and ε0 > 0 so that for all 0 < ε < ε0,445

Γα
ε := sup

(t,µ)∈[0,T ]×P2(Rd)

(
vα(t, µ)− w(t, µ)− 2ε

(
d2W(σ, µ) +

1

t

))
> 0.446

The sequence (Γα
ε )ε is uniformly bounded, nondecreasing when ε ↘ 0 and converges447

towards Γα. For each ε, a > 0, let448

449

Φε,a((t, µ), (s, ν)) := vα(t, µ)− w(s, ν)− a
d2W(µ, ν) + |t− s|2

2
450

− ε

(
d2W(σ, µ) + d2W(σ, ν) +

1

t
+

1

s

)
.451

452

The proof involves taking subsequences and diagonal sequences in ε and a. In453

order to lighten the notation, let Iε := R+ for all ε > 0, and I :=
⋃

0<ε<ε0
Iε a set of454

indexes that will be refined further on. For a fixed ε, we denote zε,a −→
a∈Iε

zε if zε is455

the limit of the family (zε,a)a∈Iε
when a → ∞. We divide the rest of the proof into456

several parts.457

Point of maximum Notice that if Φε,a((t, µ), (s, ν)) ⩾ Φε,a((T, σ), (T, σ)), then458

ε
(
d2W(σ, µ) + d2W(σ, ν)

)
⩽ VvαW + V−wW +

2ε

T
− (vα(T, σ)− w(T, σ)) <∞.459

Then there exists Rε > 0 such that {Φε,a ⩾ Φε,a((T, σ), (T, σ))} ⊂ B((T, σ), Rε)
2.460

As balls of [0, T ] × P2(Rd) × [0, T ] × P2(Rd) are compact in the product topology461

B[0,T ]×τ×B[0,T ]×τ , and Φε,a is proper, upper bounded and upper semicontinuous in462

this topology, there exists a maximum point zε,a := (tε,a, µε,a, sε,a, νε,a) of Φε,a over463

its domain. As Rε is independant of a, we may extract a subsequence of a such that464

zε,a converges to some zε ∈
(
[0, T ]× P2(Rd)

)2
. Redefining each Iε to only keep the465

indexes of the said subsequence, we may assume that466

zε,a −→
a∈Iε

zε in
(
B[0,T ] × τ

)2
, and lim

a∈Iε
Φε,a(zε,a) exists.467

Applying Lemma 4.2, we get that possibly along a further refinement of I,468

(4.6) lim
a∈Iε

a
(
d2W(µε,a, νε,a) + |tε,a − sε,a|2

)
= 0 and lim

a∈Iε
Φε,a(zε,a) = Γα

ε .469

Staying away from the boundary By construction, tε,a > 0 and sε,a > 0 for470

each (ε, a) ∈ I. On the other hand, for each ε, there exists aε large enough so that471

This manuscript is for review purposes only.



14 C. HERMOSILLA AND A. PROST

tε,a, sε,a < T for all a ∈ Iε ∩ [aε,∞). Indeed, if it was not the case, then there would472

exist (anε )n ⊂ Iε going to +∞ with n → ∞ such that T ∈ {tε,an
ε
, sε,an

ε
}. Since by473

(4.6),
∣∣tε,an

ε
− sε,an

ε

∣∣ vanishes when n → ∞, using the upper semicontinuity of the474

semisolutions, we would have475

Γα
ε = lim

n→∞
Φε,an

ε
(zε,an

ε
) ⩽ lim

n→∞
vα(tε,an

ε
, µε,an

ε
)−w(sε,an

ε
, νε,an

ε
) ⩽ vα(T, zε)−w(T, zε).476

This is absurd because Γα
ε > 0 and vα(T, zε) − w(T, zε) ≤ 0, and we get that477

(tε,a, sε,a) ∈ (0, T )2 for a large enough. Up to refining the index set, we may as-478

sume that this holds for all (ε, a) ∈ I.479

Applying the definition of semisolutions For each (ε, a) ∈ I, define480

φ(t, µ) :=
a

2

(
d2W (µ, νε,a) + |t− sε,a|2

)
+ ε

(
d2W(σ, µ) +

1

t

)
− αt,481

ψ(s, ν) := −a
2

(
d2W (µε,a, ν) + |tε,a − s|2

)
− ε

(
d2W(σ, ν) +

1

s

)
.482

483

Since the squared Wasserstein distance is semiconcave, φ ∈ T+ and ψ ∈ T−. As484

u−φ reaches a maximum in (tε,a, µε,a) ∈ (0, T )×P2(Rd), applying the definition of485

subsolution, we get486

α+
ε

t2ε,a
− a(tε,a − sε,a) +H

(
µε,a,

a

2
Dµε,a

d2W(·, νε,a) + εDµε,a
d2W(σ, ·)

)
⩽ 0.487

Using that ε
t2ε,a

⩾ 0, the assumption (4.4) on the Hamiltonian and the estimate488

∥Dµd
2
W(·, ν)∥µ ⩽ 2dW(µ, ν), we get489

α− a(tε,a − sε,a) +H
(
µε,a,

a

2
Dµε,ad

2
W(·, νε,a)

)
−2εdW(σ, µε,a)CH(1 + dW(δ0, µε,a)) ⩽ 0.

(4.7)490

491

Similarly, w−ψ reaches a minimum in (sε,a, νε,a). Using the same reasoning as above,492

a(sε,a − tε,a) +H
(
νε,a,−

a

2
Dνε,a

d2W(µε,a, ·)
)

+2εdW(σ, νε,a)CH(1 + dW(δ0, νε,a)) ⩾ 0.
(4.8)493

494

Combining (4.7) and (4.8) and using the assumption (4.5), there holds ∀ (ε, a) ∈ I495

(4.9) α ⩽ aCHd
2
W(µε,a, νε,a) + 2εCH

∑
ϖ∈{µε,a,νε,a}

dW(σ,ϖ)(1 + dW(δ0, ϖ)).496

Vanishing perturbation Recall that zε = lima∈Iε zε,a, where the convergence is497

understood in τ for the measure coordinates. Passing to the limit in Iε ∋ a → ∞ in498

(4.9) will not give useful information, since the squared Wasserstein distance is only499

τ -lower semicontinuous, and we will not obtain an inequality on zε. Therefore, we500

extract a diagonal sequence of I. Let n0 be large enough so that 2−n0 ⩽ ε0, and501

denote εn := 2−n for n ⩾ n0. Proceeding by induction and using (4.6), we may build502

a sequence (εn, an)n ⊂ I such that an < an+1 for which503

and
2
W (µεn,an

, νεn,an
) ⩽

1

n
, sup (Φεn,an) ⩾ Γα

εn − 1

n
, sup

(
Φεn+1,an+1

)
⩾ sup (Φεn,an) .504
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The sequence (sup (Φεn,an
))n is nondecreasing and upper bounded by Γα, thus con-505

verges. On the other hand,506

0 ⩽
εn
2

(
d2W(σ, µεn,an

) + d2W(σ, νεn,an
) + 0

)
⩽ Φεn+1,an+1

(zn)− Φεn,an
(zn)507

⩽ sup
(
Φεn+1,an+1

)
− sup (Φεn,an) −→

n→∞
0.508

509

Evaluating (4.9) along the subsequence (εn, an)n ⊂ I and passing to the limit in510

n→ ∞, we obtain α ⩽ 0, which is absurd. Consequently, Γ ⩽ 0.511

5. Characterisation of the solution in the case of control problems. We512

now study the properties of the value function V : [0, T ] × P2(Rd) → R ∪ {∞}513

associated to the control problem (1.3), given by514

V (t, ν) := inf
ω∈Rt,ν

T

J(ω).515

Let us illustrate our setting with an example. Let J : P2(Rd) → R ∪ {+∞} be516

given by517

J(µ) := d4W,4(µ, δ0) =

ˆ
x∈Rd

|x|4 dµ(x).518

The domain dom J = P4(Rd) is closed in τ , since the 4−Wasserstein distance519

dW,4(·, δ0) is narrowly lower semicontinuous. Take the dynamic f : U → C(Rd; TRd)520

parametrized by U = [0, 1] as521

f [u](x) := −ux.522

Then f [U ] is convex, compact in the topology of uniform convergence on compact sets,523

and each f [u] satisfies |f [u](0) + Lip (f [u])| ⩽ 1. For each u(·) ∈ L0([0, T ];U), the flow524

of the underlying ODE is given by S
t,f [u]
s (x) = exp

(
−
´ s

r=t
u(r)dr

)
x. Consequently,525

J
(
St,u(·)
s

)
=

ˆ
x∈Rd

exp

(
−4

ˆ s

r=t

u(r)dr

)
|x|4 dµ(x) = exp

(
−4

ˆ s

r=t

u(r)dr

)
J(µ),526

and minimizing over u(·) ∈ L0([t, T ];U), the value function is given by527

V (t, µ) = exp(−4(T − t))J(µ) ∈ R ∪ {∞}.528

Gathering intuition from the available theory in finite dimension and Hilbert529

spaces, we may expect V to be a viscosity supersolution of the HJB equation (4.1)530

for the Hamiltonian531

(5.1) H : T → R, H(µ, p) := sup
u∈U

−p (πµ(f [u]#µ)) ,532

and a solution whenever J is real-valued and τ -continuous. From this point on-533

ward, unless otherwise stated, we assume that the Hamiltonian of the HJB equation534

(4.1) is given by (5.1).535

Let us verify that it is indeed the case in our example. If (t, µ) ∈ dom V =536

[0, T ]×P4(Rd), then the map V (t, ·) is directionally differentiable along trajectories537

of the form s 7→ expµ(π
µ(s · f [u]#µ)) and its derivative satisfies538

DµV (t, ·)(πµ(s · f [u]#µ)) = exp(−4(T − t))(−4u)J(µ).539
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16 C. HERMOSILLA AND A. PROST

Hence in this case, we may compute the Hamiltonian and see that ∀(t, µ) ∈ dom V ,540

−∂tV (t, µ) + sup
u∈U

−DµV (t, ·)(πµ(f [u]#µ))541

= −4 exp(−4(T − t))J(µ) + sup
u∈[0,1]

4u exp(−4(T − t))J(µ) = 0.542

543

This directly implies that V is a viscosity supersolution in the sense of Definition 4.1.544

Indeed, if φ ∈ T− is such that V − φ reaches a finite minimum in (t, µ) ∈ (0, T ) ×545

P2(Rd), then ∂tφ(t, µ) ⩽ ∂tV (t, µ) and Dµφ(t, ·)(ξ) ⩽ DµV (t, ·)(ξ) along each ξ ∈546

Tanµ P2(Rd) such that DµV (t, ·)(ξ) exists. Hence the supersolution inequality547

−∂tφ(t, µ) + sup
u∈U

−Dµφ(t, ·)(πµ(f [u]#µ)) ⩾ 0.548

This section shows that this situation is generic in our setting. We begin by the549

general case where J may be unbounded, and then restrict to a more regular case.550

5.1. General case.551

Lemma 5.1 (Regularity of the value function). Assume Hypotheses 1.1 and 1.2.552

Then each V (t, ·) is proper, and V is lower bounded and τ -lower semicontinuous.553

Moreover, if J is bounded and τ -continuous, then so is V .554

Proof. Lower boundedness of V follows from that of J and by its definition. Let555

ω ∈ dom J ⊂ P2(Rd), and let b ∈ f [U ] be fixed. As −b is Lipschitz-continuous, the556

reversed continuity equation557

∂sµs + div (−b#µs) = 0, µ0 = σ558

admits an unique solution (µs)s∈[0,T ] such that µs := µT−s is a solution of the forward559

equation ∂sµt + div(b#µt) = 0, and µT = σ. Hence V (t,µt) ⩽ J(σ) < ∞. Thus,560

V (t, ·) is proper.561

Since closedness and sequential closedness coincide in
(
P2(Rd), τ

)
(see Defini-562

tion 2.3), we only have to show that V is sequentially lower semicontinuous. Let563

(tn, νn)n ⊂ [0, T ] × P2(Rd) such that tn → t ∈ [0, T ] and νn
τ
⇀n ν ∈ P2(Rd). For564

each n, let ωn ∈ Rtn,νn

T such that V (tn, νn) ⩾ J(ωn) − 1/n. Using Lemma 3.4, pos-565

sibly along a subsequence, there exists ω ∈ Rt,ν
T such that ωn

τ
⇀n ω. Then, by lower566

semicontinuity of J in τ ,567

lim
n→∞

V (tn, νn) ⩾ lim
n→∞

J(ωn)−
1

n
⩾ J(ω) ⩾ inf

ω∈Rt,ν
T

J(ω) = V (t, ν).568

Assume now that J is bounded and τ -continuous. Then V shares the same bound569

by definition. To prove that V is τ -upper semicontinuous, it is enough to show that570

for any (t, ν) ∈ [0, T ]× P2(Rd), any [0, T ] ∋ tn → t and νn
τ
⇀n ν,571

lim
n→∞

V (tn, νn) ⩽ V (t, ν).572

Up to extraction, we may assume that lim
n→∞

V (tn, νn) = lim
n→∞

V (tn, νn). For each573

ε > 0, let µε ∈ Rt,ν
T such that V (t, ν) ⩾ J(µε) − ε. By Lemma 3.3, there exists574

µε,n ∈ Rtn,νn

T such that µε,n
τ
⇀n µε. Then, since J is τ -continuous,575

lim
n→∞

V (tn, νn) ⩽ lim
t→∞

J(µε,n) = J(µε) ⩽ V (t, µ) + ε.576

Letting ε↘ 0, we conclude that V is τ -continuous.577
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Theorem 5.2 (Supersolution). The value function is a supersolution of (4.1)578

in the sense of Definition 4.1.579

Proof. By Lemma 5.1, V is lower bounded and τ -lower semicontinuous, and by580

definition, V (T, ·) = J > −∞. Let φ ∈ T− such that V − φ reaches a minimum in581

(t, ν) ∈ (0, T )×P2(Rd). By Proposition 3.1, the set of trajectories St,ν is compact in582

C
(
[t, T ];P2(Rd)

)
endowed with the topology of uniform convergence. Therefore, Rt,ν

T583

is compact in
(
P2(Rd), dW

)
, hence in

(
P2(Rd), τ

)
. Since J is τ -lower semicontinuous,584

there exists (µt,ν
s )s∈[t,T ] such that585

V (t, ν) = V
(
t+ h,µt,ν

t+h

)
∀h ∈ [0, T − t].586

Recall that ϕ(t, µ) = ψ(t) + g(µ), where ψ ∈ C1((0, T );R) and g is locally Lipschitz,587

directionally differentiable and τ -lower semicontinuous. Thus, for any h ∈ [0, T − t] it588

follows that589

ψ(t+ h)− ψ(t) + g
(
µt,ν

t+h

)
− g(ν) ⩽ V

(
t+ h,µt,ν

t+h

)
− V (t, ν) = 0.590

Using Lemma 3.5, there exists a subsequence (hn)n ⊂ (0, T − t] with hn ↘n 0, and591

some b ∈ f [U ] such that dW
(
µt,ν

t+hn
, expν(hn · b#ν)

)
= o(hn). Dividing the above by592

hn > 0, and denoting Lip (g) a local Lipschitz constant of g in a ball centered in ν593

and containing all µt,ν
t+hn

and expν(hn · b#ν), we have594

ψ(t+ hn)− ψ(t)

hn
+
g(expν(hn · b#ν))− g(ν)

hn
⩽ Lip (g)

dW
(
expν(hn · b#ν),µt,ν

t+h

)
hn

.595

Taking the limit in n→ ∞ and using the respective differentiabilities of ψ and g,596

∂tψ(t) +Dµg(ν) (b#ν) ⩽ 0.597

By the construction of test functions, Dµg(ν)(ξ) = Dµg(π
µξ) for all ξ ∈ P2(TRd)ν .598

multiplying by −1 and taking the maximum over all b ∈ f [U ], we obtain that599

−∂tφ(t, ν) +H (ν,Dµφ(t, ν)) ⩾ 0, which is the desired property.600

5.2. Case of continuous and bounded terminal cost. We show that in the601

case where J is bounded and τ -continuous, the value function is also a subsolution of602

(4.1). Owing to the comparison principle, it will then be the unique solution.603

Theorem 5.3 (Subsolution property). Assume Hypotheses 1.1 and 1.2, and that604

J is bounded and τ -continuous. Then the value function is a subsolution of (4.1).605

Proof. By Lemma 5.1, the value function is bounded and τ -upper semicontinuous.606

As V (T, ·) = J, we only have to prove the viscosity inequality (4.2). Let φ = ψ ⊖ g ∈607

T+ and (t, µ) ∈ (0, T ) × P2(Rd) such that V − φ reaches a maximum in (t, µ). Let608

any b ∈ f [U ] be fixed. Then the flow St,b
t+· of the autonomous ODE d

dsys = b(ys) is of609

class C1, and there holds610

lim
h↘0

dW

(
St,b
t+h#µ, expµ(h · b#µ)

)
h

= 0.611

Denote µs := St,b
s #µ. Using the dynamic programming principle,612

0 ⩽ V (s,µs)− V (t, ν) ⩽ φ(s,µs)− φ(t, ν) = ψ(s)− ψ(t)− [g(µs)− g(ν)] .613
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As g is locally Lipschitz, dividing by s− t and sending s→ t, we get614

∂tψ(t)−Dµg(b#µ) ⩾ 0.615

Since Dµg(ν)(ξ) = Dµg(π
µξ) if ξ ∈ P2(TRd)µ by definition of T+, multiplying by616

−1 and taking the supremum over b ∈ f [U ], we get that V is a subsolution of (4.1).617

In the general case, V may take the value +∞ and has no chance to be a viscosity618

subsolution of the HJB equation (4.1). However, we may still prove that it is the619

smallest supersolution in the pointwise sense. The argument proceeds by truncature620

and regularization, relying on the following result.621

Lemma 5.4 (Inf-convolution in τ). Let J : P2(Rd) → R∪{∞} be lower bounded622

and τ -lower semicontinuous. Then for each B > 0, there is a nondecreasing sequence623

of bounded τ -continuous maps Jn : P2(Rd) → R that converge pointwise towards J624

over BW(δ0, B).625

Proof. Denote 1IB : P2(Rd) → R ∪ {∞} the characteristic function of the closed626

ball BW(δ0, B), i.e. 1IB(ν) = 0 if dW(δ0, ν) ⩽ B, and 1IB(ν) = +∞ otherwise. Since627

closed Wasserstein balls are τ−compact, 1IB is τ−lower semicontinuous. Moreover,628

the function ν 7→ J(ν) + 1IB(ν) is narrowly lower semicontinuous. Indeed, this is due629

to the fact that the topology τ coincides with the narrow topology on closed balls. Let630

d : P2(Rd)×P2(Rd) → R+ be a metric inducing the topology of narrow convergence631

over P2(Rd) (e.g. [4, Section 5.1]), and632

Jn(µ) := min

(
n, inf

ν∈P2(Rd)
(J+ 1IB)(ν) + nd(µ, ν)

)
.633

We directly have Jn(µ) ⩽ min (n, J(µ)) ⩽ J(µ) for all µ ∈ P2(Rd). Moreover, for634

each µ0, µ1 ∈ P2(Rd),635

Jn(µ0)− Jn(µ1) ⩽ max

(
0, sup

ν∈P2(Rd)

n (d(µ0, ν)− d(µ1, ν))

)
⩽ nd(µ0, µ1).636

By symmetry, Jn is n-Lipschitz with respect to d, thus τ -continuous. It is moreover637

bounded with values in [min (0, inf (J)) , n]. To prove pointwise convergence, let µ ∈638

BW(δ0, B) be fixed. Assume by contradiction that there exists M < J(µ) such that639

Jn(µ) ⩽M for all n. Let ε := min(1, J(µ)−M) > 0. Since J+ 1IB is narrowly lower640

semicontinuous, there exists r > 0 such that d(µ, ν) < r implies (J+1IB)(ν) ⩾M+ε/2.641

Taking n large enough so that nr ⩾M + ε
2 − inf(J) and n ⩾M + ε/2, we get642

Jn(µ) ⩾ min

(
n, inf

d(µ,ν)<r
(J+ 1IB)(ν) + nd(µ, ν), inf

d(µ,ν)⩾r
(J+ 1IB)(ν) + nd(µ, ν)

)
643

⩾ min

(
M +

ε

2
, inf
d(µ,ν)⩾r

J(ν) + 0 +M +
ε

2
− inf(J)

)
⩾M +

ε

2
,644

645

which is absurd. Thus the claim.646

Using this regularization, we obtain the following characterization.647

Theorem 5.5 (Minimality property in the general case). Assume Hypotheses 1.1648

and 1.2. Then for any supersolution v : [0, T ] × P2(Rd) → R ∪ {∞} of (4.1) such649

that v(T, ·) is proper, there holds650

(5.2) v(t, ν) ⩾ V (t, ν), ∀(t, ν) ∈ [0, T ]× P2(Rd).651

Consequently, the value function V is the smallest viscosity supersolution of (4.1).652
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Proof. Let (t̄, ν̄) ∈ [0, T ] × P2(Rd). From Remark 3.2, the reachable set Rt̄,ν̄
T is653

contained in BW(δ0, B) for some sufficiently large B. If v(t̄, ν̄) = ∞, the inequality654

(5.2) is trivially satisfied. Assume now that v(t̄, ν̄) < ∞. Let (Jn)n be given by655

Lemma 5.4. By Theorems 5.2 and 5.3, the HJB equation656

(5.3) − ∂tϑn(t, µ) +H (µ,Dµϑn(t, µ)) = 0, ϑn(T, µ) = Jn(µ)657

admits a unique solution given by658

Vn(t, ν) = inf
µ∈Rt,ν

T

Jn(µ), ∀(t, ν) ∈ [0, T ]× P2(Rd).659

Since v(T, ν) ⩾ J(ν) ⩾ Jn(ν), the map v is a supersolution of each regularized problem660

(5.3). Let σ ∈ P2(Rd) such that v(T, σ) ∈ R: since v(T, σ) ⩾ J(σ) ⩾ Jn(σ) =661

Vn(T, σ), we have −∞ < Vn(T, σ) − v(T, σ) ⩽ 0. In consequence, we can apply662

Proposition 4.4, and deduce that v(t, ν) ⩾ Vn(t, ν) for any (t, ν) ∈ P2(Rd).663

By Proposition 4.4, the solutions Vn are ordered in the sense that Vn+1(t, ν) ⩾664

Vn(t, ν) for all n. Moreover, Jn ⩽ J implies that the subsolutions Vn are smaller665

than the supersolution V . Hence the sequence (Vn(t̄, ν̄))n is nondecreasing and upper666

bounded by v(t̄, ν̄) <∞, and converges. For each n, let µn ∈ Rt̄,ν̄
T such that Vn(t̄, ν̄) ⩾667

Jn(µn) − 1
n . Using Lemma 3.4, some (non relabeled) subsequence converges in τ668

towards some µ ∈ Rt̄,ν̄
T . Using the monotonicity of the family (Jn)n and the continuity669

in τ of each Jm for a fixed m,670

lim
n→∞

Vn(t̄, ν̄) ⩾ lim
n→∞

Jn(µn)−
1

n
⩾ lim

n→∞,n⩾m
Jm(µn)−

1

n
= Jm(µ).671

As µ̄ ∈ BW(δ0, B), the conclusion follows from taking the limit in m→ ∞ to obtain672

v(t̄, ν̄) ⩾ lim
n→∞

Vn(t, ν) ⩾ J(µ) ⩾ V (t̄, ν̄).
673
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[1] L. Ambrosio, E. Brué, and D. Semola, Lectures on Optimal Transport, vol. 130 of UNITEXT,678
Springer International Publishing, 2021, https://doi.org/10.1007/978-3-030-72162-6.679

[2] L. Ambrosio and J. Feng, On a class of first order Hamilton–Jacobi equations in metric680
spaces, Journal of Differential Equations, 256 (2014), pp. 2194–2245, https://doi.org/10.681
1016/j.jde.2013.12.018.682

[3] L. Ambrosio and W. Gangbo, Hamiltonian ODEs in the Wasserstein space of probability683
measures, Communications on Pure and Applied Mathematics, 61 (2008), pp. 18–53, https:684
//doi.org/10.1002/cpa.20188.685
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125 (2019), pp. 119–174, https://doi.org/10.1016/j.matpur.2018.09.003.723

[18] N. Gigli, On the Geometry of the Space of Probability Measures Endowed with the Quadratic724
Optimal Transport Distance, PhD thesis, Scuola Normale Superiore di Pisa, Pisa, 2008.725

[19] R. C. James, Weakly compact sets, Transactions of the American Mathematical Society, 113726
(1964), pp. 129–140, https://doi.org/10.1090/S0002-9947-1964-0165344-2.727

[20] F. Jean, O. Jerhaoui, and H. Zidani, Deterministic optimal control on Riemannian mani-728
folds under probability knowledge of the initial condition, SIAM Journal on Mathematical729
Analysis, Accepted (2024), https://ensta-paris.hal.science/hal-03564787/.730

[21] O. Jerhaoui, Viscosity Theory of First Order Hamilton Jacobi Equations in Some Metric731
Spaces, PhD thesis, Institut Polytechnique de Paris, Paris, 2022.732

[22] O. Jerhaoui, A. Prost, and H. Zidani, Viscosity solutions of centralized control problems in733
measure spaces, https://hal.science/hal-04335852, (2023).734

[23] C. Jimenez, Equivalence between strict viscosity solution and viscosity solution in the space of735
Wasserstein and regular extension of the Hamiltonian in L2 IP. https://hal.science/hal-736
04136329, 2023.737

[24] C. Jimenez, A. Marigonda, and M. Quincampoix, Optimal control of multiagent systems in738
the Wasserstein space, Calculus of Variations and Partial Differential Equations, 59 (2020),739
https://doi.org/10.1007/s00526-020-1718-6.740

[25] P.-L. Lions, Jeux à champ moyen, 2006.741
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