Kalman Filtering for Triplet Markov Chains : Applications and Extensions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Kalman Filtering for Triplet Markov Chains : Applications and Extensions

Résumé

An important problem in signal processing consists in estimating an unobservable process x = {x n } n∈IN from an observed process y = {y n } n∈IN. In Linear Gaussian Hidden Markov Chains (LGHMC), the classical recursive solution is given by the Kalman filter. In this paper, we consider Linear Gaussian Triplet Markov Chains (LGTMC) by assuming that the triplet (x, r, y) (in which r = {r n } n∈IN is some additional process) is Markovian and Gaussian. We first show that this model encompasses and generalizes the classical linear stochastic dynamical models with autoregressive process and / or measurement noise. We next propose (for the regular and for the perfect-measurement cases) restoration Kalman-like algorithms for general LGTMC.
Fichier principal
Vignette du fichier
icassp2005.pdf (96.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04415489 , version 1 (24-01-2024)

Identifiants

Citer

Boujemaa Ait El Fquih, François Desbouvries. Kalman Filtering for Triplet Markov Chains : Applications and Extensions. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., Mar 2005, Philadelphia, France. pp.685-688, ⟨10.1109/ICASSP.2005.1416101⟩. ⟨hal-04415489⟩
7 Consultations
19 Téléchargements

Altmetric

Partager

More