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ABSTRACT Since this pionnering work, the Kalman filter has been
generalized in many directions. To name just a few exam-
ples, square-root type algorithms have been proposed; the
independence assumptions éa,,} and {v,,} have been

An important problem in signal processing consists in es-
timating an unobservable process= {x, },en from an
observed process = {yn }new. In Linear Gaussian Hid- _ °
den Markov Chains (LGHMC), the classical recursive solu- droPped; and the extension to non-linear and / or non- Gaus-
tion is given by the Kalman filter. In this paper, we consider Sian Systems has been considered.

Linear Gaussian Triplet Markov Chains (LGTMC) by as- Yet another direction in which it is possible to extend
suming that the tripletx, r,y) (in whichr = {r, }ncm is the Kalman filter consists in releasing some conditional in-
some additional process) is Markovian and Gaussian. Wedependence assumptions amargndy. Let us come back
first show that this model encompasses and generalizes thé0 model (1). We see that is a Markov Chain (MC), and
classical linear stochastic dynamical models with autore- Since it is known only through the observed proces$l)
gressive process and / or measurement noise. We next prois an HMC. Now, if (1) holds then botfi(x,, yn)}nen
pose (for the regular and for the perfect-measurement cases3Nd{(X»+1, ¥»)}nen are (vector) MC. Conversely, start-

restoration Kalman-like algorithms for general LGTMC.  ing only from one of these assumptions (i.e. assuming a so-
called "Pairwise” MC (PMC) model) is a more general point

of view, which nevertheless enables efficient restoration al-
gorithms; extending the Kalman filter to a model where
}) is Markovian has been

1. INTRODUCTION

Let us consider the classical linear dynamical stochastic sys-{ (Xn, yn)} (reSp. {(Xn+1, ¥n)

tem considered in [1] (resp. [2]).
Xnt1 = Fpx,+ G,u, (1) Let nowr = {r, },ew be some additional process, and
Yn = H,x,+J,v, ~’ let us sett,, = [x1,rl yI ,]T. A Triplet MC (TMC) is

a model in which we only assume thft, } is a (vector)
MC. This model generalizes the PMC model, and yet en-
matrices. The input noise,, € IR"* and the measurement a_bles (in the L.G regular (_:ase) the development of an effi-
noisev,, € IR"™ are assumed to be independent, jointly cient Kalman-like restoration algorlthm [3]. .
independent and independentxof Let us turn to the contents of this paper. In section 2,
Let xo, = {x:}7, andyom = {y:}7,. Let also we show that the classical linear models with autoregressive
p(%2), p(X0:n) and p(x,|yo:n), Say, denote the probabil- Process an_d/or measurement noise are, among other mod-
ity density function (pdf) (w.r.t. Lebesgue measurekef els, some important particular cases (mostly with perfect,
the pdf ofxo.., and the pdf ofx,,, conditionally onyq.,, i.e. with unnoisy measurements) of the general linear TMC
respectively; the other pdf are defined similarly. A funda- Model; so the triplet model, which initially was designed as
mental problem associated with (1) (the so-called filtering @ Markovian extension of (1), happens also to encompass
problem) is the recursive computation of the posterior pdf (and generalize) the early classical generalizations _(as re-
p(Xn|yom). If furthermorex, andn, = [ul,vZ]|T are  9ards processefu,} and{v,}) of model (1). In section
Gaussian variables, thestx,|yo.) is also Gaussian and 3, We propose a restoration algorithm for general LGTMC
is thus described by its mean and covariance matrix. PropaWith perfect measurements. Finally, some applications are
gatingp(x, [yo.») amounts to propagating these parameters, considered in section 4.
and the algorithm we get is the celebrated Kalman filter

in whichx,, € IR"* is the statey, € IR" is the obser-
vation, andF,,, G,,, H,, andJ,, are known deterministic

and derive the Kalman filter as the recursive solution of a linear minimum
1As is well known, one can equivalently drop the Gaussian assumption mean-square error estimation procedure.




2. LINEAR TMC : DEFINITION & APPLICATIONS

2.1. The linear TMC model

Letx = {x,, }»en be the hidden state procegs= {y, }new
the observed process and@= {r, } e~ an additional (pos-
sibly artificial) process. The process= {t,},ecn, with
t, = [xI vl yI' |7 is alinear TMC [3] if

XX  LXT X, x
Xn+1 ‘f'n7 n fn Y Xn Wan
i1 | = | F* Fpt FuY I'n +| wa |

—_——— ——
tht1 Fn Wy

2

in whichw = {w, },c IS @ zero-mean process which is
independent and independenttgf = [xZ,rd, 07]T. We
assume that matri,, is known.

2.2. Some particular cases

2.2.4. Autoregressive model noise

Sorenson [9] introduced a model which extends the two pre-
vious ones by assuming thft,, } and{v, } are simultane-
ously Markovian (but still independent); see also [10] for a
full algorithmic treatment and applications to radar tracking.
This model can be further generalized by assuming that

U, | AR ARV u, &
[ Vn+1:| o [ AVt AY ] [ VJ + [ &l )
—— ———

Npt1 A, &n

whereé = {&,}, oy IS zero mean, independent and inde-
pendent ofhy. The associated triplet model is

Xn+1 Fn Gn Onx XNy Xn Onx x1
Np41|= Onn X Tx én Onn XMy n, + fn ’ (6)
Yn H, J, Oy xny | [Yn—1 Ony x1

with G, = [G,, 0, xn,] @ndJ,, = [0, xn,,J0n); it re-
duces to the model introduced by Sorensom&“"’) =

Let us first see that some classical and widely used mod-On o A%"’“) = 0, xn, and {9} and {£7} are inde-
els are particular linear TMC; they differ from one another pe;devnt. v " "

by the matricesF,, (some submatrices of which are equal
to zero); by the physical meaning of the additional process
r = {r, }nen; and/or by independence assumptions among
subvectors ofv,,.

2.2.5. Linear PMC model and its extensions

The PMC model introduced in [2] reads

xnt1| [ FL F21[x, n Gl G12 u,
Yn n H»}L H% Yn—1 Ggll G72L2 Vn ’
—_—— —— — —_——— A — —

F,

2.2.1. Linear HMC

The standard state-space model is a very particular linear
TMC, since (2) reduces to (1) if we assume that matrices
Frr, Froy, FExFRY FYT and FYY are all equal to
zero, and thafw>}, {wZ, } and{w? } are independent.

Znia Gp n

(7)
wheren = {n,, },cn iS a zero-mean process which is inde-
pendent and independentxyf. This model can be seen as
a linear TMC. If we now assume thatis Markovian, then

2.2.2. Autoregressive process noise the model becomes

1

: : x F! G, F?2 |[x 0
The case where in (¥u,,} becomes an MC has been intro- ntl n n n n X1
duced in [4] (see also [5]); this model can be written as D41 = O e ﬁg Oy || [ & - ®
Yn H}L G, HEL Yn-1 [ Onyx1
Xn+1 Fn Gn Onx><ny Xn Onx><1 1 _9
Up41| = [Opy xny AN Onyxny || Un [+ & . (3) with G,, = [GL},G!?] and G,, = [G2!, G22], which,
Yn H, 0ny xny Ong xny | [ Yn—1 |InVn again, is a particular linear TMC.

2.2.3. Autoregressive measurement noise 3. LGTMC : RESTORATION ALGORITHMS

The case where in (¥v, } becomes an MC has been first The aim of this section is to derive an algorithm for com-
addressed in [6], then generalized in [7] (see also [4] and pyting recursively(x,|yo.) in the case of an LGTMC.
[5]). This model is widely used in a lot of applications, and Let us first gather the unobserved variabtgsandr,,

in particular in speech enhancement and coding, see €.0into a commun vectok* = [x2,r7]T. Then (2) can be

. . n» -n
[8]; it can be rewritten as rewritten more compactly as

Xn+1 Fn Onxxn‘, Onx XNy, Xn Gnun X:FL+1 _ f;’f* .,x: f.:f* Yy X: N wf (9)
V41 = Onvxnx A:,l Onvxny Vn + gr‘{ . (4) Yn ]:'g,x f%’y Yn-1 W% '
Yn Hn Jn Onyxn Yn-1 0ny><1 st P T



Let 3.2.1. State-space transformation

Qi*,x: Q);*,y

oy (9} 404
Model (2) is indeed a partially observed vector MC, in X = {

which we observe some componefis, }, and we want to

restore (part of) the remaining onés;; }; so our algorithm Let us partitionFy = as

computesp(x;:|yo.n), and nextp(x,|yo.») is obtained by . _ _

marginalization. Let us remark thatx* |yo.,, ) can be com- F = (P Inysne s (F Inywny ] (19)

puted efficiently for, even though TMC are not necessarily gnd let us assume tha® ™ is invertible. In this case the

HMC (sincex is not necessarily an MC), the conditional following transformation

law of x* giveny is Markovian; this key computational

E(w,wl)= Snm=Cnbp.m - (10) Let us first consider the following alternate partitionxgf :

(Xn)nxxl :| _ |:(xn)(7z,x+7L,—ny)><1 . (18)

(rn)nrxl (Fn)nyxl ’

property, in turn, enables the derivation of fast algorithms. Loz —ny O(nz—ny)xny|| Xn _| Xn (20)
Fyx Fyr Ty Yo —FY¥yn-1

3.1. Regular LGTMC T, Xz

Let us first address the case wh&g? is positive definite.  isinvertible, and thus defines the state-space transformation:

posed in [3]; itis recalled here for convenience of the reader.

In this case a Kalman-like filtering algorithm has been pro- [Tn+1 0 HXZH :|_|:Tn+1 OJ]-‘ T-1 0 ][Tn 0 H X }

Letp(x?) ~ N'(Z5, P3) andp(wh) ~ (0, Q,.). Then 0 InJl ¥n 0 Ing L 0 Loy 0 Inyflyn
p(x}|yo:n) @andp(x;, , |yo.n) are Gaussian. Let Eni1 tn
PeLIYon) ~ N Prp): (11) +[Tn+1IOMWZ‘ } . (21)
P alYom) ~ N Phiaa) (12) 0 IngllOnya
Th§;§:+1|n+_1 aﬁdlﬁrlmﬂ can be computed fros; ., The firstny- equations read :
andP’ via the following equations : XX =X _x
n+1\n g q inJrl ‘7:71 fn,y in g _
o x*,x* x* -1 x*1 o% T |y myy +|5¥ | Yn—1+Whp, (22)
Xn+1|n = [f7l ’ - Qn ’y(Q%’y) ]:rbbl’ ]xn|n Ynt1 fn fn Yn g”
+ QY (QY) Ty, in which
+ Y QU@ T A e, (18) s w1, [0 0
ok * * n n _ X ,X — Nx XNz
e = 1@ - Q@) ey vx gvo = ToeFa ™ T +[ 0 fggjv@?’)
B = Q@) TR X P x ol [ [ U
x*,x* x*, oy —1 x* T vl = n+1vn | =y, " n
[‘Fn - Qn* y(Q% y) ]:r}L, ] ) (14) QZ .7:2 y—fgfl
* = * (fy’x )T _ x*
n+1|n+1 n+1in\Y n+1 W, = Tn_,_lwn . (25)
* * —1
QN+ F P (R, (19)
P P i K:rl e 3.2.2. Restoration algorithm
Xn+l|n+1 - Xn-l—l\n + n+1jn+1
X* ok Let us finally address the restorationxf from {yy., } in
Ty, Yy 16 ’ i ny
X yne = i X — Fafiynl, (16) system (22) (the subsequent restoratiox pfis immediate
rttnsr = Pryan — Kopaa Q0 + if n, > ny, since in this case,, is a subvector ok,,; it can
FY X p* FYXN\T * T (17 also be consideredif, < ny, but this point is omitted here
w1 P (i) Kopapna)” - (A7) due to lack of space). From (25) and (10), we get
3.2. Perfect measurement LGTMC E@, %) = Tp1 QX > TL, 6,m (26)
As we have seen in section 2.2, some useful models are @f’i @i’y 5 — 0.5
particular linear TMC with perfect (i.e., unnoisy) measure- @yaf oY reme T = Tmm

ments. In this section we thus address the restoration prob-
lemin casewy, = 0,,,x1. Adapting a classical method used Let p(Xy) ~ N(%o,fo) andp(w,) ~ N(0,Q,). Then
in LGHMC, we shall first perform a state-space transforma- p(X,,|yo.») andp(X,+1|yo.») are also Gaussian. Let
tion in order to reduce the dimension ®f; we will then _ P —

obtain a new stochastic linear dynamical system, and will PEalyom) ~ N(Xnjn: Pajn), (@7)
propose an estimation algorithm for that system. P(Xnt1|yom) ~ N(inﬂ‘n,?nﬂ‘n). (28)



Thenx,,; 1n+1 andP, ., 1 can be calculated from, , ;|,,
andfnmn via the following equatiorfs(the proof is omit-
ted for want of space) :

in+1|n =

Pn+1|n+1 —

4.1. Speech

As we have seen in section 2.2, the linear TMC model en-
compasses some classical models. It happens that the algo-
rithm of section 3.2 also includes some classical algorithms

771’?%”‘” Yy + G oynot, (29)
FPunFT + O (30)
F R+ F0 Y+ Goynn, (31)
F P+ (32)
B P (F)T+ 2, (33)
§71+1|7L+K7L+1\n+1fr_7,41»1|n+1(yn+1_§n+€%4))

)

— —1 —T
n+lln = Kn+1\n+1Ln+1 \n-‘rlKn-‘rl\n—i-(BS)

4. APPLICATIONS

Enhancement and Coding

as particular cases.
Let us for instance consider the case of a classical model [2] W. Pieczynski and F. Desbouvries, “Kalman filtering
with autoregressive measurement noise (we consider this ~ Using pairwise gaussian models,” Hroceedings of

example because of its wide applicability, in particular in
speech enhancement and coding, see e.g. [8]). If the linear 3
TMC reduces to (4), theG, andG>, vanish, so in (29) to

(35) the dependency gn,_; vanishes, and these equations
reduce to equations of [8]. More precisely, equations (30),

— True > —— Theoretical
0.8 — — Filtered 1. — — Empirical

0 10 20 30 40 50 0 10 20 30 40 50
Time Time

5. CONCLUSION

The linear TMC model encompasses and generalizes some
important extensions (colored process and/or measurement
noise) of the standard state-space model. A restoration al-
gorithm for general LGTMC with unnoisy measurements
has been proposed,; this algorithm is itself a generalization
of some classical Kalman-like algorithms.

6. REFERENCES

[1] R. S. Lipster and A. N. Shiryaetatistics of Random
Processes, Vol. 2 : Applicationshapter 13 : "Con-
ditionally Gaussian Sequences : Filtering and Related
Problems”, Springer Verlag, Berlin, 2001.

the ICASSPHong-Kong, 2003.

F. Desbouvries and W. Pieczynski, “Melds de
markov triplet et filtrage de kalman,” CRAS-
Mathématiquesvol. Vol. 336-8, pp. 667—-670, 2003.

(32) and (34) reduce respectively to [8, eq. 51 p. 1736], [8, [4] A. P. Sage and J. L. MelsaEstimation Theory with

eq. 57 p. 1737] and [8, eq. 56 p. 1736]; while (29) (resp.

Applications to Communications and ControNew

(35)) reduces to an equation which can be obtained as part ~ York: McGraw-Hill, 1971.
of [8, eq. 54 p. 1736] (resp. [8, eq. 52 p. 1736]).

4.2. A numerical example

Let us finally provide a numerical example of a general

LGTMC with perfect measurement. Let us set

A2
Fn=1|.11
.10

and letp(x{)

shows the true and filtered states, and the second one the
theoretical and empirical mean square errors; both figures

are averaged

10 .11 125 015 O
10 12, 9, = .015 .125 0],
A1 12 0 0 O

~ N([0.5,0.5]7,2.5 I,). The first figure

over 100 realizations.

finverses in (34) and (35) should be replaced by a generalized inverse

if Ly 1)n41 IS NOtinvertible.

[5] B.D.O. Anderson and J. B. Moor&ptimal Filtering,
Prentice Hall, Englewood Cliffs, New Jersey, 1979.

[6] Jr. A. E. Bryson and L. J. Henrikson, “Estimation
using sampled data containing sequentially correlated
noise,” J. Spacecr. Rocketgol. 5, pp. 662—-65, 1968.

[7]1 P. S. Maybeck, Stochastic Models, Estimation and
Control, vol. 1, New York: Academic Press, 1979.

[8] J.D. Gibson, B. Koo, and S. D. Gray, “Filtering of col-
ored noise for speech enhancement and codi&dEE
Tr. Sig. Proc, vol. 39-8, pp. 1732-42, August 1991.

[9] H. W. Sorenson, “Kalman filtering techniques,” in
Advances in Control Systems Theory and ApI.T.
Leondes, Ed., vol. 3, pp. 219-92. Acad. Press, 1966.

[10] C.K. Chui and G. ChenKalman Filtering with Real-
Time ApplicationsBerlin, DE: Springer, 1999.



