Bayesian smoothing algorithms in pairwise and triplet markov chains - Archive ouverte HAL
Communication Dans Un Congrès Année : 2005

Bayesian smoothing algorithms in pairwise and triplet markov chains

Résumé

An important problem in signal processing consists in estimating an unobservable process x = {x n } n∈IN from an observed process y = {y n } n∈IN. In Linear Gaussian Hidden Markov Chains (LGHMC), recursive solutions are given by Kalman-like Bayesian restoration algorithms. In this paper, we consider the more general framework of Linear Gaussian Triplet Markov Chains (LGTMC), i.e. of models in which the triplet (x, r, y) (where r = {r n } n∈IN is some additional process) is Markovian and Gaussian. We address fixedinterval smoothing algorithms, and we extend to LGTMC the RTS algorithm by Rauch, Tung and Striebel, as well as the Two-Filter algorithm by Mayne and Fraser and Potter.
Fichier principal
Vignette du fichier
ssp-bordeaux.pdf (94.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04415465 , version 1 (24-01-2024)

Identifiants

Citer

B. Ait-El-Fquih, François Desbouvries. Bayesian smoothing algorithms in pairwise and triplet markov chains. 2005 IEEE workshop on Statistical Signal Processing (SSP), IEEE, Jul 2005, Bordeaux, France. pp.721-726, ⟨10.1109/SSP.2005.1628688⟩. ⟨hal-04415465⟩
13 Consultations
9 Téléchargements

Altmetric

Partager

More