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ABSTRACT

An important problem in signal processing consists in esti-
mating an unobservable process x = {xn}n∈IN from an ob-
served process y = {yn}n∈IN. In Linear Gaussian Hidden
Markov Chains (LGHMC), recursive solutions are given by
Kalman-like Bayesian restoration algorithms. In this paper,
we consider the more general framework of Linear Gaussian
Triplet Markov Chains (LGTMC), i.e. of models in which
the triplet (x, r,y) (where r = {rn}n∈IN is some additional
process) is Markovian and Gaussian. We address fixed-
interval smoothing algorithms, and we extend to LGTMC
the RTS algorithm by Rauch, Tung and Striebel, as well as
the Two-Filter algorithm by Mayne and Fraser and Potter.

1. INTRODUCTION

An important problem in signal processing consists in recur-
sively estimating an unobservable process x = {xn}n∈IN

from an observed process y = {yn}n∈IN. This is done clas-
sically in the framework of Hidden Markov Chains (HMC),
which have been extensively studied for many years (see
e.g. the recent tutorial [1]).

In this paper we deal with the recently introduced Pair-
wise [2] (PMC) and Triplet [3] Markov Chains (TMC). In
the PMC model we assume that the pair (x,y) is a Markov
Chain (MC), and in the TMC model that the triplet (x, r,y)
(in which r = {rn}n∈IN is some additional process) is an
MC. These models are more general than the HMC model
and yet enable the development of efficient restoration algo-
rithms of the hidden process x. In particular, a Kalman-like
filtering algorithm for PMC (resp. for TMC) has been pro-
posed in [4] (resp. in [5]). The aim of this paper is to pro-
pose Bayesian smoothing algorithms for PMC and TMC.

The paper is organized as follows. In section 2 we briefly
recall the Kalman filter as well as some of its many exten-
sions. We next recall the three embedded HMC, PMC and
TMC models, and for illustrative purposes we show that two
classical extensions of the standard state-space system used
in Kalman filtering (namely the jump-Markov processes,
and the state-space systems with colored process and mea-
surement noises) are some particular TMC. In section 3 we

propose smoothing algorithms for general PMC and TMC.
Finally in section 4 we consider the particular case of linear
and Gaussian TMC; the algorithms of section 3 then reduce
to an extension of the RTS algorithm [6] by Rauch, Tung
and Striebel, on the one hand, and of the Two-Filter algo-
rithm by Mayne [7] and Fraser and Potter [8], on the other
hand.

2. PARTIALLY OBSERVED MARKOV CHAINS

2.1. The Kalman filter and its extensions

Let us consider the classical state-space system :

{
xn+1 = Fnxn + Gnun

yn = Hnxn + Jnvn
, (1)

in which xn ∈ IRnx is the state, yn ∈ IRny is the obser-
vation, un ∈ IRnu is the process noise and vn ∈ IRnv is
the measurement noise. The processes u = {un}n∈IN and
v = {vn}n∈IN are assumed to be independent, jointly inde-
pendent and independent of x0.

Let x0:n = {xi}
n
i=0 and y0:n = {yi}

n
i=0. Let also

p(xn), p(x0:n) and p(xn|y0:n), say, denote the probabil-
ity density function (pdf) (w.r.t. Lebesgue measure) of xn,
the pdf of x0:n, and the pdf of xn, conditional on y0:n, re-
spectively; the other pdf are defined similarly. The filtering
problem consists in computing the posterior pdf p(xn|y0:n).
If furthermore x0 and wn = (un,vn) are Gaussian, then
p(xn|y0:n) is also Gaussian and is thus described by its
mean and covariance matrix. Propagating p(xn|y0:n) over
time amounts to propagating these parameters, and the fil-
tering algorithm reduces to the celebrated Kalman filter [9],
see also [10].

Since this pionnering work, the Kalman filter has been
generalized in many directions. To name just a few ex-
amples, robust (i.e., square-root type) or fast (i.e., Chan-
drasekhar type) algorithms have been proposed; restoration
algorithms for smoothing or prediction problems have been
developed; the independence assumptions on u and v have
been dropped, leading to linear models with colored process



and/or measurement noises; and the extension of (1) to non-
linear and/or non-Gaussian systems has been addressed, lead-
ing to approximate solutions such as the extended Kalman
filter and more recently particle filters. The literature on all
these extensions is vast (see e.g. [11] [12] [13] as well as
the references therein).

2.2. Embedded Markovian models : HMC ⊂ PMC ⊂
TMC

On the other hand, yet another direction in which it is pos-
sible to extend the Kalman filter consists in releasing some
conditional independence assumptions among x and y. Let
us first come back to model (1). From (1), we get

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:n|x0:n) =

n∏

i=0

p(yi|x0:n) ; (3)

p(yi|x0:n) = p(yi|xi) for all i, 0 ≤ i ≤ n . (4)

In other words, x is an MC, and since x is known only
through the observed process y, (1) is an HMC.

In an HMC x is first assumed to be an MC (by the very
meaning of the words ”HMC”), and next the stochastic in-
teractions of x and y are designed in such a way that x can
be efficiently restored from y. On the other hand, a PMC is
a model in which the pair (x,y) is assumed to be an MC.
So in a PMC x and y are modeled altogether (and in a sym-
metric way), and a PMC can indeed be seen as a partially
observed vector MC, in which we observe one component
y and we want to restore the other one x.

Now if (2) to (4) hold, then (x,y) is an MC, so any
HMC is also a PMC. The converse is not true, because if
(x,y) is a (vector) MC then the marginal process x is not
necessarily an MC; moreover, conditionnally on x0:n, the
variables {yi}n

i=0 form an MC and thus are not necessarily
independent [4]. On the other hand, due to the symmetry of
the PMC model, the conditional law of x0:n given y0:n is
also Markovian. This key computational property (which in
the context of HMC is well known, see e.g. [1, eq. (5.21) p.
1539]), in turn, enables the derivation of efficient HMC-like
restoration algorithms. In particular, in the linear Gaussian
case, the extension to PMC of the Kalman filter has been
considered in [14, Corollary 1 p. 72] and [4]1.

The PMC model can be further generalized to the TMC
model [3] which we now recall. A TMC is a stochastic dy-
namical model which describes the interactions between 3
processes : the hidden process x, the observed process y,
and a third process r which, depending on the application,

1more precisely, if (2) to (4) hold then both {(xn,yn)}n∈IN and
{(xn+1,yn)}n∈IN are MC; the difference between [14] and [4] stems
from these two candidate definitions of a PMC (see also the remark at the
end of [4, section 3]).

can have different physical meanings (see e.g. the examples
given below). By definition, the triplet t = (x, r,y) is a
TMC if (x, r,y) is a (vector) Markov chain. The interest of
TMC is twofold :

• As far as modeling is concerned, if (r, (x,y)) is an
MC then the marginal process (x,y) is not necessar-
ily an MC, so TMC are not necessarily PMC;

• As far as restoration is concerned, the TMC (r,x,y)
can be viewed as the PMC ((r,x),y); so x∗ = (r,x)
can be restored from y by a PMC algorithm, and
finally x is obtained by marginalization (such algo-
rithms have been proposed in the discrete [3] or linear
Gaussian [5] cases).

Finally, let us notice that in practice computer experi-
ments have demonstrated the superiority of PMC [15] (resp.
TMC [16]) over HMC in the context of image segmentation.

2.3. Some classical TMC

It happens that some classical generalizations of the state-
space system (1) are particular TMC. For an illustrative pur-
pose, let us leave in this section the general discussion and
consider the following two examples (the first one with a
discrete latent process r, the second one with a continuous
latent process r). Other examples of particular TMC models
can be found in [5] [17].

2.3.1. Jump-Markov model

Let us consider the jump-Markov model (see e.g. [18] [19]):
{

xn+1 = F(rn+1)xn + G(rn+1)un

yn = H(rn)xn + J(rn)vn
, (5)

in which u = {un}n∈IN and v = {vn}n∈IN are zero-
mean, Gaussian, independent, jointly independent and in-
dependent of x0, and r = {rn}n∈IN is a scalar discrete
MC. Conditionnally on r, (5) is a classical linear state-space
system (1), and as such an HMC. Now if we consider the
whole model x, y and r, then the process t = {tn} with
tn = (xn, rn,yn) is a particular TMC.

2.3.2. State-space model with colored noises

Let us once again consider model (1), but in which we now
assume that

[
un+1

vn+1

]

︸ ︷︷ ︸
rn+1

=

[
Au,u

n 0

0 Av,v
n

]

︸ ︷︷ ︸
An

[
un

vn

]
+

[
ξu
n

ξv
n

]
,

︸ ︷︷ ︸
ξn

where ξu = {ξu
n}n∈IN (resp. ξv = {ξv

n}n∈IN) is zero-mean,
independent and independent of u0 (resp. of v0), and ξu



and ξv are independent. Each one of the two processes
u = {un}n∈IN and v = {vn}n∈IN is thus an MC, and u

is independent of v. Such a model has been introduced by
Sorenson [20] (see also [21, ch. 5]). It is no longer an HMC
(x is not an MC), but the whole model tn = (xn, rn,yn−1)
can be rewritten as



xn+1

rn+1

yn


 =




Fn Gn 0

0 An 0

Hn Jn 0







xn

rn

yn−1


 +




0

ξn

0




(with Gn = [Gn,0] and Jn = [0,Jn]), and so t = {tn} is
a TMC.

3. SMOOTHING ALGORITHMS FOR PMC AND
TMC

Let again x = {xn}n∈IN be the hidden state process, y =
{yn}n∈IN the observed process and r = {rn}n∈IN the ad-
ditional process. From now on we say that the process
t = {tn}n∈IN, with tn = (xn, rn,yn−1) = (x∗

n,yn−1)
is a TMC if t is an MC. The aim of this section is to derive
Bayesian fixed-interval smoothing algorithms for TMC.

Let us first briefly recall the existing fast Bayesian smooth-
ing algorithms in the HMC framework :

• In the case of a discrete hidden process x, the forward-
backward (Baum-Welch) algorithm [22] [23] enables
to compute p(xn|y0:N ) (for an arbitrary n, 0 ≤ n ≤
N ), while the Viterbi algorithm [24] [25] computes
argmax

x0:N

(p(x0:N |y0:N ));

• In the case of a continuous hidden process x, a num-
ber of fixed-interval smoothing algorithms have been
proposed (see e.g. [12, ch. 10] [26] for recent sur-
veys), among which the RTS algorithm [6] by Rauch,
Tung and Striebel, and the Two-Filter smoother by
Mayne [7] and Fraser and Potter [8];

• Though originally derived independently, these dis-
crete and continuous range approaches have been rec-
onciled recently; in particular, the forward-backward
algorithm is implemented by the Two-Filter smoother,
and the Viterbi recursions are implemented by the
RTS smoother [27] [28].

From now on we consider smoothing algorithms for PMC
or TMC. Generalizations of the forward-backward algorithm
for PMC [2] and TMC [3] with discrete hidden process have
already been developped. On the other hand, Kalman-like
filtering algorithms have been proposed for PMC [4] and
TMC [5] with continuous hidden process, but no smoothing
algorithm has been derived yet. From now on we shall thus
propose the TMC RTS smoother (see §3.1 and §4.1) and
the TMC Two-Filter smoother (see §3.2 and §4.2). In the

following, we focus on the computation of p(x∗
n|y0:N ) for

some n, 0 ≤ n ≤ N ; finally the pdf p(xn|y0:N ) of interest
is obtained by marginalization.

3.1. The Triplet RTS algorithm

Proposition 1 Let t be a TMC. Then p(x∗
n|y0:N ) can be

computed recursively as

p(x∗
n|y0:N ) =

∫
p(x∗

n+1|y0:N )p(x∗
n|x

∗
n+1,y0:n)dx∗

n+1,

(6)

in which p(x∗
n|x

∗
n+1,y0:n) can be computed as

p(x∗
n|x

∗
n+1,y0:n) =

p(x∗
n|y0:n)p(x∗

n+1|tn,yn)∫
p(x∗

n|y0:n)p(x∗
n+1|tn,yn)dx∗

n

.

(7)

Proof 1 We start from

p(x∗
n|y0:N ) =

∫
p(x∗

n|x
∗
n+1,y0:N )p(x∗

n+1|y0:N )dx∗
n+1.

Since t is an MC, p(x∗
n|x

∗
n+1,y0:N ) =

p(x∗

n
,x∗

n+1,y0:N)R
p(x∗

n
,x∗

n+1
,y0:N )dx∗

n

=
p(yn+1:N |tn+1)p(tn+1, tn,y0:n−2)∫

p(yn+1:N |tn+1)p(tn+1, tn,y0:n−2)dx∗
n

= p(x∗
n|x

∗
n+1,y0:n), whence (6). On the other hand,

p(x∗
n|x

∗
n+1,y0:n) =

p(x∗
n|y0:n)p(x∗

n+1|x
∗
n,y0:n)∫

p(x∗
n|y0:n)p(x∗

n+1|x
∗
n,y0:n)dx∗

n

,

and

p(x∗
n+1|x

∗
n,y0:n) =

p(x∗
n+1,yn|x

∗
n,y0:n−1)

p(yn|x∗
n,y0:n−1)

=
p(tn+1|tn)

p(yn|tn)
,

whence (7).

3.2. The Triplet Forward-Backward algorithm

Proposition 2 Let t be a TMC. Let

α(x∗
n) = p(x∗

n,y0:n−1), (8)

β(x∗
n) = p(yn:N |x∗

n,yn−1). (9)

Then p(x∗
n|y0:N ) can be computed as

p(x∗
n|y0:N ) =

α(x∗
n)β(x∗

n)∫
α(x∗

n)β(x∗
n)dx∗

n

, (10)

in which the triplet forward (resp. backward) pdf α(x∗
n)

(resp. β(x∗
n)) can be computed recursively via

α(x∗
n+1) =

∫
p(tn+1|tn)α(x∗

n)dx∗
n, (11)

β(x∗
n) =

∫
p(tn+1|tn)β(x∗

n+1)dx
∗
n+1. (12)



Proof 2 Equations (8)- (12) hold because of Bayes’s rule
and because t is an MC. Firstly,

p(x∗
n|y0:N ) =

p(x∗
n,y0:n−1,yn:N )

p(y0:N )

∝ p(x∗
n,y0:n−1)︸ ︷︷ ︸
α(x∗

n
)

p(yn:N |x∗
n,yn−1)︸ ︷︷ ︸

β(x∗

n
)

.

Next (11) and (12) are obtained from

α(x∗
n+1) =

∫
p(x∗

n+1,yn|x
∗
n,y0:n−1)︸ ︷︷ ︸

p(tn+1|tn)

p(x∗
n,y0:n−1)dx

∗
n,

β(x∗
n) =

∫
p(tn+1|tn) p(yn+1:N |tn+1, tn)︸ ︷︷ ︸

β(x∗

n+1
)

dx∗
n+1.

4. THE LINEAR GAUSSIAN CASE

From now on we further assume that the TMC process t is
also Gaussian. More precisely, we assume that

[
x∗

n+1

yn

]

︸ ︷︷ ︸
tn+1

=

[
Fx∗,x∗

n Fx∗,y
n

Fy,x∗

n Fy,y
n

]

︸ ︷︷ ︸
Fn

[
x∗

n

yn−1

]
+

[
wx∗

n

wy
n

]

︸ ︷︷ ︸
wn

, (13)

in which w = {wn}n∈IN is independent and independent
of t0, y−1 = 0, and

wn∼N (0,

[
Qx∗,x∗

n Qx∗,y
n

Qy,x∗

n Qy,y
n

]

︸ ︷︷ ︸
Qn

). (14)

Then p(x∗
n|y0:N ) is also Gaussian, and computing this pdf

amounts to computing its parameters. Let us thus introduce
the following notation. For 0 ≤ i ≤ j ≤ N , let yi:j =
{ym}i≤m≤j , and let

p(x∗
n|yi:j) ∼ N (x̂∗

n|i:j ,P
x∗,x∗

n|i:j ). (15)

4.1. The Triplet RTS algorithm

Proposition 3 (The Triplet RTS algorithm) Let (13) hold.
Let

K∗
n|0:N =P

x∗,x∗

n|0:n [Fx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Fy,x∗

n ]T P
x∗,x∗−1
n+1|0:n .

(16)
Then (6) reduces to

x̂∗
n|0:N = x̂∗

n|0:n+K∗
n|0:N[x̂∗

n+1|0:N−x̂∗
n+1|0:n], (17)

P
x∗,x∗

n|0:N = P
x∗,x∗

n|0:n −K∗
n|0:NP

x∗,x∗

n+1|0:nK∗T

n|0:N

+ K∗
n|0:NP

x∗,x∗

n+1|0:NK∗T

n|0:N . (18)

So (x̂∗
n|0:N ,P

x∗,x∗

n|0:N ) can be computed recursively (in the

backward direction) provided (x̂∗
n|0:n, Px∗,x∗

n|0:n ) and (x̂∗
n+1|0:n,

P
x∗,x∗

n+1|0:n) are known; these, in turn, can be computed recur-
sively (in the forward direction) by the TMC Kalman filter
algorithm, see [4] [5].

Proof 3 We first need to compute (7). From (13), we get

p(tn+1|tn) ∼ N (Fntn,Qn). (19)

Using Proposition 6 (see section 5 below), we get

p(x∗
n+1|x

∗
n,y0:n) ∼ N (Anx∗

n+bn , Q
x∗,x∗

n ), (20)

with

An = Fx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Fy,x∗

n ,

bn = Qx∗,y
n (Qy,y

n )−1yn

+ [Fx∗,y
n −Qx∗,y

n (Qy,y
n )−1Fy,y

n ] yn−1,

Q
x∗,x∗

n = Qx∗,x∗

n −Qx∗,y
n (Qy,y

n )−1Qy,x∗

n .

On the other hand, from (15)

p(x∗
n|y0:n) ∼ N (x̂∗

n|0:n,P
x∗,x∗

n|0:n ).

Using (20) and Proposition 7, we get

p(x∗
n,x∗

n+1|y0:n)∼ N (

[
x̂∗

n|0:n

x̂∗
n+1|0:n

]
,

[
P

x∗,x∗

n|0:n P
x∗,x∗

n|0:n AT
n

AnP
x∗,x∗

n|0:n P
x∗,x∗

n+1|0:n

]
)

with x̂∗
n+1|0:n = Anx̂∗

n|0:n + bn, P
x∗,x∗

n+1|0:n = Q
x∗,x∗

n +

AnP
x∗,x∗

n|0:n AT
n . Using Proposition 6, we get

p(x∗
n|x

∗
n+1,y0:n) ∼ N (x̂∗

n|0:n+K∗
n|0:N(x∗

n+1−x̂∗
n+1|0:n),

P
x∗,x∗

n|0:n −K∗
n|0:NP

x∗,x∗

n+1|0:nK∗T
n|0:N) (21)

in which K∗
n|0:N is given by (16).

It remains to compute equation (6). Using (15), (21) and
Proposition 7, we finally get (17) and (18).

4.2. The Triplet Two-Filter algorithm

Proposition 4 (The Triplet Two-Filter algorithm) Let (13)
hold. Then (8) - (10) reduce to

P
x∗,x∗−1
n|0:N x̂∗

n|0:N = P
x∗,x∗−1
n|0:n−1 x̂∗

n|0:n−1+P
x∗,x∗−1
n|n−1:N x̂∗

n|n−1:N

− P
x∗,x∗−1
n|n−1 x̂∗

n|n−1, (22)

P
x∗,x∗−1
n|0:N = P

x∗,x∗−1
n|0:n−1 +P

x∗,x∗−1
n|n−1:N−P

x∗,x∗−1
n|n−1 . (23)

Proof 4 The proof is omitted for want of space.



As we can see, the TMC Two-Filter algorithm can be
used for computing p(x∗

n|y0:N ) once we know how to com-
pute (x̂∗

n|0:n−1, P
x∗,x∗

n|0:n−1), (x̂
∗
n|n−1:N , P

x∗,x∗

n|n−1:N ) and (x̂∗
n|n−1,

P
x∗,x∗

n|n−1). Let us now consider these points.

Firstly, as in the TMC RTS algorithm, (x̂∗
n|0:n−1, Px∗,x∗

n|0:n−1)
can be computed recursively by the TMC Kalman filter [4]
[5].

Let us now address the computation of (x̂∗
n|n−1, P

x∗,x∗

n|n−1).
Let

p(tn) ∼ N (

[
x̂∗

n

ŷn−1

]

︸ ︷︷ ︸
btn

,

[
Px∗,x∗

n Px∗,y
n

Py,x∗

n P
y,y
n−1

]

︸ ︷︷ ︸
Pt

n

). (24)

From (13), we can compute t̂n and Pt
n recursively by

t̂n+1 = Fnt̂n, (25)

Pt
n+1 = FnPt

nFn + Qn. (26)

Using Proposition 6, we get

x̂∗
n|n−1 = x̂∗

n + Px∗,y
n (Py,y

n−1)
−1(yn−1−ŷn−1),(27)

P
x∗,x∗

n|n−1 = Px∗,x∗

n −Px∗,y
n (Py,y

n−1)
−1Py,x∗

n . (28)

Let us finally address the computation of (x̂∗
n|n−1:N ,

P
x∗,x∗

n|n−1:N ). These parameters can be computed recursively
by the TMC backward Kalman filter :

Proposition 5 (The TMC Backward Kalman filter) Let

F̃n+1 = Pt
nF

T
n(Pt

n+1)
−1=

[
F̃x∗,t

n+1

F̃y,t
n+1

]
=

[
F̃x∗,x∗

n+1 F̃x∗,y
n+1

F̃y,x∗

n+1 F̃y,y
n+1

]
(29)

Q̃n+1 = Pt
n−F̃n+1P

t
n+1F̃

T
n+1=

[
Q̃x∗,x∗

n+1 Q̃x∗,y
n+1

Q̃y,x∗

n+1 Q̃y,y
n+1

]
.(30)

Then we have

x̂∗
n|n:N = F̃x∗,x∗

n+1 [x̂∗
n+1|n:N−x̂∗

n+1]+F̃x∗,y
n+1 [yn−ŷn]

+ x̂∗
n, (31)

ŷn−1|n:N = F̃y,x∗

n+1 [x̂∗
n+1|n:N −x̂∗

n+1]+F̃y,y
n+1[yn−ŷn]

+ ŷn−1, (32)

P
x∗,x∗

n|n:N = Q̃x∗,x∗

n+1 + F̃x∗,x∗

n+1 P
x∗,x∗

n+1|n:N (F̃x∗,x∗

n+1 )T , (33)

K∗
n|n−1:N = [Q̃x∗,y

n+1 +F̃x∗,x∗

n+1 P
x∗,x∗

n+1|n:N (F̃y,x∗

n+1 )T ]

× [Q̃y,y
n+1 + F̃y,x∗

n+1 P
x∗,x∗

n+1|n:N (F̃y,x∗

n+1 )T ]−1, (34)

x̂∗
n|n−1:N = x̂∗

n|n:N +K∗
n|n−1:N(yn−1−ŷn−1|n:N ), (35)

P
x∗,x∗

n|n−1:N = P
x∗,x∗

n|n:N−K∗
n|n−1:N [Q̃y,y

n+1

+ F̃y,x∗

n+1 P
x∗,x∗

n+1|n:N (F̃y,x∗

n+1 )T ]K∗T

n|n−1:N . (36)

The algorithm is initialized at n = N + 1 by

x̂∗
N+1|N = x̂∗

N+1 + P
x∗,y
N+1(P

y,y
N )−1[yN − ŷN ], (37)

P
x∗,x∗

N+1|N = P
x∗,x∗

N+1 −P
x∗,y
N+1(P

y,y
N )−1P

y,x∗

N+1. (38)

Proof 5 Using (24), (19) and Propositions 7 and 6, we get

p(tn|tn+1) ∼ N (F̃n+1tn+1 + (I − F̃n+1Fn)t̂n, Q̃n+1),
(39)

in which F̃n+1 and Q̃n+1 are given respectively by (29) and
(30).

Next, from (15) we have

p(x∗
n+1|yn:N ) ∼ N (x̂∗

n+1|n:N ,P
x∗,x∗

n+1|n:N). (40)

Using (39), (40) and Proposition 7, and marginalizing w.r.t.
x∗

n+1, we get

p(tn|yn:N ) ∼ N (

[
x̂∗

n|n:N

ŷn−1|n:N

]
,Pt

n|n:N ),

from which we deduce (31), (32) and (33). Using Proposi-
tion 6, we get (34), (35) and (36).

5. SOME PROPERTIES OF GAUSSIAN R.V.

The derivations in this paper rely on the following results,
which are recalled for convenience of the reader :

Proposition 6 Let

(u1,u2) ∼ N (

[
µ1

µ2

]
,

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
).

Then conditionally on u2, u1 ∼ N (µ1 + Σ1,2Σ
−1
2,2(u2 −

µ2),Σ1,1 −Σ1,2Σ
−1
2,2Σ2,1).

Proposition 7 Let u1 ∼ N (µ1,Σ1) and conditionally on
u1, let u2 ∼ N (Au1 + b,Σ2|1). Then

(u1,u2) ∼ N (

[
µ1

Aµ1 + b

]
,

[
Σ1 Σ1A

T

AΣ1 Σ2|1 + AΣ1A
T

]
).
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