Optimal Stopping of Branching Diffusion Processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Optimal Stopping of Branching Diffusion Processes

Résumé

This article explores an optimal stopping problem for branching diffusion processes. It consists in looking for optimal stopping lines, a type of stopping time that maintains the branching structure of the processes under analysis. By using a dynamic programming approach, we characterize the value function for a multiplicative cost that depends on the particle's label. We reduce the problem's dimensionality by setting a branching property and defining the problem in a finite-dimensional context. Within this framework, we focus on the value function, establishing polynomial growth and local Lipschitz properties, together with an innovative dynamic programming principle. This outcome leads to an analytical characterization with the help of a nonlinear elliptic PDE. We conclude by showing that the value function serves as the unique viscosity solution for this PDE, generalizing the comparison principle to this setting.
Fichier principal
Vignette du fichier
OptStopBP.pdf (390.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04413818 , version 1 (24-01-2024)

Identifiants

Citer

Idris Kharroubi, Antonio Ocello. Optimal Stopping of Branching Diffusion Processes. 2024. ⟨hal-04413818⟩
49 Consultations
60 Téléchargements

Altmetric

Partager

More