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Abstract

This article explores an optimal stopping problem for branching diffusion processes.

It consists in looking for optimal stopping lines, a type of stopping time that maintains

the branching structure of the processes under analysis. By using a dynamic pro-

gramming approach, we characterize the value function for a multiplicative cost that

depends on the particle’s label. We reduce the problem’s dimensionality by setting a

branching property and defining the problem in a finite-dimensional context. Within

this framework, we focus on the value function, establishing polynomial growth and

local Lipschitz properties, together with an innovative dynamic programming princi-

ple. This outcome leads to an analytical characterization with the help of a nonlinear

elliptic PDE. We conclude by showing that the value function serves as the unique

viscosity solution for this PDE, generalizing the comparison principle to this setting.

MSC Classification- 60G40, 60J80, 35J60, 49L20, 49L25
Keywords— Optimal stopping, branching diffusion process, dynamic programming principle,

Hamilton-Jacobi-Bellman equation, viscosity solution.

1 Introduction

Since its introduction in the late sixties in [16, 14, 15, 28], the class of branching diffusion processes

received a great deal of interest. This object is used to describe the evolution of a population where
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we are interested in a special feature, e.g., the spatial motion, of identical particles that reproduce

at random times.

These processes are well-suited in capturing a dual level of interaction. A macroscopic dynamics,

marked by the branching aspect, is connected to a microscopic one, characterized by a stochastic

differential equation. By establishing a link between macroscopic and microscopic facets, these

dynamics prove applicable in a wide array of domains, from biology to finance. In the realm

of biology, they prove invaluable for modeling phenomena such as parasite infection within cell

populations (see, e.g., [2, 20, 21]). Conversely, in the financial domain, these processes are used to

characterize options related to cryptocurrencies (see, e.g., [17]).

In the study of branching diffusion processes, a fundamental question emerges: at what juncture

does it become optimal to halt such a process? This question delves into the determination of an

opportune point in time to stop the evolution of a branching diffusion. This research line echoes

the optimization of a given functional to trade-off between the diffusion and reproduction of these

processes and a possible degradation of the reward. By investigating the optimal stopping time

for branching diffusion processes, we aim to shed light on the decision-making process involved in

terminating these dynamical systems, thereby enhancing our understanding of their behaviour and

enabling more effective applications in various fields of study.

One possible approach to consider is looking at the entire branching diffusion process as a

whole, as done in [25], and finding a universal stopping time that applies to all active branches

simultaneously. This global stopping time serves as a comprehensive decision rule, enabling a

synchronized halt to the progression of each branch in the system, regardless of their characteristics

or temporal disparities.

Although the aforementioned approach has its appeal, it may not fully align with the intrinsic

structure of such processes. Indeed, the fundamental nature of a branching process, even when

studied as a collective entity, is fundamentally rooted in its ability to portray the trajectory and

dynamics of a singular individual. Therefore, while a global perspective may offer valuable insights

and provide a comprehensive overview of the system, it may inadvertently disregard the inherent

individuality of the branches.

This dual mode between the individuality of the single component as opposed to the wholeness

of the population is a key concept in cooperative game theory. For example, mean-field control

literature (see, e.g., [6, 7]) deals with the control of large-scale systems involving a multitude

of interacting agents, assumed to be rational decision-makers who aim to optimize their objective

functions. The goal is to find control strategies that maximize a specific objective at the population

level, which aligns with the optimal behaviour of each agent, influenced by the collective behaviours

of the entire population. An additional example illustrating the transformation of global behaviour

into individual optimization can be observed in [11, 17, 24, 25]. These studies prove how control

strategies are contingent upon the decisions made by each participant. Moreover, the concept of

the branching property emerges as a means to reduce the complexity of the problem, consequently

shifting the focus toward analyzing the dynamics of the individual agents.

To capture the decision-making process of individuals within a collective framework, we adopt

the concept of stopping lines. This mathematical object, introduced in [8, 9], serves as the coun-

terpart to stopping times in branching dynamics. Stopping lines are characterized by a subset of

the process’s genealogy, where no member can be traced back to another member, and we can see

their use in applications such as [19].
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Although stopping lines have been used in previous studies, the exploration of optimal stopping

lines based on specific criteria remains, to the best of our knowledge, an open problem. This article

aims to address this research gap by directing our attention to this exact issue.

An application of this optimal stopping problem is possible in the field of finance, specifically

in the valuation of American options tied to cryptocurrencies (see, e.g., [13]). This modeling is the

one discussed in [17], in the case of super-replication. In the realm of biology, another pertinent

utilization arises in the optimization of halting infections caused by parasites, a model explored by

[2, 20, 21]. This application gains significance as the initial stage of a mutant invasion closely aligns

with the characteristics of a branching process, as expounded in works like [4, 3, 1]. In this phase,

critical stopping criteria become imperative, especially in the context of identifying the emergence

and detection of cancer.

Within a branching diffusion process framework, we look for the characterization of the value

function linked to an infinite horizon optimal stopping problem. Optimization is done over the set

of stopping lines, where each branch becomes eligible for halting only if no preceding ancestor has

been stopped before. We narrow our investigation to multiplicative rewards, similar to the approach

taken in [11, 23]. Drawing inspiration from [10], we prove a fundamental branching property. This

property provides conditional independence among the offspring branches subsequent to a given

conditioning time. This allows working within a finite-dimensional setting, distinguishing it from

the traditional approach that treats branching diffusion dynamics as measure-valued processes.

This framework, additionally, yields polynomial growth and local Lipschitz properties for the value

function.

We employ a dynamic programming approach to characterize the value function as a solution

to a specific Partial Differential Equation (PDE). Establishing an original Dynamic Programming

Principle (DPP), we extend the framework of the classical optimal stopping problem to our branch-

ing context. This outcome paves the way for an analytical characterization of the value function.

The corresponding PDE takes the form of an obstacle problem with a semilinear term, which

involves a polynomial series associated with the branching mechanism and value functions related

to offspring labels. Under the assumption that this series has an infinite radius of convergence, we

show that the value function is a solution in the sense of viscosity to this PDE. It is worth noting

that a global bound on the label for the test functions is needed within the viscosity properties.

This condition serves to retrieve the martingale property for the compensated jump component of

the branching diffusion dynamics.

To conclude the PDE characterization, we present a comparison theorem. The presence of

the semilinear term, tied to the value functions associated with offspring labels, introduces a

non-classical aspect to this PDE. We explore a multiplicative penalization, making the viscosity

solutions go towards zero in the spatial variable as a result of the previously demonstrated poly-

nomial growth. Then, using the assumption of vanishing rewards as the label goes to infinity, we

establish the comparison principle for value functions related to sufficiently large starting labels.

We finally extend this analysis to cover the remaining functions through a backward induction on

the size of the label.

The remainder of the paper is structured as follows. Section 2 presents a detailed description of

the model under examination, focusing on the characteristics of branching diffusion processes and

stopping lines. Additionally, we discuss the continuity of these processes’ trajectories and highlight

a crucial branching property that will play a significant role in subsequent sections. In Section 3,
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we introduce the optimal stopping problem and establish the regularity of the corresponding value

function. Section 4 is dedicated to proving the dynamic programming principle, while Section 5

provides the characterization of the value function as the unique viscosity solution to an obstacle

problem.

2 Branching diffusion processes formulation

Label set We start by introducing the Ulam-Harris notation. This is key in the description of

the tree structure of the problem, identifying immediately the genealogy of a particle. For n ≥ 1,

we write i = i1 . . . in for the multi-integer i = (i1, . . . , in) ∈ Nn. For n,m ≥ 1 and two multi-integers

i = i1 . . . in ∈ Nn and j = j1 . . . jm ∈ Nm, we define their concatenation ij ∈ Nn+m as

ij := i1 . . . inj1 . . . jm . (2.1)

The evolution of the particle population can now be described with the help of the set of labels I
defined as follows

I := {∅} ∪
+∞⋃
n=1

Nn ,

where the label ∅ corresponds to the mother particle. We extend the concatenation (2.1) to the

whole set I with ∅i = i∅ = i, for all i ∈ I. For a particle i ∈ I \ {∅}, i = i1 · · · in with

i1, . . . , in ∈ N, we denote by i− its parent defined by i− = i1 · · · in−1.

When the particle i = i1 . . . in ∈ Nn gives birth to k particles, the off-springs are labelled

i0, . . . , i(k − 1). By employing this method of generating the genealogy, we can establish a partial

ordering ⪯ (resp. ≺) by

i ⪯ j ⇔ ∃ℓ ∈ I : i = jℓ (resp. i ≺ j ⇔ ∃ℓ ∈ I \ {∅} : i = jℓ) ,

for all i, j ∈ I. We say that i ∈ I is the parent of j ∈ I if j = iℓ with ℓ ∈ N. Moreover, if

i = i1 . . . in, we say that i belongs to the n-th generation of the population.

We endow I with the discrete topology, which is generated by the following distance dI

dI(i, j) :=
n∑

ℓ=p+1

(iℓ + 1) +
m∑

ℓ′=p+1

(jℓ′ + 1) ,

for i = i1 · · · in ∈ Nn, j = j1 · · · jm ∈ Nm, where p is the generation of the greatest common ancestor,

i.e., p = max{ℓ ≥ 1 : iℓ = jℓ}. We next write |i| := dI(i,∅) for i ∈ I. We define the following

generation function g : I → N by g(∅) := 0 and

g(i) := n , (2.2)

for i = i1 · · · in ∈ I with i1, . . . , in ∈ N.
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Set of marked trees In the following, we will denote as tree the family tree of the population.

A tree ω0 is a subset of I that satisfies the following properties: ∅ ∈ ω0,

ij ∈ ω0 ⇒ i ∈ ω0 for i, j ∈ I ,

and, for any i ∈ ω0, there exists νi(ω
0) ∈ N such that

iℓ ∈ ω0 ⇒ 0 ≤ ℓ ≤ νi(ω
0)− 1 , (2.3)

with the convention that νi(ω
0) = 0, when iℓ /∈ ω0 for all ℓ ∈ N.

We denote Ω0 the set of trees. We say that i ∈ I is a node of ω0 ∈ Ω0 if i ∈ ω0. For i ∈ I, let
Ω0
i be the subset of trees having i as a node, i.e.,

Ω0
i :=

{
ω0 ∈ Ω0 : i ∈ ω0

}
.

We notice that Ω0
i is the domain of the map νi introduced in (2.3) for i ∈ I.

For m ∈ N∗, let Ω1 := C0(R+,Rm)×R+ be the space of marked paths. We denote B (resp. ρ)

the projection map from Ω1 to its first (resp. second) component, that is

B(ω1, s) := ω10(s), ρ(ω1) := ω11 ,

for ω1 = (ω10, ω11) ∈ Ω1 with ω10 ∈ Ω10 and ω11 ∈ Ω11.

The set of marked trees Ω is now defined as

Ω :=
{
ω =

(
ω0, (ω1

i , i ∈ ω0)
)
, ω0 ∈ Ω0 , ω1

i ∈ Ω1
}
,

and we denote π0 the canonical projection from Ω to Ω0. For i ∈ I, we set Ωi = (π0)−1(Ω0
i ) and

still denote νi the map induced on Ωi by π0 and (2.3). For i ∈ I, we define the canonical projection
π1
i from Ωi to Ω1 by

π1
i (ω) := ω1

i , for ω =
(
ω0, (ω1

j , j ∈ ω0)
)
∈ Ωi .

We can now extend B and ρ to Ωi, obtaining the map Bi and ρi as follows

Bi := B ◦ π1
i , ρi := ρ ◦ π1

i ,

for i ∈ I.
One key property of trees that will be of se in the following is their self-similarity. This means

that, when we zoom on a node and look at its offspring, we still have a tree, up to re-indexation of

the labels. Therefore, we define the shift operator Ti,s, for i ∈ I and s ∈ R+, from Ωi to Ω. This

operator is such that Ti,s(ω) is the subtree of ω starting from a particle i alive at time s. More
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precisely, we have

π0(Ti,s(ω)) := {j ∈ I : ij ∈ π0(ω)} ,

ρ∅(Ti,s(ω)) := ρi(ω)− s ∧ ρi(ω) ,

B∅
(
Ti,s(ω), t

)
:= Bi

(
ω, (s ∧ ρi(ω)) + t

)
−Bi

(
ω, s ∧ ρi(ω)

)
, for t ∈ [s ∧ ρi(ω), ρi(ω)] ,

Bj(Ti,s(ω)) = Bij(ω) , for ω ∈ Ωij , j ̸= ∅ ,

ρj(Ti,s(ω)) = ρij(ω) , for ω ∈ Ωij , j ̸= ∅ .

Lifetime, birthtime and position. When dealing with processes indexed on a tree, we

have two notions of time to take into consideration. On one hand, the age of the particle, and

consequently its time of death/reproduction. On the other hand, the calendar time expresses a

notion of time for all the particles. Let Si be the birthtime of a particle i ∈ I such that S∅ = 0

and, inductively on the generations,

Si := Si− + ρi .

With this notion, which encodes the calendar time for the population, we write Vt for the set of

alive particles at time t ∈ R+, defined by

Vt :=
{
i ∈ I : Si ≤ t < Si + ρi

}
. (2.4)

σ-algebrae and filtrations. As σ-algebrae describe the information we can access, we need

to define filtration that will match the tree structure. First, on Ω1, let H1 = (H1(t))t∈R+ be the

right-continuous filtration generated by marginal projection B and progressively enlarged by ρ

H1(t) :=
⋂
ε>0

σ
(
Bs,1ρ≤s , s ≤ t+ ε

)
, t ≥ 0 .

Then, on Ωi, take Hi = (Hi(t))t∈R+ to be the filtration associated with the evolution of the branch

with label i, i.e.,

Hi(t) := (π1
i )

−1
(
H1(t)

)
for t ∈ R+ .

As done for the birthtime, we consider the σ-algebrae associated with the ancestors of a particle

i. Let G∅ be the completed trivial σ-algebra on Ω. For i ∈ I, we consider the σ-algebra Gi on Ωi

defined inductively by

Gi := σ(Gi−,Hi−(ρi−)) ∩ Ωi .

Finally, we introduce the filtration that stores all the information of the ancestors up to calendar

time t ∈ R+. Let Ai = (Ai(t))t∈R+ on Ωi be

Ai(t) := σ(Gi,Hi(t)), for t ∈ R+, i ∈ I .

We observe that Bi and Zi are Ai-adapted for i ∈ I. We endow Ω with the σ-algebra F generated
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by Gi for i ∈ I.
Finally, we consider the filtration F = {Ft}t∈R+ generated by all the particles alive, with respect

to the calendar time t ∈ R+

Ft := σ (Ai(t− Si) : i ∈ Vt) .

Stopping lines A stopping line is a collection of maps (τi, i ∈ I) such that

(i) τi : Ωi → R+ is a Ai-stopping time for all i ∈ I,

(ii) the random set Lτ , defined by

Lτ (ω) =
{
i ∈ π0(ω) : 0 ≤ τi(ω) < ρi(ω)

}
, ω ∈ Ω ,

satisfies the so-called line property, i.e.,

j ≺ i and i ∈ Lτ ⇒ j /∈ Lτ for i, j ∈ I .

This last property tells that the set Lτ cannot select two particles if one is the ancestor of the

other.

We denote the set of stopping lines SL. For τ ∈ SL, we define the set Dτ as

Dτ := {i ∈ I : ∃j ∈ I , j ≺ i , j ∈ Lτ} ,

which corresponds to the set of strict descendants of the line Lτ . As for stopping times on the real

line, the σ-algebra Fτ related to a stopping line τ is defined as

Fτ := σ
(
{i /∈ Dτ} ∩ Ai(τi) , i ∈ I

)
.

With respect to the filtration F, we see that Ft corresponds to the filtration generated by the

stopping line τ t

τ t := t− Si, if i ∈ Vt,

τ t := ρi, else.

Moreover, we have Lτ t = Vt.

Probability law and branching property We turn to the definition of the probability

measure P on (Ω,F). We follow the construction of [22] for Galton Watson Processes and extend

to Brownian branching processes as done in [10]. Consider the auxiliary space

Ω∗ :=
(
C0(R+,Rm)× R+ × N

)I
,

endowed with the σ-algebra

F∗ =
(
B(C0(R+,Rm))⊗ B(R+))

⊗N
)⊗I

.
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Then, define on (Ω∗,F∗) the probability measure P∗ by

P∗ =
(
P0 ⊗ E(α)⊗

∑
n∈N

pnδ{n}

)⊗I
,

where P0 stands for the Wiener measure on C0(R+,Rm), E(α) is the exponential law with parameter

α, and pn, with n ∈ N, is such that pn ∈ [0, 1], for n ∈ N, and
∑

n∈N pn = 1. For i ∈ I, define on

Ω∗ the projections ν∗i , B
∗
i and ρ∗i as follows

B∗
i (ω

∗) := ω∗,1
i ∈ C0(R+,Rm) ,

ρ∗i (ω
∗) := ω∗,2

i ∈ R+ ,

ν∗i (ω
∗) := ω∗,3

i ∈ N ,

for ω∗ =
(
ω∗,1
i , ω∗,2

i , ω∗,3
i

)
i∈I ∈ Ω∗.

Let Φ : Ω∗ → Ω be the map such that Φ(ω∗) is the tree of Ω starting from B∅(ω
∗), for

ω∗ ∈ Ω∗, and each node i ∈ I has ν∗i (ω
∗) offspring with B∗

i0, . . . , B
∗
i(ν∗i (ω

∗)−1) trajectories and

ρ∗i0, . . . , ρ
∗
i(ν∗i (ω

∗)−1) respective extinction times. We endow (Ω,F) with the probability measure P,
which is defined as the image measure of P∗ by Φ.

We have the following result on the laws of Bi and ρi for i ∈ I.

Proposition 2.1. Given Ωi, νi, Bj and ρj, j ⪯ i are independent and follow respectively the laws∑
n pnδ{n}, P0 and E(α) for any i ∈ I.

Proof. Fix i = i1 . . . in ∈ I with i1, . . . , in ∈ N, Aj × Bj ∈ B(C0(R+,Rm)) × B(R+) for j ⪯ i and

k ∈ N. We then have

P
(
(Bj , ρj) ∈ Aj ×Bj , j ⪯ i , νi = k | Ωi

)
=

P
(
(Bj , ρj) ∈ Aj ×Bj , j ⪯ i, νi = k, ν∅ ≥ i1 + 1, . . . , νi1...in−1 ≥ in + 1

)
P
(
ν∅ ≥ i1 + 1, . . . , νi1...in−1 ≥ in + 1

) =

P∗((B∗
j , ρ

∗
j ) ∈ Aj ×Bj , j ⪯ i, ν∗i = k, ν∗∅ ≥ i1 + 1, . . . , ν∗i1...in−1

≥ in + 1
)

P
(
ν∗∅ ≥ i1 + 1, . . . , ν∗i1...in−1

≥ in + 1
) =

pk
∏
j⪯i

P0(Aj)

∫
Bj

αe−αudu ,

where the last equality comes from the definition of P∗.

Branching diffusion processes We can now define the object of diffusion processes on trees.

Let b : Rd → Rd and σ : Rd → Rd×m be measurable functions and x ∈ Rd a starting point. Let

X∅ be defined on Ω by

Xx
∅(0) = x (2.5)

dXx
∅(s) = b(Xx

∅(s))ds+ σ(Xx
∅(s))dB∅(s) , s ≥ 0 , (2.6)
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and Xx
i , i ∈ I \ {∅}, defined on Ωi by

Xx
i (0) = Xx

i−(ρi−) (2.7)

dXx
i (s) = b(Xx

i (s))ds+ σ(Xx
i (s))dBi(s) , s ≥ 0 . (2.8)

The branching diffusion process starting from x is a map Xx : Ω → Ω such that

π0
(
Xx(ω)

)
= π0(ω) = ω0

and

ρi ◦Xx(ω) = ρi(ω) ,

Bi ◦Xx(ω) = Xx
i (ω) ,

for i ∈ I and ω ∈ Ωi.

We make the following assumptions on the coefficients b and σ and on the law p = (pk)k≥0.

Assumption A1. (i) The functions b and σ are Lipschitz continuous, i.e., there exists a constant

L > 0 such that

|b(x)− b(x′)|+ |σ(x)− σ(x′)| ≤ L|x− x′|, (2.9)

for all x, x′ ∈ Rd.

(ii) The coefficients (pk)k≥0 satisfy

M :=
∑
k≥0

kpk < +∞ .

We recall that the generation function g is given by (2.2).

Proposition 2.2. Suppose that Assumption A1 holds.

(i) There exists a unique process (Xx
i )i∈I solution to (2.5)-(2.6)-(2.7)-(2.8).

(ii) For p ≥ 1, there exists two constants αp > 0 and Cp > 0 such that

E

[
sup

s∈[0,ρi]
|Xx

i (s)|2p
∣∣∣∣∣Ωi

]
≤

g(i)+1∑
k=1

(Cp)
k

(1 + |x|2p
)
, (2.10)

E

[
sup

s∈[0,ρi]
|Xx

i (s)−Xx′
i (s)|2p

∣∣∣∣∣Ωi

]
≤ (Cp)

g(i)+1|x− x′|2p , (2.11)

for x, x′ ∈ Rd, i ∈ I, and α ≥ αp.

Proof. (i) Since Bi follows P0 given Ωi, Assumption A1(i) gives the existence and uniqueness of a

process Xi defined on Ωi satisfying (2.7)-(2.8) for all i ∈ I (see, e.g., [18, Theorem 2.5.7]). This

ensures the good definition of the map Xx.

(ii) We prove (2.10)-(2.11) by induction on the generation. Fix x, x′ ∈ Rd. From [18, Corollary

10, Section 5, Chapter 2] and [18, Theorem 9, Section 5, Chapter 2], we have that there exists a
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constant C̄p > 0, which depends only on q and L from the growth condition consequence of (2.9),

such that

E

[
sup
s∈[0,t]

∣∣Xx
∅(s)

∣∣2p] ≤ C̄pt
p−1eC̄pt

(
1 + |x|2p

)
,

E

[
sup
s∈[0,t]

∣∣∣Xx
∅(s)−Xx′

∅ (s)
∣∣∣2p] ≤ C̄pe

C̄pt
(∣∣x− x′

∣∣2p) ,

for t ≥ 0. Since B∅ and ρ∅ are independent and ρ∅ is distributed as an exponential random

variable with parameter α, we have that

E

[
sup

s∈[0,ρ∅]
|Xx

∅(s)|2p
]

≤ C̄p

∫ ∞

0
tp−1eC̄ptαe−αtdt

(
1 + |x|2p

)
,

E

[
sup

s∈[0,ρ∅]
|Xx

∅(s)−Xx′
∅ (s)|2p

]
≤ C̄p

∫ ∞

0
eC̄ptαe−αtdt

∣∣x− x′
∣∣2p .

Therefore, define αp := C̄p + δ for δ > 0, from comparing the previous expression with the gamma

distribution with parameters p and δ, we get (2.10)-(2.11), with Cp :=
αC̄p

(α−C̄p)q
Γ(q) for α > αp.

Therefore, the property holds for the label ∅.

Suppose that (2.10)-(2.11) hold for all labels up to generation n − 1 with n ≥ 1. Fix i ∈ I
with g(i) = n. We notice that, given Ωi, the process

(
Xx

i (s)
)
s≥0

(resp.
(
Xx′

i (s)
)
s≥0

) is a diffusion

process starting from Xx
i−(ρi−) (resp. X

x
i−(ρi−)) and driven by Bi. From Proposition 2.1 Xx′

i−(ρi−)

(resp. Xx′
i−(ρi−)), Bi and ρi are independent. We can therefore apply the arguments used for the

label ∅ and get

E
[

sup
s∈[0,ρi]

∣∣Xx
i (s)

∣∣2p∣∣∣Ωi

]
≤ Cp

(
1 + E

[∣∣Xx
i−(ρi−)

∣∣2p∣∣∣Ωi

])
,

E

[
sup

s∈[0,ρi]
|Xx

i (s)−Xx′
i (s)|2p

∣∣∣∣∣Ωi

]
≤ CpE

[
|Xx

i−(ρi−)−Xx′
i−(ρi−)|2p

∣∣∣∣∣Ωi

]
.

Using the identity Ωi = Ωi− ∩ {νi− ≥ in}, together with Proposition 2.1, we obtain

E
[∣∣Xx

i−(ρi−)
∣∣2p∣∣∣Ωi

]
= E

[∣∣Xx
i−(ρi−)

∣∣2p∣∣∣Ωi−

]
,

E

[
|Xx

i−(ρi−)−Xx′
i−(ρi−)|2p

∣∣∣∣∣Ωi

]
= E

[
|Xx

i−(ρi−)−Xx′
i−(ρi−)|2p

∣∣∣∣∣Ωi−

]
.

Finally, combining this with the induction assumption, we entail the result.

We shall assume in the sequel that α > α4. We now study the law of the shifted diffusion trees.

The following result provides a conditional independence property also called branching property.

Theorem 2.1 (Branching property). For a stopping line τ = (τi)i∈I , given Fτ , the shifted diffusion

trees Ti,τi ◦Xx, i ∈ Lτ , are independent and follow the law of a diffusion tree starting from Xx
i (τi).
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Moreover, we have

E

[∏
i∈Lτ

fi(Ti,τi ◦Xx)

∣∣∣∣∣Fτ

]
=

∏
i∈Lτ

E [fi(X
xi)]

∣∣∣
xi=Xx

i (τi)
, (2.12)

for any family (fi)i∈I of non-negative F-measurable functions.

Proof. Let (X∗x
i )i∈I be the process such that X∗x

∅ is defined on Ω∗ by

X∗x
∅ (0) = x , (2.13)

dX∗x
i (s) = b(X∗x

i (s))ds+ σ(X∗x
i (s))dB∗

i (s) , s ≥ 0 , (2.14)

and X∗x
i , i ∈ I \ {∅}, is defined on Ω∗ by

X∗x
i (0) = X∗x

i−(ρ
∗
i−) , (2.15)

dX∗x
i (s) = b(X∗x

i (s))ds+ σ(X∗x
i (s))dB∗

i (s) , s ≥ 0 . (2.16)

We have Xx
(
Φ(ω∗)

)
= Φ

(
X∗x

i (ω∗)
)
for all ω∗ ∈ Ω∗ as P = P∗ ◦ Φ−1. Applying [27, Theorem

10.4], Xx
i can be written as

Xx
i (s) = Ψ(Xx

i−(ρi−), Bi)(s) , s ≥ 0 ,

for some progressive function Ψ : Rd×C0(R+,Rm) → C0(R+,Rd). Still using [27, Theorem 10.4],

we get that Ψ(X∗x
i−(ρ

∗
i−), B

∗
i ) is also solution to (2.15)-(2.16). We therefore get by an induction

that X∗i = Ψ(X∗x
i−(ρ

∗
i−), B

∗
i ).

For i ∈ I and s ∈ R+, we define the translation map T ∗
i,s : Ω∗ ∩ {ρ∗i ≥ s} → Ω∗ by

B∗
∅
(
T ∗
i,s(ω

∗), t
)

= B∗
i

(
ω∗, t+ s

)
−B∗

i

(
ω∗, s

)
, (2.17)

B∗
j

(
T ∗
i,s(ω

∗), t
)

= B∗
ij

(
ω∗, t

)
, j ̸= ∅ , (2.18)

ρ∗∅
(
T ∗
i,s(ω

∗)
)

= ρ∗i (ω
∗)− s , (2.19)

ρ∗j
(
T ∗
i,s(ω

∗)
)

= ρ∗ij(ω
∗) , j ̸= ∅ , (2.20)

ν∗j
(
T ∗
i,s(ω

∗)
)

= ν∗ij
(
ω∗) , (2.21)

for j ∈ I and t ∈ R+. Then, the operators Ti,s and T ∗
i,s are related by

Ti,s ◦ Φ = Φ ◦ T ∗
i,s on Φ−1

(
Ωi ∩ {s ≤ ρi}

)
, (2.22)

for i ∈ I and s ∈ R+.

Fix now a stopping line τ = (τi)i∈I and define the map τ∗ = (τ∗i )i∈I by

τ∗i = τi ◦ Φ on Φ−1(Ωi) .

Also take the random set L∗
τ∗ as follows

L∗
τ∗(ω

∗) :=
{
i ∈ π0(Φ(ω∗)) : 0 ≤ τ∗i (ω

∗) < ρ∗i (ω
∗)
}

= Lτ (Φ(ω
∗)) ,
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for ω∗ ∈ Ω∗. In view of (2.17) to (2.21) , the maps T ∗
i,τ∗ ◦X∗x, i ∈ L∗

τ∗ are mutually independent

given F∗
τ∗ = Φ−1(Fτ ) and the law of T ∗

i,τ∗ ◦X∗x given F∗
τ∗ is given by

L(T ∗
i,τ∗ ◦X∗x|F∗

τ∗) = L(X∗xi)
∣∣
xi=X∗x

τ∗
i

.

Since L∗
τ∗ ∈ F∗

τ∗ , we have

E∗

[∏
i∈B

fi(T
∗
i,τ∗ ◦X∗x)

∣∣∣F∗
τ∗

]
=

∏
i∈B

E∗ [fi(X
∗xi
i )]

∣∣∣
xi=X∗x

i (τ∗i )

on {B ⊂ L∗
τ∗} for any finite subset B of I. Using (2.22), we get

E

[∏
i∈B

fi(Ti,τ ◦Xx)
∣∣∣Fτ

]
=

∏
i∈B

E [fi(X
xi
i )]

∣∣∣
xi=Xx

i (τi)

on {B ⊂ Lτ} for any finite subset B of I. Since Lτ is Fτ -measurable, we get the result.

3 The optimal stopping problem

Prior to delving into the optimal stopping problem, we consider a modified version of the preceding

scenario. Specifically, akin to the standard context, we incorporate an actualization component.

This discount is applied to each branch, aligning with the type of cost function observed in [11]

within the context of the optimal control setting. This augmentation involves the introduction of

an extra temporal dimension into the previously introduced framework.

Let us now extend the dimension of the problem to Rd+1 instead of Rd. We consider elements

of this space to be denoted as x̃ = ( xy ), with x ∈ Rd and y ∈ R. We define now each particle

X̃ x̃
i =

(
Xx

i

Y y
i

)
to satisfy (2.5)-(2.8), with respect to

(
b̃, σ̃
)
defined as follows

b̃(x̃) =
(

b(x)
1

)
, σ̃(x̃) =

(
σ(x)
0

)
,

with b and σ satisfying (2.9). It is clear that under these assumptions, we have that Y y
i (s) = Si+s.

Fix now the functions gi : Rd → R+ for i ∈ I satisfying the following assumption.

Assumption A2. (i) The functions gi, for i ∈ I, are non-negative and vanish uniformly in x

as i goes to ∞, i.e.,

lim
|i|→+∞

sup
x∈Rd

gi(x) = 0 . (3.23)

(ii) The functions gi, for i ∈ I, are Lipschitz continuous uniformly in i ∈ I, i.e., there exists a

constant L > 0 such that

|gi(x)− gi(x
′)| ≤ L|x− x′| , (3.24)

for all i ∈ I and x, x′ ∈ Rd.
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Remark 3.1. The initial assumption captures a degradation in reward as we extend farther from

the parent particle, considering both the generation and the number of offspring. This setup enables

the formulation of a system of differential equations indexed on a tree, similar to the approach in

[17]. This kind of assumption can be also seen in biological applications like [20, 21], where repro-

duction is associated with the transmission of parasites from mother to daughter cells. Consider a

binary division scenario, i.e., p0, p2 ∈ (0, 1), and p0 + p2 = 1. The parasites’ partitioning kernel

at division can be modeled in two way: either by a discontinuation of the starting condition (2.7)

by a factor θ taking values in [0, 1], as in [20, 21], or by considering a discontinuity of the reward

function from mother to daughter.

In particular, set this discount from parent to child to be deterministic and, for example, equal

to 1
2 . If ḡ ∈ C0(Rd;R+) represents the infectiousness rate for the cell labeled ∅, we define gi, for

i ∈ I, as

gi(x) =
1

2
gi−(x) =

(
1

2

)g(i)

ḡ(x) .

This different point of view could correspond to a deterministic parasites’ partitioning kernel at

division.

Fix now a constant γ > 0. For the label ∅, we define the reward function J∅ by

J∅(x, τ) := E

∏
j∈Lτ

e−γY 0
j (τj)gj

(
Xx

j (τj)
) = E

∏
j∈Lτ

e−γ(Sj+τj)gj
(
Xx

j (τj)
) ,

for x ∈ Rd and τ ∈ SL. Consequently, using the symmetry highlighted in Theorem 2.1, we define

the reward function, starting at i ∈ I, as follows

Ji(x, τ) := E

∏
j∈Lτ

e−γY 0
j (τj)gij

(
Xx

j (τj)
) = E

∏
j∈Lτ

e−γ(Sj+τj)gij
(
Xx

j (τj)
) , (3.25)

for i ∈ I, x ∈ Rd, and τ ∈ SL. Let vi : [0, T ]× Rd → R be the following value function

vi(x) = sup
τ∈SL

Ji(x, τ) , (3.26)

for i ∈ I and x ∈ Rd. Our goal is to provide an analytic characterization of the family of functions

(vi)i∈I . We first state the basic properties of this family.

Proposition 3.3. Suppose that Assumptions A1 and A2 hold. There exist γ > 0 such that for any

γ ≥ γ, we have the following.

(i) The functions vi are well defined, nonnegative and there exists p ≥ 1 and a constant C > 0 such

that

0 ≤ vi(x) ≤ C
(
1 + |x|p

)
, for i ∈ I, x ∈ Rd . (3.27)
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(ii) There exists a constant L̄ > 0 such that

|vi(x)− vi(x
′)| ≤ L̄|x− x′|

(
1 + |x|p + |x′|p

)
, for i ∈ I, x, x′ ∈ Rd. . (3.28)

(iii) The functions vi vanish uniformly in x as i goes to ∞, i.e.,

lim
|i|→+∞

sup
x∈Rd

vi(x) = 0. (3.29)

Proof. We suppose i = ∅. The general case for i ∈ I is proven by renaming the functions gj with

gij for any j ∈ I.
(i) Fix x ∈ Rd and a stopping line τ . Let N be an integer such that

sup
x∈Rd

gi(x) ≤ 1

2
, (3.30)

for |i| ≥ N . Then, we have

E

[∏
i∈Lτ

e−γ(Si+τi)gi
(
Xx

i (τi)
)]

≤ E

 ∏
i∈Lτ ,|i|≤N

e−γ(Si+τi)gi
(
Xx

i (τi)
) .

We notice that

#{i ∈ Lτ , |i| ≤ N} ≤ #{i ∈ I, |i| ≤ N} := N̄ < ∞ , (3.31)

where # stands for the cardinality of the set. Therefore, using the inequality

p∏
i=1

ai ≤
p∑

i=1

api , for p ∈ N \ {0} , a1, . . . , ap ∈ R+ , (3.32)

we get

E

[∏
i∈Lτ

e−γ(Si+τi)gi
(
Xx

i (τi)
)]

≤
∑

i∈I,|i|≤N

E
[∣∣gi(Xx

i (τi)
)∣∣N̄ ∣∣Ωi

]
P(Ωi) .

Using Assumption A2 (ii), we get a constant C such that

E

[∏
i∈Lτ

gi
(
Xx

i (τi)
)]

≤ C
∑

i∈I,|i|≤N

(
1 + E

[∣∣Xx
i (τi)

∣∣N̄ ∣∣Ωi

] )
P(Ωi) .

From (2.10), there exists a constant C ′ such that

E

[∏
i∈Lτ

e−γ(Si+τi)gi
(
Xx

i (τi)
)]

≤ C ′
(
1 + |x|N̄

)
,

for all x ∈ Rd. Therefore, J∅(x, τ) is well defined for any x ∈ Rd and τ ∈ SL and we get (3.27)

with p = N̄ .
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(ii) Fix x, x′ ∈ Rd and a stopping line τ . We have

∣∣J∅(x, τ)− J∅(x
′, τ)

∣∣ ≤ E

[∣∣∣∣∣∏
i∈Lτ

e−γ(Si+τi)gi (X
x
i (τi))−

∏
i∈Lτ

e−γ(Si+τi)gi

(
Xx′

i (τi)
)∣∣∣∣∣
]

.

Consider |τ | = sup{|i| : i ∈ Lτ}. From Assumption A2 (i), we have

J∅(x, τ) = J∅(x
′, τ) = 0 on {|τ | = +∞} .

We now work on {|τ | < +∞}. Using the inequality∣∣∣∣∣
p∏

i=1

ai −
p∏

i=1

bi

∣∣∣∣∣ ≤
p∑

i=1

|ai − bi|
i−1∏
j=1

aj

p∏
j=i+1

bj

≤
p∑

i=1

|ai − bi|
p∏

j=1
j ̸=i

aj ∨ bj ,

for p ∈ N \ {0} and a1, b1, . . . , ap, bp ∈ R+, we have that∣∣∣∣∣∏
i∈Lτ

e−γ(Si+τi)gi (X
x
i (τi))−

∏
i∈Lτ

e−γ(Si+τi)gi
(
Xx′

i (τi)
)∣∣∣∣∣

≤
∑
i∈Lτ

 ∏
j∈Lτ ,

j ̸=i,|j|≤N

e−γ(Sj+τj)
(
gi(X

x
j (τj)) ∨ gi(X

x′
j (τj))

) e−γ(Si+τi)
∣∣∣gi(Xx

i (τi)
)
− gi(X

x′
i (τi))

∣∣∣ ,
with N as in (3.30).

Taking expectation in the previous equation and applying Cauchy-Schwarz inequality, we get

∣∣J∅(x, τ)− J∅(x
′, τ)

∣∣ ≤
∑
i∈I

E

 ∏
j∈Lτ ,

j ̸=i,|j|≤N

e−2γ(Sj+τj)

(∣∣gi(Xx
j (τj)

)∣∣2 ∨ ∣∣∣gi(Xx′
j (τj)

)∣∣∣2)

1/2

E
[
e−2γ(Si+τi)

∣∣∣gi (Xx
i (τi))− gi

(
Xx′

i (τi)
)∣∣∣2 1i∈Lτ

]1/2
.

Let C denote a positive constant which may change from line to line in the next computations.
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Using (3.32) we have

E

 ∏
j∈Lτ ,

j ̸=i,|j|≤N

e−2γ(Sj+τj)

(∣∣gi(Xx
j (τj)

)∣∣2 ∨ ∣∣∣gi(Xx′
j (τj)

)∣∣∣2)
 ≤

E

 ∑
j∈Lτ ,

j ̸=i,|j|≤N

e−2γ(Sj+τj)N̄

(∣∣gi(Xx
j (τj)

)∣∣2N̄ +
∣∣∣gi(Xx′

j (τj)
)∣∣∣2N̄)

 ≤ C(1 + |x|2N̄ + |x′|2N̄ ) ,

where the last inequality comes from Assumption A2 (ii) and (2.10). We therefore get

∣∣J∅(x, τ)− J∅(x
′, τ)

∣∣ ≤ C
(
1 + |x|N̄ + |x′|N̄

)∑
i∈I

E
[
e−2γ(Si+τi)

∣∣∣gi(Xx
i (τi)

)
− gi

(
Xx′

i (τi)
)∣∣∣2 1i∈Lτ

]1/2
.

Therefore, we obtain (3.28) if we prove that there exists γ such

E

[∑
i∈Lτ

e−2γ(Si+τi)
∣∣∣gi(Xx

i (τi)
)
− gi

(
Xx′

i (τi)
)∣∣∣2] ≤ C|x− x′|2 . (3.33)

for any γ ≥ γ and τ ∈ SL.
Using (3.24), the l.h.s. in (3.33) can be written as

E

[∑
i∈Lτ

e−2γ(Si+τi)
∣∣∣gi(Xx

i (τi)
)
− gi

(
Xx′

i (τi)
)∣∣∣2]

≤ C
∑
i∈I

E
[
e−2γ(Si+τi)

∣∣∣Xx
i (τi)−Xx′

i (τi)
∣∣∣2 1i∈Lτ

]

≤ C
∑
i∈I

E
[
e−4γSi

∣∣∣∣Ωi

]1/2
E
[∣∣∣Xx

i (τi)−Xx′
i (τi)

∣∣∣4 ∣∣∣∣Ωi

]1/2
P (Ωi) ,

where, in the last inequality, we applied again Cauchy-Schwarz inequality and used {i ∈ Lτ} ⊆ Ωi.

For i = i1 · · · in, we have that

P(Ωi) = P
(
ν∅ ≥ i1, . . . , νi1···in−1 ≥ in

)
=

∑
k≥i1

pk

 · · ·

∑
k≥in

pk

 = p̄i1 · · · p̄in ,

with p̄ℓ :=
∑

k≥ℓ pk for ℓ ≥ 0. Moreover, since Si is the sum of n independent exponential random

variables with parameter α, Si is gamma-distributed with shape n and scale α. This means that

its exponential moment is given by

E
[
e−4γSi

∣∣∣∣Ωi

]
=

αn

(α+ 4γ)n
.
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Combining these two results with (2.11) for p = 4, we get for a constant C > 0

E

[∑
i∈Lτ

e−2γ(Si+τi)
∣∣∣gi(Xx

i (τi)
)
− gi

(
Xx′

i (τi)
)∣∣∣2]

≤ C
∑
n≥0

αn/2

(α+ 4γ)n/2

∑
i1≥0

p̄i1

 · · ·

∑
in≥0

p̄in

C(n+1)/2|x− x′|2

≤ C

∑
n≥0

αn/2MnCn/2

(α+ 4γ)n/2

 |x− x′|2 .

Therefore, for γ = α|M2C4−1|
4 + δ for δ > 0, we get (3.33) and, a fortiori, (3.28).

(iii) The condition (3.29) is a direct consequence of Assumption (A2).

We shall assume in the sequel that γ > γ and we denote βi
s = e−γ(Si+s) for s ≥ 0 and i ∈ I.

4 Dynamic programming principle

In this section, we aim at showing the dynamic programming principle for the previously introduced

optimization problem. To attain this objective, we will leverage the established regularity of the

value function as proved in Proposition 3.3 and approximate the value functions using ε-optimal

stopping lines. This technique is widely employed in the stochastic control literature (see, e.g.,

[11, 5]) when minimal regularity conditions of the value function are known. It serves as an

alternative approach, circumventing the need for measurable selection results, which can often be

intricate and complex.

Theorem 4.2. Under Assumptions A1, A2, we have

vi(x) = sup
τ∈SL

E

 ∏
j∈Lθ\Dτ

(
βj
θj
vij
(
Xx

j (θj)
))1{θj≤τj}

∏
j∈Lτ\Dθ

(
βj
τjgij

(
Xx

j (τj)
))1{τj<θj}

 ,(4.34)

for any x ∈ Rd and θ ∈ SL.

Proof. Without loss of generality, we can suppose i = ∅. Fix a stopping line θ and denote v̄(x) on

the r.h.s. of (4.34). We first show that v∅(x) ≤ v̄(x). Fix τ ∈ SL. The idea to follow is to divide

the set Lτ between the particles that have already been stopped when looking at Lθ and the ones

that have not yet been stopped. It is clear that

Lτ = (Lτ \ (Dθ ∪ Lθ)) ∪ (Lτ ∩ (Lθ ∪Dθ)) .

Separating the stopping line τ between the branches that are stopped before and after θ, we get

E

[∏
i∈Lτ

βi
τigi (X

x
i (τi))

]
= E

 ∏
i∈Lτ\(Dθ∪Lθ)

βi
τigi (X

x
i (τi))

∏
i∈Lτ∩(Lθ∪Dθ)

βi
τigi (X

x
i (τi))

 .(4.35)
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Taking the conditional expectation given Fθ, we get

E

[∏
i∈Lτ

βi
τigi (X

x
i (τi))

]
= E

 ∏
i∈Lτ\(Dθ∪Lθ)

βi
τigi (X

x
i (τi))E

 ∏
i∈Lτ∩(Lθ∪Dθ)

βi
τigi (X

x
i (τi))

∣∣∣∣∣Fθ

 .

We have by definitions that τi < θi for i ∈ Lτ \ (Dθ ∪ Lθ). Therefore, we get

E

[∏
i∈Lτ

βi
τigi (X

x
i (τi))

]
= E

 ∏
i∈Lτ\(Dθ∪Lθ)

(
βi
τigi (X

x
i (τi))

)1{θi>τi} E

 ∏
i∈Lτ∩(Lθ∪Dθ)

βi
τigi (X

x
i (τi))

∣∣∣∣∣Fθ

 .

We split the product on Lτ ∩ Lθ as follows∏
i∈Lτ∩Lθ

βi
τigi (X

x
i (τi)) =

∏
i∈Lτ∩Lθ

(
βi
τigi (X

x
i (τi))

)1{θi>τi}
∏

i∈Lτ∩Lθ

(
βi
τigi (X

x
i (τi))

)1{θi≤τi} .

This gives

E

[∏
i∈Lτ

βi
τigi (X

x
i (τi))

]
=

E

 ∏
i∈Lτ\Dθ

(
βi
τigi (X

x
i (τi))

)1{θi>τi} E

 ∏
i∈Lτ∩Lθ

(
βi
τigi (X

x
i (τi))

)1{θi≤τi}
∏

i∈Lτ∩Dθ

βi
τigi (X

x
i (τi))

∣∣∣∣∣Fθ

 .

Notice that

Lτ ∩Dθ =
⋃

i∈Lθ\Dτ

{j ∈ Lτ : i ≺ j} .

Combining this with Theorem 2.1, we get that (4.35) can be rewritten as

E

[∏
i∈Lτ

βi
τigi
(
Xx

i (τi)
)]

= E

 ∏
i∈Lτ\Dθ

(
βi
τigi (X

x
i (τi))

)1{τi<θi}
∏

i∈Lθ\Dτ

(
βi
θi
Ji

(
Xx

i (θi), τ
i,θi
))1{θi≤τi}

 ,

with τ i,s the stopping line defined on Ω ∩ {τi ≥ s} as

τ i,s∅ := (τi − s)1s≤τi<ρi + (ρi − s)1τi=ρi

and τ i,sj := τij , for j ∈ I \ {∅}. From the definition of the value function v, we get

E

[∏
i∈Lτ

βi
τigi
(
Xx

i (τi)
)]

≤ E

 ∏
i∈Lτ\Dθ

(
βi
τigi (X

x
i (τi))

)1{τi<θi}
∏

i∈Lθ\Dτ

(
βi
θi
vi (X

x
i (θi))

)1{θi≤τi}

 ,

and

v∅(x) ≤ v̄(x) .
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We now turn to the reverse inequality. Fix an open ball B(x, r) for r > 0 . Define the stopping

line θr by

θr∅ = inf
{
s ≥ 0 : Xx

∅(s) /∈ B(x, r)
}
∧ θ∅ ∧ ρ∅,

θri =

{
inf {s ≥ 0 : Xx

i (s) /∈ B(x, r)} ∧ θi ∧ ρi, if θrj = ρj for any j ≺ i,

θri = ρi, else.

With this stopping line, consider the following function

v̄r(x) := sup
τ∈SL

E

 ∏
i∈Lθr\Dτ

(
βi
θri
vi (X

x
i (θ

r
i ))
)1{θr

i
≤τi}

∏
i∈Lτ\Dθr

(
βi
τigi (X

x
i (τi))

)1{τi<θr
i
}

 .

Fix some ε ∈
(
0, 12
)
. By definition, we can find a stopping line τ ε such that

v̄r(x) ≤ E

 ∏
i∈Lθr\Dτε

(
βi
θri
vi(X

x
i (θ

r
i ))
)1{θr

i
≤τε

i
} ∏
i∈Lτε\Dθr

(
βi
τεi
gi(X

x
i (τ

ε
i ))
)1{τε

i
<θr

i
}

+ ε . (4.36)

Consider now a partition {Bn}n of the closure of B(x, r) and a sequence {xn}n such that xn ∈ Bn

for any n ≥ 0. It is clear that we can find τ i,n ∈ SL such that

vi(xn) ≤ Ji(xn, τ
i,n) + ε/3 , (4.37)

for any i ∈ I. Moreover, the proof of (ii) in Proposition 3.3 shows that Ji(·, τ) is a continuous

function for any i ∈ I and any τ ∈ SL, and, from (3.23), have that Ji vanishes for i that tends to

infinity. Combining this with the continuity of the value functions vi for i ∈ I, we have that the

couple (xn, Bn) can be chosen to satisfy the following

max
i∈I

(
|vi(x)− vi(xn)|+ |Ji(x, τ i,n)− Ji(xn, τ

i,n)|
)
≤ ε/3, for x ∈ Bn . (4.38)

Define the following family of random variables τ̂ = {τ̂i(x)}x∈Rd,i∈I by

τ̂iℓ(x) := τ εiℓ ,

for x ∈ Rd and i ∈ Lτε \Dθr such that τ εi < θri and ℓ ∈ I, and

τ̂i(x) := θri +
∑
n≥0

τ i,n∅ 1Bn(x) , for x ∈ Rd ,

τ̂iℓ(x) :=
∑
n≥0

τ i,nℓ 1Bn(x) , for x ∈ Rd, ℓ ∈ I \ {∅} ,

for i ∈ Lθr \Dτε such that θri ≤ τ εi . We observe that (τ̂i)i∈I , defined by

τ̄i := τ̂i(X
x
i (θ

r
i )) , i ∈ I ,
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is a stopping line and, from (4.37) and (4.38), we get

E

 ∏
i∈Lθr\Dτε

(
βi
θri
vi (X

x
i (θ

r
i ))
)1{θr

i
≤τε

i
} ∏
i∈Lτε\Dθr

(
βi
τεi
gi (X

x
i (τ

ε
i ))
)1{τε

i
<θr

i
}

 ≤

E

 ∏
i∈Lθr\Dτ̄

(
βi
θri
[Ji (X

x
i (θ

r
i ), (τ̄iℓ)ℓ∈I) + ε]

)1{θr
i
≤τ̄i}

∏
i∈Lτ̄\Dθr

(
βi
τ̄igi (X

x
i (τ̄i))

)1{τ̄i<θr
i
}

 .

From Assumption A2 (i), there exists N ∈ N such that

sup
x∈Rd

∣∣gi(x)∣∣ ≤ 1

2
,

for i /∈ IN where IN := {j ∈ I : |j| ≤ N}. We then

|Ji(x, τ)| ≤ 1

2
if |i| /∈ IN ,

for any x ∈ Rd and τ ∈ SL, where N̄ = #IN . Moreover, from Proposition 3.3 there exist C > 0

and p ≥ 1 such that

|Ji(x, τ)| ≤ C(1 + |x|p) if i ∈ IN ,
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for any x ∈ Rd and τ ∈ SL. We therefore get from the inclusion–exclusion principle

∏
i∈Lθr

βi
θri
[Ji (X

x
i (θ

r
i ), τ̄i) + ε] ≤

∏
i∈Lθr

βi
θri
Ji (X

x
i (θ

r
i ), τ̄i) +

∑
A⊊Lθr

(∏
i∈A

βi
θri
Ji (X

x
i (θ

r
i ), τ̄i)

)
ε#(Lθr\A)

≤
∏

i∈Lθr

βi
θri
Ji (X

x
i (θ

r
i ), τ̄i)

+
∑

A⊂Lθr∩IN ,
B⊂Lθr∩Ic

N , A∪B ̸=Lθr

∏
i∈A

(1 + |Xx
i (θ

r
i )|p)C#A

(
1

2

)#B

ε#Lθr\(A∪B)

≤
∏

i∈Lθr

βi
θri
Ji (X

x
i (θ

r
i ), τ̄i)

+
∏
i∈IN

(1 + |Xx
i (θ

r
i )|p)

((
C + ε)#Lθr∩IN

(
1

2
+ ε

)#Lθr∩Ic
N

−C#Lθr∩IN
(
1

2

)#Lθr∩Ic
N

)
≤

∏
i∈Lθr

βi
θri
Ji (X

x
i (θ

r
i ), τ̄i)

+
∏
i∈IN

(1 + |Xx
i (θ

r
i )|p)

(
(C + ε)#Lθr∩IN

((
1

2
+ ε

)#Lθr∩Ic
N

−
(
1

2

)#Lθr∩Ic
N

)

+

(
1

2

)#Lθr∩Ic
N (

(C + ε)#Lθr∩IN − C#Lθr∩IN
))

.

Since ε ∈
(
0, 12
)
and #IN = N̄ , we get∏

i∈Lθr

βi
θri

(
Ji (X

x
i (θ

r
i ), τ̄i) + ε

)
≤

∏
i∈Lθr

βi
θri
Ji (X

x
i (θ

r
i ), τ̄i) +

(
(C + 1)N̄ε+ N̄(C + 1)N̄ε

) ∏
i∈IN

(1 + |Xx
i (θ

r
i )|p) .

This means that the previous computation, together with (4.36), (4.37), and (4.38), implies that

E

 ∏
i∈Lθr

(
βi
θri
vi (X

x
i (θ

r
i ))
)1{θr

i
≤τε

i
} ∏
i∈Lτ

(
βi
τεi
gi (X

x
i (τ

ε
i ))
)1{τε

i
<θr

i
}


≤ E

 ∏
i∈Lθr

(
βi
θri
Ji (X

x
i (θ

r
i ), τ̄i)

)1{θr
i
≤τ̄i}

∏
i∈Lτ̄

(
βi
τ̄igi(X

x
i (τ̄i))

)1{τ̄i<θr
i
}


+
(
(C + 1)N̄ε+ N̄(C + 1)N̄ε

)
E

∏
i∈IN

(1 + |Xx
i (θ

r
i )|p)

 .

Using Theorem 2.1, we obtain

E

 ∏
i∈Lθr

(
βi
θri
Ji (X

x
i (θ

r
i ), τ̄)

)1{θr
i
≤τ̄i}

∏
i∈Lτ̄

(
βi
τ̄igi (X

x
i (τ̄i))

)1{τ̄i<θr
i
}

 = E

[∏
i∈Lτ̄

βi
τ̄igi (X

x
i (τ̄i))

]
.
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From Proposition 2.2 (ii) and the definition of the stopping line θr, there exists a constant still

denoted by C and an integer q such that

E

∏
i∈IN

(1 + |Xx
i (θ

r
i )|p)

 ≤ C(1 + |x|q) ,

for all x ∈ Rd. Therefore, we achieve

E

 ∏
i∈Lθr

(
βi
θri
vi (X

x
i (θ

r
i ))
)1{θr

i
≤τε

i
} ∏
i∈Lτ

(
βi
τεi
gi (X

x
i (τ

ε
i ))
)1{τε

i
<θr

i
}

 ≤

E

[∏
i∈Lτ̄

βi
τ̄igi (X

x
i (τ̄i))

]
+
(
(C + 1)N̄ε+ N̄(C + 1)N̄ε

)
C(1 + |x|q) ,

and

v̄r(x) ≤ v∅(x) + ε+
(
(C + 1)N̄ε+ N̄(C + 1)N̄ε

)
C(1 + |x|q) .

Since ε is arbitrarily chosen in (0, 1/2), we have v̄r(x) ≤ v∅(x). Letting r go to infinity, from

Assumption A2, Proposition 2.2 and (3.27), we deduce that v̄(x) ≤ v∅(x).

5 Dynamic programming equation

The value function associated with an optimal stopping problem is known to be the solution to an

obstacle problem (see, e.g., [29, Theorem 4.5] and [26, Lemma 5.2.2]). We prove in this section a

similar result for our value function. To this purpose, we consider the following operator L

L : Rd × R× Rd × Sd × RN → R(
x, r, p,M, (rℓ)ℓ∈N

)
7→ 1

2
Tr
(
σσ⊤(x)M

)
+ b(x)⊤p+ α

∑
k≥0

pk

k−1∏
ℓ=0

rℓ − (α+ γ)r ,

with Sd being the set of symmetric matrices of dimension d× d. We show in this section that the

problem of stopping lines can be characterized by the following PDE

min
{
−L

(
x, vi(x), Dvi(x), D

2vi(x),
(
viℓ(x)

)
ℓ∈N

)
; vi(x)− gi(x)

}
= 0 , (5.39)

for i ∈ I and x ∈ Rd. To simplify the notation, we write L(i, v)(x) for L
(
x, vi(x), Dvi(x),

D2vi(x),
(
viℓ(x)

)
ℓ∈N

)
.

The previous PDE shows a close connection to the underlying tree structure, having a coupling

between the value function valued in i and in its direct offspring iℓ for ℓ ≥ 0. Furthermore,

when rℓ = r holds for all ℓ ∈ N, the convergence of the operator L is connected with the radius of

convergence of the power series
∑

k≥0 pk|x|k. This consideration leads us to introduce the following
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assumption.

Assumption A3. The series
∑

k≥0 pk|x|k has infinite radius of convergence.

We will prove that the value function (3.26) is a viscosity solution for (5.39). We therefore

introduce a definition of viscosity solution adapted to our framework, as in [17, Definition 4.2].

Definition 5.1. Let u = (ui)i∈I such that ui : Rd → R+ is a continuous function for i ∈ I.
(i) u is a viscosity supersolution to (5.39) if, for (i0, x0) ∈ I × Rd, φi ∈ C2(Rd) for i ∈ I, and
φ̄ ∈ C0(Rd) such that φi is nonnegative for i ∈ I,

sup
i∈I

φi(x) ≤ φ̄(x), for x ∈ Rd , (5.40)

and

0 = (ui0 − φi0) (x0) = min
I×Rd

(u· − φ·) ,

we have

min

{
− L(i0, φ·)(x0) ; φi0(x0)− gi0(x0)

}
≥ 0 .

(ii) u is a viscosity subsolution to (5.39) if, for (i0, x0) ∈ I × Rd, φi ∈ C2(Rd) for i ∈ I, and

φ̄ ∈ C0(Rd) such that φi is nonnegative for i ∈ I, (5.40) is satisfied, and

0 = (ui0 − φi0) (x0) = max
I×Rd

(u· − φ·) ,

we have

min

{
− L(i0, φ·)(x0) ; φi0(x0)− gi0(x0)

}
≤ 0 .

(iii) u is a viscosity solution to (5.39) if it is both a viscosity sub and supersolution to (5.39).

Theorem 5.3. Under Assumptions A1, A2, and A3, the value function v is a viscosity solution

to (5.39).

Proof. We begin by proving the supersolution property. Fix (i0, x0) ∈ I × Rd and let φ ∈ C0(Rd)

and φi ∈ C2(Rd) for i ∈ I be such that

sup
i

|φi| ≤ φ (5.41)

and

0 = (vi0 − φi0) (x0) = min
(i,x)∈I×Rd

(vi − φi) (x) . (5.42)

Without loss of generality, we can assume this minimum to be strict in x once fixed i0.
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Consider, first, the following (trivial) stopping line τ triv

τ triv∅ := 0, and τ trivj := ρj , for j ∈ I\{∅} .

Combining it with (5.42), we get the inequality vi0(x0) = φi0(x0) ≥ gi0(x0).

Consider, now, the following stopping time

θ̄h := inf {t > 0 : Xx0
∅ (t) /∈ B1(x0)} ∧ h ,

where B1(x0) is the unit ball of Rd centred at x0. Fix h > 0 and define the following stopping line

θh by

θh∅ := θ̄h ∧ ρ∅,

θhℓ :=

{
ρℓ if θ̄h < ρ∅

0 else
, for ℓ ∈ N,

θhj := ρj , for j ∈ I\ ({∅} ∪ N) .

This stopping line stops at the exit time θ̄h or at the branching time ρ∅ if it arrives before θ̄h. It

follows from (4.34), applied with the stopping lines θ = θh and τ = θh, that

vi0(x0) ≥ E

[(
β∅
θ̄h
vi0

(
Xx0

∅

(
θ̄h
)))

1θ̄h<ρ∅ +

ν∅−1∏
ℓ=0

(
β∅
ρ∅vi0ℓ

(
Xx0

ℓ (0)
))
1θ̄h≥ρ∅

]
.

From the definition of Xx0
ℓ (0) we get

vi0(x0) ≥ E

[(
β∅
θ̄h
vi0

(
Xx0

∅

(
θ̄h
)))

1θ̄h<ρ∅ +

ν∅−1∏
ℓ=0

(
β∅
ρ∅vi0ℓ (X

x0
∅ (ρ∅))

)
1θ̄h≥ρ∅

]
.

Using (5.42), since the functions vj and φj are positive for j ∈ I, we have

φi0(x0) ≥ E

[(
β∅
θ̄h
φi0

(
Xx0

∅ (θ̄h)
))

1θ̄h<ρ∅ +

ν∅−1∏
ℓ=0

(
β∅
ρ∅−1φi0ℓ (X

x0
∅ (ρ∅))

)
1θ̄h≥ρ∅

]
.

From Proposition 2.1, we get

φi0(x0) ≥ E

[(
β∅
θ̄h
φi0

(
Xx0

∅ (θ̄h)
))

1θ̄h<ρ∅ +
∑
k≥1

pk

k−1∏
ℓ=0

(
β∅
ρ∅φi0ℓ (X

x0
∅ (ρ∅))

)
1θ̄h≥ρ∅

]
(5.43)

= E

[(
β∅
θ̄h∧ρ∅

φi0

(
Xx0

∅ (θ̄h ∧ ρ∅)
))

+
∑
k≥1

pk

(
k−1∏
ℓ=0

β∅
ρ∅φi0ℓ (X

x0
∅ (ρ∅))− β∅

ρ∅φi0 (X
x0
∅ (ρ∅))

)
1θ̄h≥ρ∅

]
.
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Still using Proposition 2.1, we have

φi0(x0) ≥ E

[(
β∅
θ̄h∧ρ∅

φi0

(
Xx0

∅ (θ̄h ∧ ρ∅)
))

+
∑
k≥1

pkE

[∫ θ̄h

0

(
k−1∏
ℓ=0

β∅
s φi0ℓ (X

x0
∅ (s))− β∅

s φi0 (X
x0
∅ (s))

)
αe−αsds

]
.

Applying Ito’s formula and Proposition 2.1, we get

0 ≥ E

[∫ θ̄h∧ρ∅

0
β∅
s

(
1

2
Tr
(
σσ⊤D2φi0

)
+
(
b⊤Dφi0

)
− γφi0

)
(Xx0

∅ (s)) ds

]

+
∑
k≥1

pkE

[∫ θ̄h

0

(
k−1∏
ℓ=0

β∅
s φi0ℓ (X

x0
∅ (s))− β∅

s φi0 (X
x0
∅ (s))

)
αe−αsds

]
. (5.44)

We divide by h > 0 both sides of (5.44) and we get from the mean value theorem and the dominated

convergence theorem that −L (i0, φ·) (x0) ≥ 0.

We turn now to the proof of the subsolution property. Fix (i0, x0) ∈ I×Rd and let φ ∈ C0(Rd)

and φi ∈ C2(Rd) for i ∈ I be such that supi |φi| ≤ φ and

0 = (vi0 − φi0) (x0) = max
(i,x)∈I×Rd

(vi − φi) (x) . (5.45)

Without loss of generality, we suppose that i0 = ∅ and we take the maximum to be strict in x and

that

max
(ℓ,x)∈N×Rd

(vℓ − φℓ) (x) = −δ < 0 . (5.46)

We argue by contradiction and assume that

2η := min

{
− L(∅, φ·)(x0) ; φ∅(x0)− g∅(x0)

}
> 0 .

Since all the functions in the previous inequality are continuous, we may find ε > 0 such that

−L(∅, e−γs(φ· − y))(x) > η , (5.47)

(φ∅ − g∅) (x) > η , (5.48)

for all s, y ∈ [0, ε) and x ∈ Bε(x0), with Bε(x0) the open ball centred at x0 with radius ε. Observe

that, since x0 is a strict maximizer, we have

−ζ = max
∂Bε(x0)

(v∅ − φ∅)(x) < 0 , (5.49)

where ∂Bε(x0) denotes the boundary of Bε(x0). We now show that (5.47), (5.48), and (5.49) lead

25



to a contradiction with (4.34). Define the stopping time θ̄ε by

θ̄ε := inf {t > 0 : (t,Xx0
∅ (t)) /∈ [0, ε)×Bε(x0)} .

As for the supersolution property, we consider the stopping line θε defined by

θε∅ := θ̄ε ∧ ρ∅,

θεℓ :=

{
ρℓ if θ̄ε < ρ∅

0 else
, for ℓ ∈ N,

θεj := ρj , for j ∈ I\ ({∅} ∪ N) .

This stopping line stops at the exit time θ̄ε or at the branching event ρ∅ if it arrives before θ̄ε. We

next have from (5.46) and (5.49) that

v∅(x0)− E

 ∏
j∈Lθε\Dτ

(
βj
θεj
vj

(
Xx0

j (θεj )
))1{θε

j
≤τj}

∏
j∈Lτ\Dθε

(
βj
τjgj

(
Xx0

j (τj)
))1{τj<θε

j
}

 =

φ∅(x0)− E

 ∏
j∈Lθε\Dτ

(
βj
θεj
vj

(
Xx0

j (θεj )
))1{θε

j
≤τj}

∏
j∈Lτ\Dθε

(
βj
τjgj

(
Xx0

j (τj)
))1{τj<θε

j
}

 =

φ∅(x0)− E
[
1{θ̄ε<ρ∅}

(
β∅
θ̄ε
v∅
(
Xx0

∅ (θ̄ε)
))1{θ̄ε≤τ∅} (

β∅
τ∅g∅ (Xx0

∅ (τ∅))
)1{τ∅<θε∅}

]
−E

[
1{θ̄ε≥ρ∅}1{τ∅≥ρ∅}

(
ν∅−1∏
ℓ=0

β∅
ρ∅vℓ (X

x0
∅ (ρ∅))

)]
− E

[
1{θ̄ε≥ρ∅}1{τ∅<ρ∅}β

∅
τ∅g∅ (Xx0

∅ (τ∅))
]

≥

φ∅(x0)− E
[
1{θ̄ε<ρ∅}

(
β∅
θ̄ε

(
φ∅
(
Xx0

∅ (θ̄ε)
)
− ζ
)
1{θ̄ε≤τ∅} + β∅

τ∅g∅ (Xx0
∅ (τ∅))1{τ∅<θε∅}

)]
−E

[
1{θ̄ε≥ρ∅}1{τ∅≥ρ∅}

(
ν∅−1∏
ℓ=0

β∅
ρ∅ (φℓ (X

x0
∅ (ρ∅))− δ)

)]
−E

[
1{θ̄ε≥ρ∅}1{τ∅<ρ∅}β

∅
τ∅g∅

(
Xx

∅(τ∅)
)]

≥

φ∅(x0)− E
[
1{θ̄ε<ρ∅}β

∅
θ̄ε

(
φ∅
(
Xx0

∅ (θ̄ε)
)
− ζ
)
1{θ̄ε≤τ∅}

]
−E

[
1{θ̄ε≥ρ∅}1{τ∅≥ρ∅}

ν∅−1∏
ℓ=0

β∅
ρ∅ (φℓ (X

x0
∅ (ρ∅))− δ)

]
−E

[
1{τ∅<θ̄ε∧ρ∅}β

∅
τ∅g∅ (Xx0

∅ (τ∅))
]

,
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for any τ ∈ SL. Using (5.48), we get

v∅(x)− E

 ∏
j∈Lθε\Dτ

(
βj
θεj
vj

(
Xx0

j (θεj )
))1{θε

j
≤τj}

∏
j∈Lτ\Dθε

(
βj
τjgj

(
Xx0

j (τj)
))1{τj<θε

j
}

 ≥

φ∅(x)− E
[
1{θ̄ε<ρ∅}β

∅
θ̄ε

(
φ∅
(
Xx0

∅ (θ̄ε)
)
− ζ
)
1{θ̄ε≤τ∅}

]
−E

[
1{θ̄ε≥ρ∅}1{τ∅≥ρ∅}

ν∅−1∏
ℓ=0

β∅
ρ∅

(
φℓ (X

x0
∅ (ρ∅))− δ

)]
−E

[
1{τ∅<θ̄ε∧ρ∅}β

∅
τ∅ (φ∅ (Xx0

∅ (τ∅))− η)
]

≥

φ∅(x)− E
[
1{θ̄ε∧τ∅<ρ∅}β

∅
θ̄ε∧τ∅

(
φ∅
(
Xx0

∅ (θ̄ε ∧ τ∅)
)
− ζ ∧ η ∧ δ ∧ ε

)]
−E

[
1{θ̄ε∧τ∅≥ρ∅}

ν∅−1∏
ℓ=0

β∅
ρ∅

(
φℓ (X

x0
∅ (ρ∅))− ζ ∧ η ∧ δ ∧ ε

)]
=

φ∅(x)− E

 ∏
i∈Vθ̄ε∧τ∅∧ρ∅

β∅
θ̄ε∧τ∅∧ρ∅

(
φi (X

x0
∅ (ρ∅))− ζ ∧ η ∧ δ ∧ ε

) ,

with V defined as in (2.4). Applying Ito’s formula we have

φ∅(x0)− E

 ∏
i∈Vθ̄ε∧τ∅∧ρ∅

β∅
θ̄ε∧τ∅∧ρ∅

(
φi (X

x0
∅ (ρ∅))− ζ ∧ η ∧ δ ∧ ε

) =

ζ ∧ η ∧ δ ∧ ε+ E

[∫ θ̄ε∧τ∅∧ρ∅

0
−L
(
∅, β∅

s

(
φ· − ζ ∧ η ∧ δ ∧ ε

))
(Xx0

∅ (s))

]
.

From (5.47) and the definition of θ̄ε, we have

E

[∫ θ̄ε∧τ∅∧ρ∅

0
−L(∅, φ· − ζ ∧ η ∧ δ ∧ ε)(Xx0

∅ (s))

]
≥ 0 .

Therefore,

v∅(x0)− E

 ∏
j∈Lθε\Dτ

(
βj
θεj
vj

(
Xx0

j (θεj )
))1{θε

j
≤τj}

∏
j∈Lτ\Dθε

(
βj
τjgj

(
Xx0

j (τj)
))1{τj<θε

j
}

 ≥

ζ ∧ η ∧ δ ∧ ε ,

for any τ ∈ SL. Since ζ ∧ η ∧ δ ∧ ε > 0, this contradicts (4.34).

We provide a strong comparison principle for the obstacle problem (5.39). The proof of this

result is an extension of the usual comparison principle (see, e.g., [26, 29]) with the use of some

ideas from [11]. We consider an additional assumption and, for the sake of completeness, provide
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the complete proof. We recall that M is the mean of the branching mechanism, and is defined in

Assumption A1(ii).

Assumption A4. (i) We have γ > α(M − 1).

(ii) The functions gi, for i ∈ I, are uniformly bounded, i.e.,

sup
i∈I

sup
x∈Rd

∣∣gi(x)∣∣ < +∞ . (5.50)

Mimicking the proof of point (i) of Proposition 3.3, we have that the value function is bounded as

a consequence of the previous assumption. Therefore, we restrict to prove the following comparison

theorem within the set of bounded viscosity solutions.

Prior to establishing the comparison principle, we present the subsequent preliminary lemma.

We examine the alterations in the PDE (5.39) when a multiplicative penalization is applied to the

viscosity solutions. In particular, take κ > 0, which will be fixed later, and define ϕ : Rd → R as

ϕ(x) = (|x|2 + 1)κ, together with the following operator

L̃ : Rd × R× Rd × Sd × RN → R(
x, r, p,M, (rℓ)ℓ∈N

)
7→ 1

2
Tr
(
σσ⊤(x)M

)
+ b̃(x)⊤p+ α

∑
k≥0

pkϕ
k−1(x)

k−1∏
ℓ=0

rℓ − (α+ γ̃(x))r ,

with

b̃(x) = b(x) +

(
σσ⊤Dϕ

ϕ

)
(x) γ̃(x) = γ −

(
b⊤Dϕ

ϕ

)
(x)− 1

2ϕ(x)
Tr
(
σσ⊤D2ϕ

)
(x) .

Lemma 5.1. Let {ui}i∈I (resp. {vi}i∈I) be a nonnegative continuous viscosity supersolution (resp.

subsolution) to (5.39), satisfying (3.27)-(3.29). Then, the functions {ũi}i∈I (resp. {ṽi}i∈I) defined
by

ũi(x) =
ui(x)

ϕ(x)

(
resp. ṽi(x) =

vi(x)

ϕ(x)

)
, x ∈ Rd ,

are nonnegative lsc (resp. usc) viscosity supersolution (resp. subsolution) to

min
{
−L̃

(
x, ṽi(x), Dṽi(x), D

2ṽi(x),
(
ṽiℓ(x)

)
ℓ∈N

)
; ṽi(x)− g̃i(x)

}
= 0 , (5.51)

with g̃i(x) = gi(x)/ϕ(x), for (i, x) ∈ I × Rd.

Proof. We prove the supersolution case, the subsolution case is proven with the same techniques.

Fix (i0, x0) ∈ I×Rd and some test functions φ̃i ∈ C2(Rd), for i ∈ I, and φ̃ ∈ C0(Rd) satisfying

(5.40) and

0 = (ũi0 − φ̃i0) (x0) = min
I×Rd

(ũ· − φ̃·) .

Therefore, for φi = ϕφ̃i for i ∈ I, we have

0 = (ui0 − φi0) (x0) = min
I×Rd

(u· − φ·) .
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Moreover, the condition (5.40) is satisfied with respect to the function φ = ϕφ̃. Therefore, the

functions (φi)i∈I satisfy (5.39). Dividing this equation by the positive function ϕ and applying the

product rule, we get that the functions (φ̃i)i∈I satisfy (5.51).

Theorem 5.4. Let {ui}i∈I (resp. {vi}i∈I) be a bounded nonnegative continuous viscosity super-

solution (resp. subsolution) to (5.39), satisfying (3.27)-(3.29). Then, under Assumptions A1, A2,

A3 and A4, we have ui ≤ vi for any i ∈ I on Rd.

Proof. From (3.29), there exists N ∈ N such that

sup
x∈Rd

ui(x) ∨ sup
x∈Rd

vi(x) ≤ 1 ,

for i ∈ I such that |i| ≥ N . We proceed in two steps. We first show that ui ≤ vi on Rd for any

i ∈ I such that |i| ≥ N . Then, show this result for |i| < N .

Step 1. Denote by IN the set {i ∈ I : |i| ≥ N}. We now prove that ui ≤ vi on Rd for i ∈ IN .

We assume to the contrary that there exists (z, j) ∈ Rd × IN such that

uj(z)− vj(z) ≥ δ , (5.52)

for some δ > 0. Take ũi = ui/ϕ (resp. ṽi = vi/ϕ) for i ∈ I. Since ui and vi are bounded, we have

lim
(i,x)→∞

(ũi + ṽi)(x) = 0 . (5.53)

This, together with (5.52), (3.29), and the fact that ϕ > 0, implies that there exists (i0, x0) ∈
IN × Rd such that

M̄0+ := sup
(i,x)∈IN×Rd

ũi(x)− ṽi(x) = ũi0(x0)− ṽi0(x0) ≥ δ

ϕ(z)
> 0 . (5.54)

For n ≥ 1, consider the following quantity

M̄n = sup
(i,x,y)∈IN×Rd×Rd

ũi(x)− ṽi(y)−
n

2
|x− y|2 .

From (5.53), there exists (in, xn, yn) such that

M̄n = ũin(xn)− ṽin(yn)−
n

2
|xn − yn|2 .

From the definition of N , taking x = y in the previous supremum, we obtain

0 <
δ

ϕ(z)
≤ M̄0+ ≤ M̄n ≤ 2 . (5.55)

This yields

n

2
|xn − yn|2 ≤ 2 . (5.56)
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From (5.55) and (5.53), we have, up to a sub-sequence, in = i∗, for some i∗ ∈ IN and all n,

and, (xn, yn) → (x∗, y∗) as n → ∞. From (5.56), we have

lim
n→∞

|xn − yn| = 0 and x∗ = y∗ .

Moreover, from (5.55), we obtain

lim
n→∞

n

2
|xn − yn|2 = 0 .

Without loss of generality, we can take the maximization point in (5.54) to be (i∗, x∗), i.e., (i0, x0) =

(i∗, x∗). Since (xn, yn) ∈ Rd×Rd is a maximizer of M̄n, from Assumption A4, we may apply Ishii’s

lemma (see, e.g., [12, Theorem 8.3]) and Lemma 5.1. Therefore, there exist An, Bn ∈ Sd such that

min
{
−L̃

(
xn, ũi0(xn), n(xn − yn), An,

(
ũi0ℓ(xn)

)
ℓ∈N

)
; ũi0(xn)− g̃i0(xn)

}
≤ 0,

min
{
−L̃

(
yn, ṽi0(yn), n(xn − yn), Bn,

(
ṽi0ℓ(yn)

)
ℓ∈N

)
; ṽi0(yn)− g̃i0(yn)

}
≥ 0 ,

and

−3nI2d ≤

(
An 0

0 −Bn

)
≤ 3n

(
Id −Id
−Id Id

)
.

If there exists a subsequence of {xn}n, still denoted {xn}n, such that ũi0(xn)− g̃i0(xn) ≤ 0, we

get

[ũi0(xn)− g̃i0(xn)]− [ṽi0(yn)− g̃i0(yn)] ≤ 0 ,

for any n. This is, however, in contradiction with (5.55), the fact that (xn, yn) → (x0, x0) and the

definition of (i0, x0). Therefore, we must have

−L̃
(
xn, ũi0(xn), n(xn − yn), An,

(
ũi0ℓ(xn)

)
ℓ∈N

)
≤ 0, (5.57)

−L̃
(
yn, ṽi0(yn), n(xn − yn), Bn,

(
ṽi0ℓ(yn)

)
ℓ∈N

)
≥ 0 , (5.58)

for n large enough.

Since i0 ∈ IN , we have

sup
x∈Rd

(ui0ℓ ∨ vi0ℓ) (x) ≤ 1 ,
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for all ℓ ≥ 0. This implies that∣∣∣∣∣∣
∑
k≥0

pkϕ
k−1(x)

k−1∏
ℓ=0

ũi0ℓ(xn)−
∑
k≥0

pkϕ
k−1(x)

k−1∏
ℓ=0

ṽi0ℓ(yn)

∣∣∣∣∣∣
≤
∑
k≥0

pk

k−1∑
ℓ=0

ℓ−1∏
ℓ̄=0

ui0ℓ̄(xn)

 |ũi0ℓ(xn)− ṽi0ℓ(yn)|

 k−1∏
ℓ̄=ℓ+1

vi0ℓ̄(yn)


≤
∑
k≥0

pk

k−1∑
ℓ=0

|ũi0ℓ(xn)− ṽi0ℓ(yn)| ≤ M (ũi0(xn)− ṽi0(yn)) ,

where in the last inequality we used that (xn, yn) is a maximizer of M̄n, and (5.55). Since

Dϕ(x)

ϕ(x)
=

2κx

|x|2 + 1
,

b̃ is locally Lipschitz. Moreover, since

D2ϕ(x)

ϕ(x)
= 4κ(κ− 1)

xx⊤

(|x|2 + 1)2
+ 2κ

Id
|x|2 + 1

,

we get that γ̃ − γ is equal to a bounded function in Rd multiplied by κ. Then, there exists κ small

enough such that

γ̃(x)− α(M − 1) ≥ γ − α(M − 1)

2
> 0 ,

for all x ∈ Rd. This means that, from (5.57)-(5.58), we get

(γ̃(xn)− α(M − 1))ũi0(xn)− (γ̃(yn)− α(M − 1))ṽi0(yn) ≤(
b̃(xn)− b̃(yn)

)⊤
n (xn − yn) +

1

2
Tr
(
σσ⊤(xn)An − σσ⊤(yn)Bn

)
.

Sending n to infinity we obtain

0 ≥ (γ̃(x0)− α(M − 1)) (ũi0(x0)− ṽi0(x0)) .

From Assumption A4 and for κ small enough, the previous equation is in contradiction to (5.52).

Step 2. We now prove that ui ≤ vi on Rd for |i| ≤ N , by a backward induction on |i|. From

Step 1, the result holds for i ∈ I such that |i| ≤ N . Fix q ∈ {0, . . . , N − 1} and suppose that

ui ≤ vi on Rd for |i| = q + 1.

Fix i0 ∈ I such that |i0| = q. As in Step 1, we argue by contradiction and suppose that there

exists z ∈ Rd such that

ui0(z)− vi0(z) ≥ δ , (5.59)

for some δ > 0. Consider ũi and ṽi as before, which still satisfy (5.53) from Assumption A4(ii).
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This assumption also entails that there exists a constant C > 0 such that ũi(x) + ṽi(x) ≤ C for

any i ∈ I, x ∈ Rd. As in (5.55), we get

0 < δϕ(z) ≤ M̄0+ ≤ M̄n ≤ C , (5.60)

with M̄0+ and M̄n defined as in Step 1. This yields

n

2
|xn − yn|2 ≤ C . (5.61)

Proceeding as in Step 1, we get (5.57)-(5.58) for n large enough. Since |i0ℓ| ≥ q + 1, we

have from the inductive hypothesis ui0ℓ ≤ vi0ℓ (therefore ũi0ℓ ≤ ṽi0ℓ) for any ℓ ≥ 0. Combining

(5.57)-(5.58) with the nonnegativity of the functions ũi and ṽi, and the previous inequalities, we

have

(γ̃(xn) + α)ũi0(xn)− (γ̃(yn) + α)ṽi0(yn) ≤(
b̃(xn)− b̃(yn)

)⊤
n (xn − yn) +

1

2
Tr
(
σσ⊤(xn)An − σσ⊤(yn)Bn

)
+

α
∑
k≥0

pk

(
ϕ−(k−1)(xn)

k−1∏
ℓ=0

ũi0ℓ(xn)− ϕ−(k−1)(yn)
k−1∏
ℓ=0

ṽi0ℓ(yn)

)
≤

(
b̃(xn)− b̃(yn)

)⊤
n (xn − yn) +

1

2
Tr
(
σσ⊤(xn)An − σσ⊤(yn)Bn

)
+

α
∑
k≥0

pk

(
ϕ−(k−1)(yn)

k−1∏
ℓ=0

ũi0ℓ(yn)− ϕ−(k−1)(yn)

k−1∏
ℓ=0

ṽi0ℓ(yn)

)
.

Therefore, we get a contradiction to (5.59), as in Step 1, sending n to infinity. The results hold for

i0 and by induction, the results hold for all i ∈ I.

As an immediate consequence of Theorems 5.3 and 5.4, we have the following characterization

of the value function v.

Corollary 5.1. Under Assumptions A1, A2, A3 and A4, v is the unique nonnegative bounded

viscosity solution to (5.39), satisfying (3.29).

References

[1] Vincent Bansaye, Xavier Erny, and Sylvie Méléard. Sharp approximation and hitting times
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[7] René Carmona and François Delarue. Probabilistic theory of mean field games with applica-

tions. II: Mean field games with common noise and master equations, volume 84 of Probability

Theory and Stochastic Modelling. Springer, Cham, 2018.

[8] B. Chauvin. Arbres et processus de Bellman-Harris. Ann. Inst. H. Poincaré Probab. Statist.,
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