Around Van den Bergh’s double brackets for different bimodule structures - Archive ouverte HAL
Article Dans Une Revue Communications in Algebra Année : 2023

Around Van den Bergh’s double brackets for different bimodule structures

Résumé

A double Poisson bracket, in the sense of M. Van den Bergh, is an operation on an associative algebra A which induces a Poisson bracket on each representation space Rep(A, n) in an explicit way. In this note, we study the impact of changing the Leibniz rules underlying a double bracket. This change amounts to make a suitable choice of A-bimodule structure on A circle times A. In the most important cases, we describe how the choice of A-bimodule structure fixes an analogue to Jacobi identity, and we obtain induced Poisson brackets on representation spaces. The present theory also encodes a formalization of the widespread tensor notation used to write Poisson brackets of matrices in mathematical physics.

Dates et versions

hal-04412035 , version 1 (23-01-2024)

Identifiants

Citer

Maxime Fairon, Colin Mcculloch. Around Van den Bergh’s double brackets for different bimodule structures. Communications in Algebra, 2023, 51 (4), pp.1673-1706. ⟨10.1080/00927872.2022.2140349⟩. ⟨hal-04412035⟩
15 Consultations
0 Téléchargements

Altmetric

Partager

More