Double Multiplicative Poisson Vertex Algebras - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2023

Double Multiplicative Poisson Vertex Algebras

Résumé

We develop the theory of double multiplicative Poisson vertex algebras. These structures, defined at the level of associative algebras, are shown to be such that they induce a classical structure of multiplicative Poisson vertex algebra on the corresponding representation spaces. Moreover, we prove that they are in one-to-one correspondence with local lattice double Poisson algebras, a new important class among Van den Bergh’s double Poisson algebras. We derive several classification results, and we exhibit their relation to non-abelian integrable differential-difference equations. A rigorous definition of double multiplicative Poisson vertex algebras in the non-local and rational cases is also provided.

Dates et versions

hal-04411510 , version 1 (23-01-2024)

Identifiants

Citer

Maxime Fairon, Daniele Valeri. Double Multiplicative Poisson Vertex Algebras. International Mathematics Research Notices, 2023, 2023 (17), pp.14991-15072. ⟨10.1093/imrn/rnac245⟩. ⟨hal-04411510⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

More