Calderón Strategies for the Convolution Quadrature Time Domain Electric Field Integral Equation - Archive ouverte HAL
Article Dans Une Revue IEEE Open Journal of Antennas and Propagation Année : 2024

Calderón Strategies for the Convolution Quadrature Time Domain Electric Field Integral Equation

Résumé

In this work, we introduce new integral formulations based on the convolution quadrature method for the time-domain modeling of perfectly electrically conducting scatterers that overcome some of the most critical issues of the standard schemes based on the electric field integral equation (EFIE). The standard time-domain EFIE-based approaches typically yield matrices that become increasingly illconditioned as the time-step or the mesh discretization density increase and suffer from the well-known DC instability. This work presents solutions to these issues that are based both on new Calder´on strategies and quasi-Helmholtz projectors regularizations. In addition, to ensure an efficient computation of the marchingon- in-time, the proposed schemes leverage properties of the Z-transform—involved in the convolution quadrature discretization scheme—when computing the stabilized operators. The two resulting formulations compare favorably with standard, well-established schemes. The properties and practical relevance of these new formulations will be showcased through relevant numerical examples that include canonical geometries and more complex structures.
Fichier principal
Vignette du fichier
Caldern_Strategies_for_the_Convolution_Quadrature_Time_Domain_Electric_Field_Integral_Equation.pdf (4.27 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04405445 , version 1 (06-02-2024)

Licence

Identifiants

Citer

Pierrick Cordel, Alexandre Dély, Adrien Merlini, Francesco Andriulli. Calderón Strategies for the Convolution Quadrature Time Domain Electric Field Integral Equation. IEEE Open Journal of Antennas and Propagation, 2024, 1, pp.1-1. ⟨10.1109/OJAP.2024.3354044⟩. ⟨hal-04405445⟩
49 Consultations
44 Téléchargements

Altmetric

Partager

More