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Senior Member, IEEE AND FRANCESCO P. ANDRIULLI∗,Fellow, IEEE
1Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Turin, Italy

2Microwave Department, IMT Atlantique, 29285 Brest, France

CORRESPONDING AUTHOR: F. P. ANDRIULLI (e-mail: francesco.andriulli@polito.it).

This work was supported by the European Research Council (ERC) through the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 724846 (Project 321) and by the H2020-MSCA-ITN-EID project COMPETE GA No 955476.

ABSTRACT In this work, we introduce new integral formulations based on the convolution quadrature
method for the time-domain modeling of perfectly electrically conducting scatterers that overcome some
of the most critical issues of the standard schemes based on the electric field integral equation (EFIE).
The standard time-domain EFIE-based approaches typically yield matrices that become increasingly ill-
conditioned as the time-step or the mesh discretization density increase and suffer from the well-known DC
instability. This work presents solutions to these issues that are based both on new Calderón strategies and
quasi-Helmholtz projectors regularizations. In addition, to ensure an efficient computation of the marching-
on-in-time, the proposed schemes leverage properties of the Z-transform—involved in the convolution
quadrature discretization scheme—when computing the stabilized operators. The two resulting formulations
compare favorably with standard, well-established schemes. The properties and practical relevance of these
new formulations will be showcased through relevant numerical examples that include canonical geometries
and more complex structures.

INDEX TERMS Boundary element method, Calderón preconditioning, computational electromagnetic,
convolution quadrature method, EFIE, time-domain integral equations

I. INTRODUCTION

T IME domain boundary integral equations (TDIEs) are
widely used in the simulation of transient electromag-

netic fields scattered by perfectly electrically conducting
(PEC) objects [1]–[4]. Like their frequency-domain counter-
parts, the spatial discretization of these equations is often
performed via the boundary element method. The time
discretization, however, can be tackled in different ways. A
popular approach leverages time basis functions either within
a Marching-On-in-Time (MOT) scheme [5]–[7] or within
a Marching-On-In-Order procedure [8]. The convolution
quadrature (CQ) approach [9], [10] is an attractive alternative
to these methods in which only space basis functions are
explicitly defined. The approach has been applied to several
equations in elastodynamics and acoustics [11], [12] and
then in electromagnetics [13]. It provides an efficient time-

stepping scheme with matrices derived from the space-
discretized Laplace domain operators.

Another advantage of the CQ method is the use of
implicit schemes (e.g. Runge Kutta methods [14]–[18]),
which are generally more stable and typically allow for a
better accuracy control of the solution over time [19], [20].
However, the CQ time stepping scheme is solved via a
computationally expensive MOT algorithm. Nowadays, fast
solvers can reach quasi-linear complexity in time and space
[21], [22]. Usually, this fast technology uses iterative solvers,
resulting in an overall computational cost that is proportional
to the number of iterations which is low for well-conditioned
systems. Working with well-conditioned matrices is therefore
essential to reduce the computational cost of the solution
process, in addition to being necessary to obtain accurate
results [23].
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Lamentably, however, the CQ discretized time domain
electric field integral equation (EFIE) is plagued by several
drawbacks. Indeed, the matrices resulting from the dis-
cretization of the EFIE are known to become ill-conditioned
for large time steps or at dense mesh discretizations: the
condition number of the MOT matrices grows quadratically
with the time step and with the inverse of the average mesh
edge length. These two phenomena are the CQ counterparts
of what for standard MOT schemes are known as the large
time step breakdown [24]–[27] and the dense discretization
breakdown (or ℎ-refinement breakdown) [28], [29]. Another
challenge in handling the CQ EFIE is that it involves oper-
ators whose definitions include a time integration. To avoid
dealing with this integral, the time-differentiated counterpart
of this formulation is often used [13], [30], but this differ-
entiation is subject to a source of instability in the form of
spurious linear currents living in the nullspace of the operator
that degrades the solution [28], [31]; this phenomenon is
known as the direct current instability (DC instability).

In this work, we propose new Calderón-preconditioned
and quasi-Helmholtz regularized formulations free from the
limitations mentioned above. The Calderón identities they
rely on are already a well-established preconditioning ap-
proach in both the frequency domain [32] and time domain
discretized by the Galerkin method [28], [29], [33], [34]
that is extended in this work to convolution quadrature
discretizations and complemented with quasi-Helmholtz reg-
ularization. The contribution of this paper is twofold: (i) we
present a first approach to tackle the regularization of the
EFIE operator and to address the DC instability resulting in a
new operator that presents no nullspace on simply connected
geometries, thus stabilizing the solution, and (ii) we build
upon this first regularized form of the EFIE to obtain an
equation that, at the price of a higher number of matrix-
vector products, is stable in the case of multiply connected
geometries.

This article is structured as follows: the time domain for-
mulations of interest are summarized in Section II along with
the convolution quadrature method and the boundary element
method for spatial discretization; in Section III, the new
Calderón and projectors-based preconditioning strategies are
presented; finally, Section IV presents the numerical studies
that confirm the effectiveness of the different approaches
before concluding. Preliminary studies pertaining to this
work were presented in the conference contribution [35].

II. Background and Notations
A. Time Domain Integral Formulations
In this work, we consider the problem of time-domain
scattering by a perfectly electrically conducting object that
resides in free space. The object is illuminated by an elec-
tromagnetic field (𝒆inc, 𝒉inc) (𝒓, 𝑡) which induces a surface
current density 𝒋𝛤 on its boundary 𝛤 that is the solution of
the time-domain EFIE

𝜂0T
(
𝒋𝛤

)
(𝒓, 𝑡) = −𝒏̂ (𝒓) × 𝒆inc (𝒓, 𝑡) . (1)

Here, 𝒏̂ is the outpointing normal to 𝛤 and 𝜂0 is the
characteristic impedance of the background. The electric
field operator T includes the contributions of the vector and
scalar potentials, respectively denoted Ts and Th [30]

T
(
𝒇
)
(𝒓, 𝑡) = − 1

𝑐0

𝜕

𝜕𝑡
Ts

(
𝒇
)
(𝒓, 𝑡) + 𝑐0

∫ 𝑡

−∞
Th

(
𝒇
) (
𝒓, 𝑡′

)
𝑑𝑡′ ,

(2)

Ts
(
𝒇
)
(𝒓, 𝑡) = 𝒏̂ (𝒓) ×

∬
𝒓 ′∈𝛤

(
G𝒓 ∗𝑡 𝒇

)
(𝒓′, 𝑡)𝑑𝑆′ , (3)

Th
(
𝒇
)
(𝒓, 𝑡) = 𝒏̂ (𝒓) × ∇

∬
𝒓 ′∈𝛤

(
G𝒓 ∗𝑡 ∇′ · 𝒇

) (
𝒓′, 𝑡

)
𝑑𝑆′ ,

(4)

where 𝑐0 is the speed of light in the background. The
temporal convolution product ∗𝑡 and the temporal Green
function G are defined as(

𝑓 ∗𝑡 𝑔
)
(𝑡) =

∫ ∞

−∞
𝑓 (𝜏) 𝑔 (𝑡 − 𝜏) 𝑑𝜏 , (5)

G𝒓
(
𝒓′, 𝑡

)
=

𝛿

(
𝑡 − |𝒓−𝒓 ′ |

𝑐0

)
4𝜋 |𝒓 − 𝒓′ | , (6)

with 𝛿 the time Dirac delta.

B. Marching-On-In-Time with Convolution Quadratures
Let 𝛩 be a placeholder for any of the integral operators
previously presented and let 𝒌 (𝒓, 𝑡) be a causal function
(∀𝑡 < 0, 𝒌 (𝒓, 𝑡) = 0). With these notations, most time domain
integral equation take the form

𝛩
(
𝒇c
)
(𝒓, 𝑡) = 𝒌 (𝒓, 𝑡) , (7)

where 𝒇c is the solution to be solved for. The first step of
the Marching-On-in-Time solution scheme with convolution
quadratures is to apply the boundary element method [3],
[36], [37] as spatial discretization. Assuming separability
between the space and time variables, the unknown function
𝒇c is expanded as a linear combination of 𝑁𝑠 spatial basis
functions such that [38]

𝒇c (𝒓, 𝑡) ≈
𝑁𝑠∑︁
𝑛=1

[f𝛤 ]𝑛 (𝑡) 𝒇 src
𝑛 (𝒓) , (8)

where
{
𝒇 src} are the source spatial basis functions and their

associated time coefficients are stored in the vector f𝛤 (𝑡).
Then, the equation (7) is tested by the spatial basis functions{
𝒇 tst

}
leading to the time-dependent matrix system

(θ ∗ f ) (𝑡) = k (𝑡) , (9)

where for 𝑛 and 𝑚 in ⟦1, 𝑁𝑠⟧, we have,

(θ ∗ f )𝑚 (𝑡) =
𝑁𝑠∑︁
𝑛=1

(
θ𝑚,𝑛 ∗𝑡 𝑓𝑛

)
(𝑡) ,[

θ
]
𝑚,𝑛

(𝑡) = ⟨ 𝒇 tst
𝑚 , 𝛩

(
𝛿 𝒇 src

𝑛

)
⟩𝛤 (𝑡) ,[

k𝛤
]
𝑚
(𝑡) = ⟨ 𝒇 tst

𝑚 , 𝒌⟩𝛤 (𝑡) ,

(10)

with
⟨ 𝒇 , 𝒈⟩𝛤 =

∬
𝒓∈𝛤

𝒇 (𝒓) · 𝒈 (𝒓) 𝑑𝑆 . (11)
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The second step is the discretization in time with the con-
volution quadrature method [9], [10], [12]–[14], [38]. First,
the system (9) must be transformed in the Laplace domain
[39] and we denote θL , fL and kL the Laplace transform of
θ, f𝛤 and k𝛤 . The system (9) is then equivalent to

L
{
𝑡 ↦→ (θ ∗ f ) (𝑡)

}
(𝑠) = θL (𝑠) fL (𝑠) = kL (𝑠) , (12)

where 𝑠, a complex number, is the Laplace parameter. Then,
a representation on the Z-domain discretizes the system (12).
The Laplace parameter 𝑠, in the operator θL , is replaced by
the matrix-valued parameter

scq (𝑧) =
1
𝛥𝑡

(
A +
1𝑝b

𝑇

𝑧 − 1

)−1

, (13)

diagonalizable for the considered 𝑧 values, with the following
eigenvalue decomposition scq(𝑧) = Q(𝑧)𝚲(𝑧)Q−1(𝑧). The
elements of the diagonal matrix 𝚲(𝑧) are the eigenvalues
of scq(𝑧) and the columns of Q(𝑧) are their associated
eigenvectors. The time step size is denoted 𝛥𝑡 and the matrix
A and the vectors 1𝑝 , c , b of size 𝑝 are determined by
the implicit scheme used [40]. The discretized Z-domain
operator θZ is defined such that for 𝑘 and 𝑙 in ⟦1, 𝑝⟧ and
for 𝑚 and 𝑛 in ⟦1, 𝑁𝑠⟧[

θZ
]
𝛷𝑚,𝑘 ,𝛷𝑛,𝑙

(𝑧) =
[
Q(𝑧)θ𝚲𝑚,𝑛 (𝑧)Q−1(𝑧)

]
𝑘,𝑙

, (14)

where 𝛷𝛼,𝛽 = 𝑝(𝛼−1)+𝛽 is an appropriate indexing function
and θ𝚲𝑚,𝑛 (𝑧) is a diagonal matrix defined as[

θ𝚲𝑚,𝑛

]
𝑘,𝑘

(𝑧) =
[
θL (𝚲𝑘,𝑘)

]
𝑚,𝑛

(𝑧) . (15)

The vectors fZ and kZ are the Z-domain representation [40]
of the respective time-discretized vectors[

k𝑖
]
𝛷𝑚,𝑘

=
[
k𝛤

]
𝑚

(
𝛥𝑡

(
𝑖 + [c]𝑘

) )
,[

f𝑖
]
𝛷𝑛,𝑘

=
[
f𝛤

]
𝑛

(
𝛥𝑡

(
𝑖 + [c]𝑘

) )
,

(16)

yielding to the following discretization of the system (12)

θZ (𝑧) fZ (𝑧) = kZ (𝑧) . (17)

Finally, the equivalent time discretized system of (9) is
obtained by applying the inverse Z-transform on (17)

Z−1 {
θZ (𝑧)fZ (𝑧)

}
𝑖
= [Zθ∗𝑠 𝒇 ]𝑖 =

𝑖∑︁
𝑗=0
Zθ, 𝑗 𝒇𝑖− 𝑗 = k𝑖 , (18)

where Zθ,𝑖 = Z−1 {
𝑧 → θZ (𝑧)

}
𝑖

are the time domain inter-
action matrices and ∗𝑠 is the sequence convolution product.
The system sequence (18) is rewritten in the following
Marching-On-In-Time that can be solved for f𝑖

Zθ,0f𝑖 = k𝑖 −
𝑖∑︁
𝑗=1
Zθ, 𝑗 f𝑖− 𝑗 . (19)

C. Classic Integral Marching-On-In-Times
In this subsection, the discretization scheme described above
will be applied to the specific case of the EFIE. The Rao-
Wilton-Glisson (RWG) basis functions

{
𝒇

rwg
𝑛

}
𝑁𝑠

[37], [41]
are used to expand the current density as

𝒋𝛤 (𝒓, 𝑡) ≈
𝑁𝑠∑︁
𝑛=1

[j𝛤 ]𝑛 (𝑡) 𝒇 rwg
𝑛 (𝒓) , (20)

where the current coefficients are gathered in an unknown
vector function of time j𝛤 (𝑡). The EFIE is then tested with
rotated RWG basis functions

{
𝒏̂ × 𝒇

rwg
𝑛

}
𝑁𝑠

, leading to the
following Marching-On-In-Time

ZT ,0j𝑖 = −𝜂−1
0 e

inc
𝑖 −

𝑖∑︁
𝑗=1
ZT , 𝑗 j𝑖− 𝑗 , (21)

where the vector sequences j𝑖 and e inc
𝑖

, and the time domain
interaction matrices ZT ,𝑖 are respectively generated by the
convolution quadrature method described in Subsection B of
j𝛤 (𝑡) and the following space-discretized vector and matrix[

e inc
𝛤

]
𝑚
(𝑡) = ⟨𝒏̂ × 𝒇

rwg
𝑚 , 𝒏̂ × 𝒆inc⟩𝛤 (𝑡) , (22)[

T
]
𝑚,𝑛

(𝑡) = ⟨𝒏̂ × 𝒇
rwg
𝑚 ,T

(
𝛿 𝒇

rwg
𝑛

)
⟩𝛤 (𝑡) . (23)

However, the time integral contribution of this operator T
involves an unbounded number of non-vanishing matrices
ZT ,𝑖 (21), leading to a prohibitive quadratic complexity with
the number of time steps [42]. Historically, the time differ-
entiated formulation is preferred because it is not afflicted
by this drawback [13], [30], and leads to the following MOT
[30]

Z ¤T ,0j𝑖 = −𝜂−1
0 ¤e inc

𝑖 −
𝑁conv∑︁
𝑗=1
Z ¤T , 𝑗 j𝑖− 𝑗 , (24)

where ¤e inc
𝑛 and ¤Z𝑛 are respectively the time domain vec-

tors and interaction matrices generated by the convolution
quadrature method described in Subsection B of[

¤e inc
𝛤

]
𝑚
(𝑡) = ⟨𝒏̂ × 𝒇

rwg
𝑚 , 𝒏̂ × 𝜕

𝜕𝑡
𝒆inc⟩𝛤 , (25)[

¤T
]
𝑚,𝑛

(𝑡) = ⟨𝒏̂ × 𝒇
rwg
𝑚 ,

𝜕

𝜕𝑡
T

(
𝛿 𝒇

rwg
𝑛

)
⟩𝛤 . (26)

D. EFIE DC instability
The electric field integral operator suffers from the DC
instability: since for all constant-in-time solenoidal current
𝒋cs we have ∇ · jcs = 0 and 𝜕

𝜕𝑡
𝒋cs = 0, we can conclude that

T
(
𝒋cs

)
= 0 . (27)

Therefore, the EFIE solution is only determined up to
a constant solenoidal current [30]. Its time differentiated
counterpart inherits these drawbacks and amplifies the DC
instability by further adding linear in time solenoidal cur-
rents to the nullspace. This latter deteriorates the late time
simulation in which spurious currents grow exponentially in
the operator nullspace [43]. This behaviour is predicted by
the polynomial eigenvalues analysis of the MOT: a stable
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MOT has all its eigenvalues inside the unit circle in the
complex plane while a MOT that suffers from the DC
instability has some eigenvalues that cluster around 1 [44].
The eigenvalue distribution of the time differentiated EFIE
MOT is represented in Figure 1 in which such a cluster is
clearly visible around 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re

Im

−1

−0.5

0

0.5

1
·10−6

FIGURE 1. Polynomial eigenvalues of the TD-EFIE MOT scheme on the
unit sphere, 𝑁𝑠 = 270 and 𝛥𝑡 = 3 ns

E. Quasi-Helmholtz projectors
Previous works show that the electric field integral equation
discretized in space using RWG basis functions can be sta-
bilized by the quasi-Helmholtz projectors [30], [34]. These
projectors are formed from the star-to-rwg transformation
matrix, denoted Σ and defined in [45], which maps the
discretized current into the non-solenoidal contributions [46],
[47]. The quasi-Helmholtz projectors on the non-solenoidal
space and its complementary (the one on solenoidal/quasi-
harmonic space) are respectively

P 𝛴 =

(
Σ

(
Σ𝑇Σ

)+
Σ𝑇

)
and P 𝛬𝐻 = I − P 𝛴 , (28)

where + denotes the Moore–Penrose pseudoinverse [45].

III. Calderón preconditioning of the EFIE
EFIE formulations based on the quasi-Helmholtz projectors
cure the DC instability and the conditioning at large time
steps. However, these formulations still suffer from a dense
discretization breakdown. One appealing strategy could be to
apply standard preconditioning schemes to the Marching-On-
In-Time matrices directly to cure the matrix conditioning is-
sues. However, the solution currents would remain unaltered
and subject to DC instabilities as the original scheme. This is
why the preconditioning has to be performed on the continu-
ous equations to build a new operator without nullspace and
then discretize the formulation to obtain a well-conditioned
scheme. In this part, Calderón preconditioning strategies are
proposed to cure the DC instability and the conditioning
breakdowns.

A. A Convolution Quadrature Calderón time-domain EFIE
Calderón preconditioners are based on the Calderón identity
[29], [48]

T 2 = T ◦ T = −I/4 + K2 , (29)

where ◦ is the composition operator, I is the identity
operator and K is defined as

K
(
𝒇
)
(𝒓, 𝑡) = 𝒏̂ (𝒓) × ∇ ×

∬
𝒓 ′∈𝛤

(
G𝒓 ∗𝑡 𝒇

)
(𝒓′, 𝑡)𝑑𝑆′ . (30)

The operator −I/4 + K2 is a well-behaved operator for
increasing discretization densities. As a consequence, with a
proper discretization, T 2 is well-conditioned for large time
steps and dense meshes for simply connected structures [45].
In practice, a discretization of T 2 is used in which the right
EFIE operator is discretized with RWG basis functions and
the left preconditioner is discretized with Buffa-Christiansen
(BC) basis functions

(
𝒇 bc
𝑛

)
𝑁𝑠

[49]–[51][
T
]
𝑚,𝑛

(𝑡) = ⟨𝒏̂ × 𝒇 bc
𝑚 ,T

(
𝛿 𝒇 bc

𝑛

)
⟩𝛤 (𝑡) . (31)

The preconditioning leads to the following space-discretized
formulation(
TG−1

𝑚 ∗ (T ∗ j𝛤 )
)
(𝑡) = −𝜂−1

0

(
TG−1

𝑚 ∗ e inc
𝛤

)
(𝑡) , (32)

where the matrix G𝑚 is the mixed gram matrix linking the
the two discretizations[

G𝑚
]
𝑚,𝑛

= ⟨𝒏̂ × 𝒇
rwg
𝑚 , 𝒇 bc

𝑛 ⟩𝛤 . (33)

Then, the convolution quadrature leads to the MOT scheme[
ZTG̃

−1
𝑚 ∗𝑠 ZT

]
0
j𝑖 = −𝜂−1

0

[
ZTG̃

−1
𝑚 ∗𝑠 e inc

]
𝑖

−
𝑖∑︁
𝑗=1

[
ZTG̃

−1
𝑚 ∗𝑠 ZT

]
𝑗
j𝑖− 𝑗 ,

(34)

where ZT,𝑖 are the time domain interaction matrices of
the space-discretized operator T (𝑡) (31) generated by the
convolution quadrature method described in Subsection B,
the sequence convolution quadrature product ∗𝑠 is the dis-
cretization of the space-discretized temporal convolution
product ∗ and

G̃𝑚 = G𝑚 ⊗ I𝑝 . (35)

The Kronecker product ⊗I𝑝 is required to match with the
convolution quadrature method where I𝑝 is the identity
matrix of size 𝑝. Unfortunately, the MOT in (34), involves
operators with temporal integrations leading to a time con-
suming MOT. A more favorable scheme can be obtained by
noticing the following commutative properties

𝜕

𝜕𝑡
Ts/h

(
𝒇
)
(𝒓, 𝑡) = Ts/h

(
𝜕

𝜕𝑡
𝒇

)
(𝒓, 𝑡) , (36)∫ 𝑡

−∞
Ts/h

(
𝒇
) (
𝒓, 𝑡′

)
𝑑𝑡′ = Ts/h

(∫ .

−∞
𝒇

)
(𝒓, 𝑡) , (37)
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and the cancellation property T 2
h = 0 [32], we have

T 2 =

(
− 1
𝑐0

𝜕

𝜕𝑡
Ts + 𝑐0

∫ ·

−∞
Th

)
◦

(
− 1
𝑐0

𝜕

𝜕𝑡
Ts + 𝑐0

∫ ·

−∞
Th

)
= 𝑐−2

0
𝜕2

𝜕𝑡2
T 2

s − Ts ◦ Th − Th ◦ Ts .

(38)

This is advantageous since, besides not involving any time
integration contribution, the operator 𝑐−2

0
𝜕2

𝜕𝑡2 T 2
s −TsTh −ThTs

has no nullspace for simply connected geometries leading
to a DC-stable discretization (“dottrick TDEFIE”) [52]. By
extending the previous notations on Ts and Th[

Ts/h
]
𝑚,𝑛

(𝑡) = ⟨𝒏̂ × 𝒇
rwg
𝑚 ,Ts/h

(
𝛿 𝒇

rwg
𝑛

)
⟩𝛤 (𝑡) ,[

Ts/h
]
𝑚,𝑛

(𝑡) = ⟨𝒏̂ × 𝒇 bc
𝑚 ,Ts/h

(
𝛿 𝒇 bc

𝑛

)
⟩𝛤 (𝑡) ,

(39)

the proposed space-discretized operator is denoted

T𝑐 = 𝑐−2
0

𝜕2

𝜕𝑡2
TsG

−1
𝑚 ∗ Ts − TsG

−1
𝑚 ∗ Th − ThG

−1
𝑚 ∗ Ts , (40)

yielding to the following space-discretized formulation

(T𝑐 ∗ j𝛤 ) (𝑡) = −𝜂−1
0

(
TG−1

𝑚 ∗ e inc
𝛤

)
(𝑡) . (41)

The right-hand side operator still involves a temporal integra-
tion in (41). However, given the commutative properties (37),
the temporal integral on the scalar potential Tℎ is evaluated
with the incident field

𝑐0

(∫ ·

−∞
ThG

−1
𝑚 ∗ e inc

𝛤

)
(𝑡) = 𝑐0

(
ThG

−1
𝑚 ∗ eprim

𝛤

)
(𝑡) , (42)

where[
e

prim
𝛤

]
𝑚
(𝑡) = ⟨𝒏̂ × 𝒇

rwg
𝑚 ,

∫ 𝑡

−∞
𝒏̂ × 𝒆inc(𝑡′)𝑑𝑡′⟩𝛤 ,[

e
prim
𝑖

]
𝛷𝑚,𝑘

=

[
e

prim
𝛤

]
𝑚

(
𝛥𝑡

(
𝑖 + [c]𝑘

) )
.

(43)

Therefore, the previous MOT is rewritten as

ZTc ,0j𝑖 = −𝜂−1
0

𝑁conv∑︁
𝑗=0

(
Z ¤Ts , 𝑗

e inc
𝑖− 𝑗 + ZTh , 𝑗e

prim
𝑖− 𝑗

)
−

𝑁conv∑︁
𝑗=1

𝑍Tc , 𝑗 j𝑖− 𝑗 ,

(44)
where the time domain interaction matrices ZTc ,𝑖 , Z ¤Ts ,𝑖

and ZTh ,𝑖 are respectively generated by the convolution
quadrature method described in Subsection B of the space-
discretized operators Tc, ¤Ts = −𝑐−1

0
𝜕
𝜕𝑡
TsG

−1
𝑚 and Th =

𝑐0ThG
−1
𝑚 . As in (34), the interaction matrix sequence ZTc ,𝑖

involves computationally expensive sequence convolution
products ∗𝑠, however, the convolution quadrature method
allows the substitution of the sequence convolution products
∗𝑠 by matrix multiplications in the Z-domain, that can be
evaluated at a lesser cost. By extending the notations of
the convolution quadrature described in Subsection B on the
space-discretized operators Ts/h and Ts/h and by using the
Z-domain properties, the matrix sequence ZTc ,𝑖 is equal to

ZTc ,𝑖 = 𝑐−2
0 Z−1

{
s2cqTs,ZG̃𝑚Ts,Z

}
−Z−1

{
Th,ZG̃𝑚Ts,Z + Ts,ZG̃𝑚Th,Z

}
,

(45)

where the matrix scq(𝑧) = I𝑁𝑠
⊗ scq(𝑧) is the Z-discretization

of the time derivative and I𝑁𝑠
is the identity matrix of size

𝑁𝑠. The formulation (44) is a good candidate to obtain
a stable current solution, however, the proposed operator
T 2 has static nullspaces for multiply connected geometries
[33]. As such, (40) is still subject to DC-instabilities for
multiply connected geometries. The polynomial eigenvalue
analysis on a sphere and on a torus (respectively Figure 2
and Figure 3) illustrate this phenomenon. While all the
eigenvalues cluster in 0 in the spherical case, an analysis
on a torus highlights four eigenvalues of this MOT clustered
around 1, corresponding to the four constant regime solutions
[33].

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re

Im

FIGURE 2. Polynomial eigenvalues of the Calderón EFIE MOT scheme on
the unit sphere, 𝑁𝑠 = 270 and 𝛥𝑡 = 3 ns.
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FIGURE 3. Polynomial eigenvalues of the Calderón EFIE MOT scheme on
a torus with a inner and outer radii respectively equal to 0.2 m and 0.5 m,
𝑁𝑠 = 387 and 𝛥𝑡 = 3 ns. Near 1, four eigenvalues are clustered, superposed
two by two on this figure.

B. A Convolution Quadrature Calderón time-domain EFIE
regularized with quasi-Helmholtz projectors
The previous Calderón formulation is perfectly adapted to
simply connected geometries, ensuring that the new operator
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has no nullspace. However, on multiply-connected geome-
tries, the harmonic subspace is non-empty, thus enlarging the
nullspace of T which is a new source of DC instability in
(44)[33]. The discretized EFIE operators can be regularized
using the quasi-Helmholtz projectors to address this issue.
Because the regularization is based on projectors, it does
not compromise the ℎ-refinement regularizing effect of the
original Calderón scheme. The regularized EFIE space-
discretized operators are

T reg =

(
𝑐0
𝑎

∫ ·

−∞
P 𝛬𝐻 + P 𝛴

)
∗T ∗

(
P 𝛬𝐻 + 𝑎

𝑐0

𝜕

𝜕𝑡
P 𝛴

)
, (46)

Treg =

(
𝑐0
𝑎

∫ ·

−∞
P𝛴𝐻 + P𝛬

)
∗ T ∗

(
P𝛴𝐻 + 𝑎

𝑐0

𝜕

𝜕𝑡
P𝛬

)
, (47)

where the BC quasi-Helmholtz projectors are defined with
the loop-to-RWG transformation matrix Λ [45] such that

P𝛬 =

(
Λ

(
Λ𝑇Λ

)+
Λ𝑇

)
and P𝛴𝐻 = I − P𝛬 , (48)

and where the scaling 𝑐0
𝑎

with 𝑎 defined as the maximal
diameter of the scatterer, ensures consistent dimensionality
and helps reduce the conditioning further. This application
of the projectors is equivalent to differentiating the non-
solenoidal contributions on the left and in time integrating
the solenoidal contributions on the right of each EFIE op-
erator [30]. The regularized Calderón operator in the space-
discretized time domain is

Treg
c = TregG−1

𝑚 ∗ T reg . (49)

At first sight, (46) and (47) seem to involve unpractical
temporal integrals. However, the problematic contributions
in the regularized EFIE operator Treg will vanish, since
P 𝛬𝐻Th = ThP

𝛬𝐻 = 0 and P 𝛴ThP
𝛴 = Th, and we have

T reg = −𝑎−1P 𝛬𝐻TsP
𝛬𝐻 − 𝑐−1

0 P
𝛬𝐻 𝜕

𝜕𝑡
TsP

𝛴

− 𝑐−1
0 P

𝛴 𝜕

𝜕𝑡
TsP

𝛬𝐻 − 𝑎

𝑐2
0
P 𝛴 𝜕2

𝜕𝑡2
TsP

𝛴 + 𝑎Th .

(50)

Similarly, the dual EFIE operator simplifies as

Treg = −𝑎−1P𝛴𝐻TsP
𝛴𝐻 − 𝑐−1

0 P
𝛴𝐻 𝜕

𝜕𝑡
TsP

𝛬

− 𝑐−1
0 P

𝛬 𝜕

𝜕𝑡
TsP

𝛴𝐻 − 𝑎

𝑐2
0
P𝛬

𝜕2

𝜕𝑡2
TsP

𝛬 + 𝑎Th .

(51)

The space-discretized formulation of the regularized
Calderón EFIE is

Treg
c ∗ y𝛤 = −𝜂−1

0 T
regG−1

𝑚 ∗R ∗ e inc
𝛤 , (52)

where

R =
𝑐0
𝑎

∫ ·

−∞
P 𝛬𝐻 + P 𝛴 and j𝛤 =

(
P 𝛬𝐻 + 𝑎

𝑐0

𝜕

𝜕𝑡
P 𝛴

)
y𝛤 .

(53)
The right-hand side of (52) has a temporal integral which
is directly evaluated on the incident field to avoid quadratic

complexity with the number of time steps. This leads to the
following MOT

ZTreg
c ,0y𝑖 = −𝜂−1

0

𝑁conv∑︁
𝑗=0
ZTreg , 𝑗

(
P̃ 𝛴 e inc

𝑖− 𝑗 +
𝑐0
𝑎
P̃ 𝛬𝐻e

prim
𝑖− 𝑗

)
−

𝑁conv∑︁
𝑗=1
ZTreg

c , 𝑗y𝑖− 𝑗 ,

(54)

where P̃ 𝛬𝐻 = P 𝛬𝐻 ⊗ 𝐼𝑝 , P̃ 𝛴 = P 𝛴 ⊗ 𝐼𝑝 , the vector sequence
y𝑛 is the time discretization of y𝛤 (𝑡), and the time domain
interaction matrices ZTreg

c ,𝑖 and ZTreg ,𝑖 are respectively gen-
erated by the convolution quadrature method described in
Subsection B of the space-discretized operators Treg

c and
Treg = TregG−1

𝑚 . Once the computation of y𝑛 is done, the
current j still has to be evaluated. The convolution quadrature
discretization of the time derivative is

Z 𝜕
𝜕𝑡

,𝑖 = Z−1 {
𝑧 → scq(𝑧)

}
𝑖

= 𝛥𝑡−1A−1𝛿𝑖,0 − 𝛥𝑡−1A−11𝑝b𝑇A−1𝛿𝑖,1 ,
(55)

where 𝛿𝑖,0 is the Kronecker delta, A−1 = 𝐼𝑁𝑠
⊗ A−1 and

A−11𝑝b𝑇A−1 = 𝐼𝑁𝑠
⊗ A−11𝑝b

𝑇A−1 [30]. Therefore, the
current solution is obtained as

j𝑖 =

[(
P̃ 𝛬𝐻 + 𝑎

𝑐0
Z 𝜕

𝜕𝑡
P̃ 𝛴

)
∗𝑠 y

]
𝑖

= P̃ 𝛬𝐻y𝑖 +
𝑎

𝛥𝑡𝑐0
P̃ 𝛴

[
A−1y𝑖 − A−11𝑝b𝑇A−1y𝑖−1

]
.

(56)

IV. Results
To test the effectiveness of the proposed schemes, simula-
tions have been realized with different geometries, excited
by a Gaussian pulse plane wave

𝒆inc (𝒓, 𝑡) = 𝐴0 exp
(
−

(
𝑡 − 𝒌̂ ·𝒓

𝑐

)2

2𝜎2

)
𝒑̂ , (57)

𝒉inc (𝒓, 𝑡) = 1
𝜂0

𝒌̂ × 𝒆inc (𝒓, 𝑡) , (58)

where 𝜎 = 6/(2𝜋 𝑓bw), 𝒑̂ = 𝒙̂, 𝒌̂ = −𝒛, 𝐴0 = 1 V m−1 and
𝑓bw is the frequency bandwidth. Notice that this frequency
bandwidth is proportional to the maximal frequencies excited
by the pulse Gaussian. In this work, the Runge-Kutta Radau
IIA method of stage 2 is used for all simulations [17], [18].
The time step size 𝛥𝑡 has been chosen equal to (𝜓 𝑓max)−1

where 𝑓max is the upper frequency of the excitation and 𝜓 = 3
is an oversampling parameter.

A. Canonical geometries
To illustrate the key properties of the newly proposed
schemes, namely the Calderón preconditioned MOT (44) and
the Calderón preconditioned MOT regularized by the quasi-
Helmholtz-projectors (54), they are compared in the case
of modelling of canonical scatterers to other formulations
present on the literature: the EFIE MOT schemes (MOT
EFIE) (21), the time-differentiated one (MOT TD-EFIE)
(24), the MOT regularized by the quasi-Helmholtz-projectors
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(MOT qH-EFIE) [30]. In this subsection, the excitation
parameters have been chosen not to excite the first resonant
mode of the geometries.

The first set of numerical tests were performed on the unit
sphere, discretized with 270 RWG functions. The intensity of
the resulting currents at one point of the geometry are shown
in Figure 4. As expected, the time differentiated and the
non-differentiated EFIEs are the only formulations suffering
from DC-instabilities on this simply connected scenario. In
addition, the condition number of the matrices to invert for
each MOT are presented in Figure 5 and Figure 6 with
respect to the time step size 𝛥𝑡 and the mesh density ℎ−1.
The standard EFIE formulation and its time-differentiated
counterpart suffer from ill-conditioning at large time steps
while the stabilized ones remain well-conditioned. Instead,
only the Calderón preconditioned formulations presented in
this work remain well-conditioned for dense discretizations
(Figure 6).
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FIGURE 4. Evolution in time of the current intensity at
𝒓0 = (−0.36, 0.89, 0.11)m of the sphere where 𝑓bw = 25 kHz with parameters
𝑁𝑠 = 270 and 𝛥𝑡 = 4.5 × 104 ns.
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FIGURE 5. Condition number of the EFIE MOT matrices with respect to
the time step size 𝛥𝑡 (𝑁𝑠 = 270) on a sphere.
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FIGURE 6. Condition number of the EFIE MOT matrices with respect to
the mesh size ℎ (𝛥𝑡 = 45 ns) on a sphere.

The second set of tests focused on the stability of the
different formulations when modelling multiply connected
scatters, here a torus with inner radius of 0.2 m and outer
radius of 0.5 m. The current densities at the probe point are
shown in Figure 7 and the conditioning studies are repre-
sented in Figure 8 and Figure 9. In line with the polynomial
eigenvalue analysis of the non-regularized Calderón EFIE
formulation (Figure 3), the formulation (44) suffers from DC
instability. Moreover, the static nullspace of the continuous
operator deteriorates the condition number of the matrix to
invert for large time steps (Figure 9). However, the newly
proposed regularized Calderón formulation (54) is stable
and remains well-conditioned at large time steps and dense
meshes for this geometry.
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FIGURE 7. Evolution in time of the current intensity at
𝒓0 = (0.62, −0.13, 0.11)m of the torus where 𝑓bw = 25 kHz with parameters
𝑁𝑠 = 387 and 𝛥𝑡 = 4.5 × 104 ns.
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FIGURE 8. Condition number with respect to the mesh size ℎ (𝛥𝑡 = 4.5 ns)
on a torus of the EFIE MOT schemes.
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FIGURE 9. Condition number with respect to the time step size 𝛥𝑡

(𝑁𝑠 = 387) on a torus of the EFIE MOT schemes.

B. Non-canonical geometries
The final set of numerical tests is dedicated to more complex
test structures (Figure 10). In addition, instead of direct
solver we rely on the iterative solver GMRES with different
relative target tolerances 𝜖 [53] . For practical reason, the
maximum number of iteration has been limited to 200
without restart.

All the structures have been illuminated by a pulse Gaus-
sian plane wave with 𝑓bw = 1.6MHz. Table 1 shows the
condition number and the number of iterations needed. The
Calderón preconditioned formulation (CP-EFIE) (44) and
the Calderón preconditioned formulation regularized by the
quasi-Helmholtz-projectors (qH-CP-EFIE) (54) are the only
formulations requiring less than 200 iterations to converge
at each time steps. As expected, the condition number of
the CP-EFIE is high on non-simply connected geometries
because of the presence of the operator DC nullspace on
these structures. Although, in this case, the number of iter-

FIGURE 10. Test structures. (a) space shuttle; (b) compression spring; (c)
cube with multiple holes.

Space shuttle: 𝑁𝑠 = 4311
Cond(Z0) 𝑁iter

Tolerance 𝜖 ∅ 10−3 10−6 10−10

MOT TD-EFIE 4.3 · 106 > 200 > 200 > 200
MOT EFIE 6.5 · 106 > 200 > 200 > 200

MOT qH-EFIE 5.3 · 104 > 200 > 200 > 200
This work (44) 38 15 28 41
This work (54) 41 4 18 33

Compression spring: 𝑁𝑠 = 3906
Cond(Z0) 𝑁iter

Tolerance 𝜖 ∅ 10−3 10−6 10−10

MOT TD-EFIE 2.9 · 106 > 200 > 200 > 200
MOT EFIE 4.3 · 106 > 200 > 200 > 200

MOT qH-EFIE 1.6 · 103 57 154 > 200
This work (44) 158 8 31 50
This work (54) 133 2 19 39

Cube with multiple holes: 𝑁𝑠 = 3267
Cond(Z0) 𝑁iter

Tolerance 𝜖 ∅ 10−3 10−6 10−10

MOT TD-EFIE 1.2 · 109 > 200 > 200 > 200
MOT EFIE 1.8 · 109 > 200 > 200 > 200

MOT qH-EFIE 6.6 · 103 50 196 > 200
This work (44) 9.5 · 106 5 20 82
This work (54) 50 1 11 25

TABLE 1. Condition number and maximum number of iterations of the

different formulations with different relative tolerances.

ations remains low because the nullspace results in isolated
elements in the spectrum, the solution is corrupted by DC
instability arising from this nullspace. This phenomenon
is absent for the qH-CP-EFIE formulation which is free
from high conditioning or DC instability and yields stable
solutions up to the target precision of the iterative solver.

Finally, the setup time of the different formulations for
the cube with multiple holes scatterer and the corresponding
times required to compute a single time step are listed
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Cube with holes: 𝑁𝑠 = 3267

Setup time
Computation time for

a single time step
DC stable

MOT TD-EFIE 10 min 69 s No

MOT EFIE 10 min 78 s No

MOT qH-EFIE 19 min 3.4 s Yes

This work (44) 134 min 0.84 s No

This work (54) 138 min 0.40 s Yes

TABLE 2. Computation times of the different formulations with 𝜖 = 10−6.

in Table 2. As expected, the preconditioned formulations
require a longer setup time, which is rapidly compensated
by a faster computation of the time steps. The setup time of
these formulations can be significantly reduced by leveraging
fast solvers [54]; this, however, goes beyond the scope of this
work.

Conclusion
In this paper, novel Calderón preconditioned techniques have
been presented for the time domain Electric Field Integral
Equations solved with Marching-On-In-Time with convo-
lution quadratures. These formulations eliminate the DC-
instability for simply and multiply connected geometries.
In addition, they cure the ℎ-refinement and large time step
breakdowns and generate well-conditioned Marching-On-
In Time. Finally, numerical results on complex geometries
showcased the effectiveness of the proposed schemes.
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[47] J.-C. Nédélec, Acoustic and electromagnetic equations: integral

representations for harmonic problems. Springer, 2001, vol. 144.
[48] G. C. Hsiao and R. E. Kleinman, “Mathematical foundations for

error estimation in numerical solutions of integral equations in
electromagnetics,” IEEE transactions on Antennas and Propagation,
vol. 45, no. 3, pp. 316–328, 1997.

[49] F. P. Andriulli, K. Cools, I. Bogaert, H. Bagci, P. Yla-Ojiala, and
E. Michielssen, “Analysis and discretization of the yukawa-calderon
preconditioned cfie,” in 28th Annual Review of Progress in Applied

Computational Electromagnetics (ACES-2012), Curran Associates,
Inc., 2012, pp. 454–463.

[50] A. Buffa and S. Christiansen, “A dual finite element complex on
the barycentric refinement,” Mathematics of Computation, vol. 76,
no. 260, pp. 1743–1769, 2007.

[51] K. Cools, F. Andriulli, D. De Zutter, and E. Michielssen, “Accurate
and conforming mixed discretization of the mfie,” IEEE antennas

and wireless propagation letters, vol. 10, pp. 528–531, 2011.
[52] F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, “The

“dottrick tdefie”: A dc stable integral equation for analyzing transient
scattering from pec bodies,” in 2008 IEEE Antennas and Propagation

Society International Symposium, IEEE, 2008, pp. 1–4.
[53] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual

algorithm for solving nonsymmetric linear systems,” SIAM Journal

on scientific and statistical computing, vol. 7, no. 3, pp. 856–869,
1986.

[54] H. Bagci, F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen,
“A calderón multiplicative preconditioner for the combined field
integral equation,” IEEE Transactions on Antennas and Propagation,
vol. 57, no. 10, pp. 3387–3392, 2009. DOI: 10 . 1109 / TAP. 2009 .
2029389.

PIERRICK CORDEL (Student Member, IEEE)
received the M.Sc. Eng. Degree from the Ecole
Nationale Supérieure des Mines de Nancy, France,
in 2021 as well as a M.Sc. in Industrial Mathe-
matics from the University of Luxembourg, Lux-
embourg, the same year. Currently, he is doing a
PhD thesis at the institute Politecnico di Torino, in
Italy.

His research focuses on time domain integral
equations discretized with the convolution quadra-
ture method.

10 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJAP.2024.3354044

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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