Is the Faber-Krahn inequality true for the Stokes operator? - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2024

Is the Faber-Krahn inequality true for the Stokes operator?

Résumé

The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial) incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality conditions and we prove the following surprising result: while the ball satisfies first and second-order optimality conditions in dimension 2, it does not in dimension 3, so that the Faber-Krahn inequality for the Stokes operator is probably true in $\mathbb{R}^2$ , but does not hold in $\mathbb{R}^3$. The multiplicity of the first eigenvalue of the Dirichlet-Stokes operator in the ball in $\mathbb{R}^3$ plays a crucial role in the proof of that claim.
Fichier principal
Vignette du fichier
HMFP-2024-Stokes (1).pdf (507.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04402162 , version 1 (18-01-2024)
hal-04402162 , version 2 (31-08-2024)

Licence

Identifiants

Citer

Antoine Henrot, Idriss Mazari, Yannick Privat. Is the Faber-Krahn inequality true for the Stokes operator?. Calculus of Variations and Partial Differential Equations, In press, ⟨10.48550/arXiv.2401.09801⟩. ⟨hal-04402162v2⟩
182 Consultations
78 Téléchargements

Altmetric

Partager

More