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Is the Faber-Krahn inequality true for the Stokes operator?

Antoine Henrot∗ Idriss Mazari-Fouquer† Yannick Privat‡§.

June 20, 2024

Abstract

The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial)
incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality
conditions and we prove the following surprising result: while the ball satisfies first and second-order
optimality conditions in dimension 2, it does not in dimension 3, so that the Faber-Krahn inequality for
the Stokes operator is probably true in R2, but does not hold in R3. The multiplicity of the first eigenvalue
of the Dirichlet-Stokes operator in the ball in R3 plays a crucial role in the proof of that claim.

Keywords: Shape derivation, Shape semi-differentiation, Spectral optimisation, Stokes operator.

AMS Classification: 47A10, 49Q10, 76D07.

1 Introduction

In this article, we focus on a spectral optimisation problem governed by the Stokes operator; the latter
is crucial in the analysis of fluid motions. In order to motivate this question, let us observe that the
eigenvalues of the Stokes operator can be physically interpreted as the decay frequencies of the eigenmodes
of a fluid. Each associated eigenmode represents a specific fluid motion. The eigenvalues are also related
to the characteristic time scales of the dynamics of the fluid. Furthermore, it should be noted that the
eigenvalues of the Stokes operator also appear naturally when dealing with the long-time behaviour of
solutions to the (nonlinear) Navier-Stokes equations [2, 26]. Our main goal here will thus be to further our
understanding of the influence of the geometry of the domain on the first Stokes eigenvalue.

1.1 Setting

Scope of the paper. The optimisation of spectral quantities with respect to a domain is a central question
in shape optimisation and in the calculus of variations. Throughout the article, Ω will denote a subspace of
the ambient space Rd, with d ∈ {2, 3}. The specific choice of dimension d will be specified for each result. Of
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particular importance is the paradigmatic question of minimising (with respect to the domain Ω) the first
eigenvalue of a differential operator under a volume constraint on Ω. The celebrated Faber-Krahn inequality
asserts that, when the operator is the (scalar) Dirichlet-Laplacian, the ball minimises the first eigenvalue
with a volume constraint. In the present paper, we investigate the minimisation of the first eigenvalue of the
Dirichlet-Stokes operator. Namely, let Ω be a bounded, smooth open set, and let W 1,2

0 (Ω;Rd) be defined as
the usual Sobolev space (here, the functions are Rd-valued). Consider the first eigenvalue

λ1(Ω) := min
u∈W 1,2

0 (Ω;Rd)
∇·u=0 in Ω, u6=0

∫
Ω ‖∇u‖2∫
Ω ‖u‖2

, (1)

where ∇· stands for the divergence operator. In the expression above, ∇u stands for the Jacobian matrix
of u or, in other words,

∇u =

(
∂ui
∂xj

)
16i,j6d

.

With a slight abuse of notation, we use ‖ · ‖ to denote not only the Euclidean norm of Rd as in the term
‖u‖2, but also the Frobenius norm of ∇u,, that is,

‖∇u‖2 = ∇u : ∇u =
d∑

i,j=1

(
∂ui
∂xj

)2

.

This eigenvalue is associated with the eigen-equation
−∆u +∇p = λ1(Ω)u in Ω ,

∇ · u = 0 in Ω ,

u = 0 on ∂Ω.

(2)

In (2) the function p (which is unique up to an additive constant) is the pressure associated with u , which
can be interpreted as the Lagrange multiplier attached to the incompressibility constraint, that is, with the
constraint ∇ · u = 0.

The problem under consideration in this article is the following:

inf
Ω⊂Rd ,Ω bounded, |Ω|6V0

λ1(Ω). (3)

The constant V0 > 0 is a given volume constraint (which will be immaterial as we will be led to work with
a scale invariant formulation of (3)).

The main contributions of the article are the following:

1. First, we obtain an existence result in the class of quasi-open sets (this is the natural framework
for such existence results; we refer to Definition 1) This is Theorem 1. The method of proof relies on
the concentration-compactness principle of Lions [44], which was adapted by Bucur [3] to the setting
of shape optimisation. The main difficulty here is the incompressibility condition.

2. Second, we investigate the local optimality of the ball by checking first and second-order optimality
conditions for Hadamard variations. In Theorem 2, we prove that the ball satisfies these optimality
conditions in R2. On the other hand, we prove in Theorem 3 that the ball does not satisfy first-order
optimality conditions in R3. The proof of the non-optimality of the ball in R3 relies on the fact that
λ1 is, in this case, a multiple eigenvalue.
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3. We then derive precise necessary optimality conditions for the minimality of a set in R3; this is
Theorem 4; this theorem and its proof are linked to some recent results in the optimisation of the first
curl eigenvalue [28].

We discuss related works in details in section 1.3 but let us already highlight some aspects of our problem.
One of the first results in spectral shape optimisation is the celebrated Faber-Krahn inequality [23, 38], which
asserts that, under a volume constraint, the ball minimises the first eigenvalue of the Dirichlet-Laplacian in
any dimension. This inequality can be derived from numerous methods, some of which can be generalised
to the minimisation of other spectral quantities and the ball is very often the minimiser (or at least a local
minimiser) for the first eigenvalue of several scalar differential operators. Thus, Theorem 3 hints at a deeper
discrepancy between the scalar and the vectorial case. In general, let us observe that the literature devoted
to spectral optimisation problems in the vectorial case is scarce. To the best of our knowledge, the results
closest to ours were derived very recently by Enciso, Gerner & Peraltas-Sala [21, 22, 28] in the case of the
curl operator, a problem which was also investigated by Cantarella, DeTurck, Gluck & Teytel in the early
2000’s [11].

Notations. Throughout the paper we use the following conventions:

1. For any k ∈ N , p ∈ [1; +∞), W k,p(Ω) (resp. W k,p
0 (Ω)) denotes the usual Sobolev space of order

k and index p (resp. the functions of W k,p(Ω) whose trace on ∂Ω is zero). Likewise, W k,p(Ω;Rd)
(resp. W k,p

0 (Ω;Rd)) denotes the Sobolev space of order k and index p of vector-valued functions, each

coordinate of which is a W k,p(Ω) (resp. W k,p
0 (Ω)) function.

2. C∞c (Rd) is the set of compactly supported C∞ functions.

3. ∇ is the gradient operator, ∇· the divergence operator and curl the curl operator.

4. All bold letters will be used to designate a R2 or R3 vector or vector field.

5. The double-dot product of two matrices A = (aij)16i,j6N and B = (bij)16i,j6N is the real number

A : B given by A : B =
∑N

i,j=1 aijbij .

6. Bd = {x ∈ Rd | ‖x‖ < 1}, the Euclidean unit ball of Rd.

7. ‖X‖ denotes either the Euclidean norm of Rd if X is a vector, or the Frobenius norm of X if X is a
square matrix of size d, in other words ‖X‖2 = X : X.

8. C∞(Ω) denotes the space of infinitely differentiable real-valued functions in Ω.

9. Per(Ω), for Ω bounded connected, denotes the perimeter of Ω in the sense of De Giorgi

Precise statement of the problem. To set our problem in an appropriate (from the point of view of
existence properties) framework, we recall the definition of quasi-open sets [34, Chapter 3]:

Definition 1. A subset Ω of Rd is called quasi-open if there exists a non-increasing sequence of open sets
{ωk}k∈N such that

lim
k→∞

cap(ωk) = 0 and ∀k ∈ N, Ω ∪ ωk is open,
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where cap denotes the capacity of an open set. Recall that it is defined as

cap(ω) := sup
Kcompact
K⊂ω

inf
v∈C∞c (Rd)
v>1 on K

∫
Rd
|∇v|2 .

We define
O := {Ω ⊂ Rd ,Ω quasi-open , |Ω| > 0}.

Quasi-open sets are the natural framework in which to consider spectral shape optimisation problems
[10, 57]. For any given Ω ∈ O we can define [34, Chapter 3] the Sobolev space W 1,2

0 (Ω) as the set of functions
v ∈W 1,2(Rd) that are equal to 0 on Rd\Ω up to a set of zero capacity. For any Ω ∈ O we set

λ1(Ω) := min
u∈W 1,2

0 (Ω;R3)
∇·u=0 in Ω ,u 6=0

∫
Ω ‖∇u‖2∫
Ω ‖u‖2

. (4)

It is clear that for any t > 0 and any Ω ∈ O we have λ1(tΩ) = 1
t2
λ1(Ω), and we thus introduce the following

scale invariant functional:
F : O 3 Ω 7→ |Ω|

2
dλ1(Ω).

The shape optimisation problem under consideration is

inf
Ω∈O

(
F(Ω) := |Ω|

2
dλ1(Ω)

)
. (5)

1.2 Main results of the paper

Existence of an optimal shape. We begin with the following:

Theorem 1. The variational problem (5) has a solution Ω∗.

The proof of this theorem relies, in this vectorial setting, of the approach to the Faber-Krahn inequality
of Bucur & Freitas [5, Proposition 3.1] or Bucur & Varchon [6], which in turn relies on the concentration-
compactness principle of Lions [44]. However, because of the incompressibility constraint, we have to modify
the concentration-compactness approach, which in turns prohibits us from guaranteeing that Ω∗ is bounded.

Of course, if O were to be replaced with OD := {Ω ∈ O ,O ⊂ D} for a given compact set D (“box
constraint”), the existence of a minimiser would follow from an adaptation of the Buttazzo-Dal Maso the-
orem [10], although one should be cautious when handling the zero-divergence constraint. For the sake of
completeness, we include this result in Appendix B. We refer to section 1.3 for more references on shape
optimisation without box constraints.

Remark 1. When working in the two-dimensional case, if the domain Ω is simply connected, we can
introduce a potential ψ such that the velocity u can be written u = (−∂yψ, ∂xψ)>, so that the first eigenvalue
of the Stokes operator coincides with the first eigenvalue of the buckling problem [31, Chapter 11]. The
function ψ is called the stream function. Its existence is a special case of the Helmoltz-Hodge decomposition
in dimension 2. We refer for instance to [56, Lemma 2.5] for the existence and uniqueness of this stream
function. Our existence result is thus linked to the theorem of Ashbaugh & Bucur [1], which asserts the
existence of an optimal domain for the buckling problem in the class of simply connected domains. We will
comment more on this aspect of the problem in section 1.3.
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Optimality conditions and (semi-)differentials of eigenvalues. The local optimality of a shape will
be investigated by means of Hadamard perturbations [34, Chapter 5]. This already requires some regularity
of the shape under consideration. To be more precise: if Ω is a bounded domain with C 2 boundary, if
Φ ∈W 3,∞(Rd,Rd) we define, for any t ∈ (−1; 1) small enough,

ΩtΦ := (Id + tΦ)Ω.

This definition is meaningful as, for any t small enough, (Id + tΦ) is a smooth diffeomorphism. For a given
shape functional F and a given shape Ω, we say that F is differentiable at Ω if, for any Φ ∈W 3,∞(Rd,Rd),
the limit

〈dF (Ω),Φ〉 := lim
t→0

F (ΩtΦ)− F (Ω)

t
exists and if it is a linear form in Φ. In this case, this limit is called the first-order shape derivative of F at
Ω in the direction Φ.

The functional F might not be differentiable (typically, when considering the shape derivative of a
multiple eigenvalue, as can be the case here), but we can usually define the semi-differential of F at Ω in
the direction Φ as

〈∂F (Ω),Φ〉 := lim
t↘0

F (ΩtΦ)− F (Ω)

t
.

whenever the limit above exists, and defines a linear functional in Φ ∈W 3,∞(Rd;Rd).
Such semi-differentials are of particular importance when dealing with multiple eigenvalues. A systematic

approach was developed by several authors to handle such situations; while we refer to section 1.3 for precise
references, let us point to [13], which is the most related to our work as it deals with semi-differentials for
the linear elasticity system.

The first-order optimality conditions for (5) read: if Ω∗ is a smooth optimal set for any smooth vector
field Φ, there holds

〈dF (Ω∗),Φ〉 = 0 if F is differentiable, 〈∂F (Ω∗),Φ〉 > 0 if F is semi-differentiable. (6)

The first condition above, often called Euler inequality, can often be reduced into an equality depending on
the nature of admissible set of shapes. This will be made precise in what follows.

We say that F is twice differentiable at Ω if it is differentiable and if, for any Φ ∈ W 3,∞(Rd,Rd) the
limit

〈d2F (Ω)Φ,Φ〉 = lim
t→0

F (ΩtΦ)− F (Ω)− t〈dF (Ω),Φ〉
t2

exists.

Local optimality of B2 in R2. The main result here is the following:

Theorem 2. The first eigenvalue λ1(B2) is simple. Consequently, F is twice differentiable at B2 and there
holds:

1. For any Φ ∈W 3,∞(Rd,Rd),
〈dF(B2),Φ〉 = 0.

2. There exists a constant c0 > 0 such that, for any Φ ∈W 3,∞(Rd;Rd) such that 〈Φ, ν〉 ∈ {1, cos(·), sin(·)}⊥,
where ⊥ denotes the orthogonal for the L2(∂B) inner product,

〈d2F(B2)Φ,Φ〉 > c0‖〈Φ, ν〉‖2
W

1
2 ,2(∂B2)

where ν is the normal vector on ∂B2.
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This theorem is to be expected as it is a generalisation of the classical Faber-Krahn inequality to the case
of the Stokes operator. The condition 〈Φ, ν〉 ∈ {1, cos, sin}⊥ reflects the dilation and translation invariance
of the functional F .

Remark 2. The differentiability of F at B2 is immediate if λ1(B2) is a simple eigenvalue. We refer to [34,
Chapter 5], or to the implicit function theorem of Mignot, Murat & Puel [46] (for its application in the
context of shape derivatives, see e.g. [19]).

Remark 3. If a minimiser Ω∗ of (5) in dimension 2 is smooth and simply connected, then Ω∗ is necessarily
a disc. This is proved by establishing an equivalence between the minimization of the first eigenvalue
of the Stokes-Dirichlet operator and the minimization of the solution of the buckling problem. Detailed
explanations of the buckling problem and the equivalence can be found in section 1.3. Once this equivalence
is established, the proof that a regular and simply connected minimiser is a disc results from the study of
an overdetermined problem. The proof is due to N.B. Willms and H.F. Weinberger. They did not publish
it, but one can find it in the paper of B. Kawohl in [35]. A proof can also be found in [31, Section 11.3.4].

Finally, let us point to the recent article [27], which was brought to our attention during the revision
of this paper: an interesting discussion is given, linking several overdetermined problems including the one
mentioned above.

The Faber-Krahn inequality is not true for the Stokes operator in R3. A much more surprising
result is that the Faber-Krahn inequality is not true for the Stokes operator in R3. To the best of our
knowledge, this is the first published result of this kind, where the dimension has an influence on the
optimality of the unit ball for the lowest eigenvalue of a differential operator.

Remark 4. Shortly after uploading a preprint of this paper, W. Gerner has informed us that similar
(unpublished) results [29] had been obtained for some related spectral optimisation problems in the context
of Riemaniann geometry, where the ball is optimal in the two-dimensional case, but not in the three-
dimensional one. In the euclidean setting, the examples he gave were of a Stokes-like operator, with the
additional boundary condition 〈curl(u), ν〉 = 0 on ∂Ω, as well as the requirement that u be orthogonal to
harmonic fields (that is, div and curl free fields).

More precisely, we have:

Theorem 3. The first eigenvalue λ1(B3) has multiplicity 3. F is semi-differentiable at B3, but does not
satisfy the first-order optimality conditions (6): there exists a vector field Φ ∈W 3,∞(R3;R3) such that

〈∂F(B3)Φ,Φ〉 < 0.

In particular, B3 does not solve (5).

Necessary optimality conditions in R3. In fact, Theorem 3, which we singled out, is an easy conse-
quence of the following optimality conditions:

Theorem 4. Let Ω∗ be a solution of (5) with d = 3. If Ω∗ has a C 2,α boundary with α ∈ (0, 1) then λ1(Ω∗)
is a simple eigenvalue. Furthermore, if u is an associated first eigenfunction, then ‖(∇u)ν‖ is constant on
∂Ω.
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Remark 5. The eigenvalues of the Stokes operator are generically simple with respect to the domain; we
refer to Ortega & Zuazua and Chitour, Kateb & Long [17, 48]. Regarding the multiplicity of eigenvalues of
the Stokes operator let us also mention the recent work of Falocchi & Gazzola [24, 25]; it deals with Navier
boundary conditions rather than with Dirichlet ones. Nevertheless, for an optimal domain (for another
eigenvalue than the first one), multiplicity is very often expected [32, chapter 11].

Remark 6. It is actually easy to prove that, at an optimiser, λ1(Ω∗) has multiplicity at most 2. This
will follow from considering the semi-differential of the eigenvalue. However, in order to lower the possible
multiplicity to 1, we will draw inspiration from the work of Gerner [28, Proof of Theorem 2].

Although it is highly unlikely that these necessary optimality conditions will provide a full characterisa-
tion of the optimiser, the Poincaré-Hopf theorem (also known as the hairy ball theorem, see [16, Theorem
34.1] and [53, Theorem 39.7]) easily implies the following corollary:

Corollary 1. Assume Ω∗ has a C 2,α boundary with α ∈ (0, 1). If Σ is a connected component of ∂Ω∗, Σ
has Euler characteristic 0, and is thus homeomorphic to a torus.

Indeed, it suffices to observe that, as for any eigenfunction u in Ω, as u = 0 in ∂Ω and ∇ · u = 0 in Ω,
the vector field (∇u)ν is tangential to ∂Ω (see Remark 7). Thus, Theorem 4 yields the applicability of the
hairy ball theorem. It is notable that this line of reasoning was previously used in [21, 22]. These results are
in good agreement with the numerical simulations of [43], which sets out to study numerical approximations
of spectral optimisation problems for the Stokes operator.

Remark 7. [A consequence of choosing Dirichlet conditions] An elementary yet important observation that
will be used several times in the paper is the following fact: for any C 2 domain Ω, if uΩ is a first eigenfunction
of the Dirichlet-Stokes operator, then the incompressibility condition and the boundary conditions imply
that

〈(∇uΩ)ν, ν〉 = 0 on ∂Ω.

Indeed, as uΩ = 0 on ∂Ω, we have, for any 1 6 i 6 d,

∇ui =
∂ui
∂ν

ν,

whence, for any 1 6 i, j 6 d,
∂ui
∂xj

=
∂ui
∂ν

νj .

Consequently, one has

〈(∇uΩ)ν, ν〉 =
d∑
i=1

νi

 d∑
j=1

∂ui
∂xj

νj

 =
d∑
i=1

∂ui
∂ν

νi

 d∑
j=1

ν2
j


=

d∑
i=1

∂ui
∂ν

νi =

d∑
i=1

∂ui
∂xi

= ∇ · u = 0

a.e. on ∂Ω.

1.3 Bibliographical references

The problem under consideration in this article fits in several active lines of research. Let us describe some
of the main ones.
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Spectral optimisation problems for scalar operators. Due to the wealth of information they provide
on the interplay between the geometry and the analytic properties (i.e. regarding functions defined on the
domain) of domains, spectral optimisation problems have become a tenet of applied mathematics. The
basic question in spectral optimisation is the following: given a certain spectral quantity, defined through a
differential operator on a domain, what is the domain minimising or maximising this spectral quantity? It
would be pointless to try and give an exhaustive bibliographical account of the developments of the field, but
let us highlight some of the key contributions. The seminal works of Faber [23] and Krahn [38], investigating
the minimisation of the first eigenvalue of the (scalar) Dirichlet-Laplacian bolstered the development of new
approaches blending geometric and analytic tools. Typical questions include the existence of optimisers, their
geometry and their stability. Regarding the existence of optimisers, when no direct comparison principles
can yield the explicit description of an optimiser, the first general theorem is due to Buttazzo & Dal Maso
[10], when additional box constraints are enforced on the set of admissible domains. Bucur [3] developed
a framework designed to handle the unbounded case. This was done using the concentration compactness-
principle of Lions [44], and later used by Bucur & Varchon [6] and Bucur & Freitas [5] to derive existence
results for the optimisation of eigenvalues of scalar operators. Let us also mention some more general
results due, independently, to Bucur and Mazzoleni & Pratelli [4, 45]. We refer to [32, chapter 2] as a
reference for existence problems. Regarding the geometry of optimisers, these are usually very delicate
questions. While symmetrisation techniques-which can be used to derive direct comparison results-can
be available for specific problems, there are no general tools that can be employed for generic spectral
optimisation problems. Regarding rearrangements, we refer to the monograph [37]. Another possibility to
obtain information regarding the optimal domains is to derive tractable optimality conditions; as the latter
are often expressed in terms of an overdetermined boundary value problem having a solution on the optimal
domain, results similar to the Serrin theorem [52] (see also [47]) yield the result. For an introduction to the
geometric aspects of spectral optimisation we refer to [33].

Optimality conditions for multiple eigenvalues. A tenet of the Stokes problem in dimension 3 is
that the first eigenvalue of the Dirichlet-Stokes operator has multiplicity 3 at the ball. While seemingly
innocuous this remark actually implies the non-minimality of the ball in R3. Naturally, when deriving
optimality conditions for multiple eigenvalues, one needs to be very careful in handling shape derivatives, as
they do not exist. The approach used in this article is based on the apparatus that was set up by Cox [18],
Chenais & Rousselet [50] and Chatelain & Choulli [15] to handle these difficulties. The relevant formulae will
be recalled in the course of this article. In a recent paper, Caubet, Dambrine & Mahadevan [13] developed
this semi-differential approach to accomodate the linear elasticity system.

Shape optimisation for vectorial operators. The literature devoted to shape optimisation problems
for vectorial operators is scarce, but growing. Of particular importance to us in this regard are the different
contributions to the study of isoperimetric inequalities for the curl operator in R3, that is, the optimisation
of the first positive eigenvalue of {

curl(u) = ξu in Ω ,

〈u, ν〉 = 0 on ∂Ω.

This problem is of paramount importance in the study of magnetic fields, and has a strong connection [14]
to the Stokes eigenvalue problem with a tangential flow condition, rather than a Dirichlet condition. To the
best of our knowledge, the main works on this curl-isoperimetric problems can be found, on the one hand, in
the works of Cantarella, DeTurck, Gluck and Teytel [11, 12] and, on the other hand, in the research of Enciso,
Gerner & Peraltas-Sala [21, 22, 28]. Let us briefly review their finding: in [11, 12], the authors, using explicit
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computations of eigenfunctions, observe the optimality of the ball among all concentric spherical shells with
a given volume constraint, but also conjecture that the minimiser of the curl-isoperimetric problem is a
“spheromak”, that is, a sphere where the south and north poles are glued together. In their paper, they
also give optimality conditions for the optimiser, which lead to the same type of conclusion as Corollary 1.
It is interesting to note that their analysis recovers parts of the semi-differentiability results of [15]. Before
we describe the results of [21, 22, 28] observe that Enciso, Gerner & Peraltas-Sala work with vector fields
that are not only incompressible, but also orthogonal to harmonic (i.e. curl and div free) fields. In [21, 22],
another take on the problem is introduced, and the authors investigate possible symmetries of optimisers.
In [22], Enciso & Peraltas-Sala investigate whether a solution of the curl-isoperimetric problem can have
axial symmetry; their conclusion is no, provided some regularity of the minimiser is assumed a priori. Their
results hinge on a variational analysis (à la Hadamard). In [21] on the other hand, they seek optimisers in
the class of convex domains, and they prove that one can not have “too regular” optimisers. Gerner, in [28],
went much further in the fine characterisation of possible optimisers, both in the euclidean and riemannian
settings . Although the adaptation of some of his results is not immediate, one of the necessary optimality
conditions we derive is inspired by [28, Theorem 2]. Finally, let us mention the recent work of Lamberti &
Zaccaron [40], in which, also using a semi-differential approach, the authors investigate the optimal shape
of an electromagnetic cavity.

The buckling problem. Let us conclude this bibliographical paragraph by mentioning a closely related
problem in the two-dimensional case, the buckling problem. Indeed, in dimension 2, assume Ω is simply
connected, so that we might write the first Dirichlet-Stokes eigenfunction u as

u =

(
−∂yψ
∂xψ

)
for some function ψ. Plugging this expression into (2) we deduce that{

−∂xxyψ − ∂yyyψ − ∂xp = λ1(Ω)∂yψ in Ω ,

−∂xxxψ − ∂yyxψ + ∂yp = λ1(Ω)∂xψ in Ω.

Differentiating the first equation with respect to y, the second with respect to x and summing the two, we

deduce that −∆2ψ = λ1(Ω)∆ψ. Furthermore, as

(
−∂yψ
∂xψ

)
=

(
0
0

)
on ∂Ω we deduce that ψ is constant on

∂Ω, and that ∂νψ = 0. Up to adding a constant to ψ, we may take ψ = 0 on ∂Ω. Overall, (ψ, λ1(Ω)) solves
the fourth order equation {

−∆2ψ = λ1(Ω)∆ψ in Ω ,

ψ = ∂νψ = 0 on ∂Ω.

In fact, with a bit more work, one can see that λ1(Ω) coincides with the eigenvalue

Λ(Ω) := min
v∈W 2,2(Ω)∩W 1,2

0 (Ω)

∫
Ω(∆v)2∫
Ω |∇v|2

.

This is the well-known buckled plate eigenvalue problem, leading to the spectral optimisation problem

inf
Ω⊂R2 ,|Ω|6c

Λ(Ω). (7)
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We refer to [31, Chapter 11] for more details, but let us underline the following aspects of the problem: first
of all, the existence of an optimal domain remained open until the contribution of Ashbaugh & Bucur [1]
and, later, of Stollenwerk [55, 54]. Second, this problem is related to a long-standing conjecture by Pólyà
& Szegö that asserts that the ball is a solution of this variational problem. A very active line of research
has focused on the computation of shape-derivatives for this problem and, more generally, for polyharmonic
problems. Regarding Hadamard type shape derivatives, we refer to [30]. For applications of this calculus to
polyharmonic problems, let us point to the numerous works of Buoso & Lamberti [7, 8, 9]. To the best of
our knowledge, the second-order derivative of the first eigenvalue at the ball was not known.

2 Proof of Theorem 1

We pick a minimising sequence {Ωk}k∈N for (5). By scaling invariance of F we might assume that |Ωk| does
not depend on k: there exists V0 > 0 such that |Ωk| = V0 for any k ∈ N. We consider the auxiliary problem

inf
Ω∈O ,|Ω|6V0

λ1(Ω). (8)

Our proof is in two steps. We first apply the concentration-compactness principle in order to show that one
might, in (8), further assume Ω ⊂ D for a fixed compact set D ⊂ Rd. We then investigate the existence of
an optimiser with this additional box constraint.

Let us consider, for any k ∈ N, the function wk defined as

wk := ‖uk‖

where for any k the function uk is an1 eigenfunction of Ωk. The function wk is extended by 0 outside of Ωk.
By definition and elementary computations, we have∫

Rd
w2
k =

∫
Ω
‖uk‖2 = 1,

∫
Rd
|∇wk|2 6

∫
Rd
‖∇uk‖2. (9)

By the concentration-compactness principle of Lions [44] we know that, up to extracting a subsequence
which we still denote {wk}k∈N with a slight abuse of notations, one of the following occurs:

(i) Concentration: there exists a function w ∈ L2(Rd;R+) and a sequence {yk}k∈N ∈ (Rd)N such that
wk(·+ yk) −−−→

k→∞
w in L2(Rd) and weakly in W 1,2(Rd).

(ii) Dichotomy: There exists α1 ∈ (0; 1), {yk}k∈N ∈ (Rd)N, two sequences {Rk, R′k}k∈N such that

Rk −R′k −−−−→
k→+∞

+∞, Rk , R
′
k −−−−→
k→+∞

+∞

and such that ∫
B(yk,Rk)

w2
k −−−−→
k→+∞

α1,

∫
B(yk,R

′
k)c
w2
k −−−−→
k→+∞

1− α1

and

lim inf
k→∞

(∫
Rd
|∇wk|2 −

∫
B(yk,Rk)

|∇wk|2 −
∫
B(yk,R

′
k)c
|∇wk|2

)
> 0.

1We do not rule out the possibility of Ωk having a multiple eigenvalue. Although one could easily discard this case by
invoking the fact that the first eigenvalue is generically simple, we do not require this.
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(iii) Vanishing: for any r > 0,

lim
k→∞

sup
y∈Rd

∫
B(y,r)

w2
k = 0.

In this first step of the proof, we rule out vanishing and dichotomy.

Vanishing does not occur. Let us exclude vanishing. By the exact same arguments as in [6, Lemma
3.3, Proof of Theorem 3.2] and (9), if the sequence {wk}k∈N vanishes, we have

lim sup
k→+∞

λ1(Ωk) = +∞.

This contradicts the fact that the sequence is minimising.

Dichotomy does not occur. Argue by contradiction and assume dichotomy holds. In that case, define

ηk :=
R′k −Rk

4
.

Introduce {ψk,1 , ψk,2}k∈N as two non-negative, radially (with respect to yk) symmetric, non-increasing func-
tions such that

ψk,1(x) =

{
1 in B(yk, Rk + ηk) ,

0 in B(yk, Rk + 2ηk)
c,

ψk,2(x) =

{
1 in B(yk, R

′
k − ηk)c ,

0 in B(yk, R
′
k − 2ηk)

and

‖∇ψk,i‖L∞ 6
1

ηk
, k ∈ N, i ∈ {1, 2}.

Now, let, for any k ∈ N and any i ∈ {1, 2}

vk,i := ψk,iuk.

Then, taking into account that ‖∇ψk,1‖L∞(Rd) , ‖∇ψk,1‖L∞(Rd) 6 1/ηk, we can proceed exactly as in [44,
Lemma III.1] to obtain ∫

Rd
‖vk,1‖2 →

k→∞
α1,

∫
Rd
‖vk,2‖2 →

k→∞
1− α1

and

lim inf
k→∞

(∫
Rd
‖∇uk‖2 −

∫
Rd
‖∇vk,1‖2 −

∫
Rd
‖∇vk,2‖2

)
> 0.

Up to iterating that construction, we can assume that {‖vk,1‖}k∈N is in a situation of concentration. In
particular, there exists v1 such that, up to a translation by a vector zk ∈ Rd (which we take equal to 0
without loss of generality),

vk,1 −−−−→
k→+∞

v1 strongly in L2(Rd), weakly in W 1,2(Rd)3.

Let us now observe that
∇ · v1 = 0
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in the sense of distributions. To prove this fact, let φ ∈ C∞c (Rd) and consider the quantity∫
Rd
〈vk,1,∇φ〉.

As φ is compactly supported, supp(φ)∩{∇·vk,1 6= 0} = ∅ for k large enough. Indeed, should this not be the
case, as ∇ ·vk,1 = ∇ ·uk = 0 in B(yk, Rk + ηk), we conclude that there exists x ∈ supp(φ)∩B(yk, Rk + ηk)

c.
Letting dist(E,F ) be the Hausdorff distance between two closed subset E ,F ⊂ Rd, this implies

dist (supp(φ),B(yk, Rk)) > ηk −−−−→
k→+∞

∞.

In particular, we deduce that
vk,1 →

k→∞
0 in L2

loc(Rd),

which contradicts the strong L2 convergence of {vk,1}k∈N, thereby leading to a contradiction. Thus,∫
Rd
〈vk,1,∇φ〉 = 0

for any k large enough. Passing to the limit provides the result.
Now, we know that

λ∗ := inf
Ω∈O ,|Ω|6V0

λ1(Ω) > min
i=1,2

lim inf
k→∞

{∫
Rd ‖∇vk,i‖2∫
Rd ‖vk,i‖2

}
.

If this minimum is reached for i = 1, then Ω∗ := {v1 6= 0} is an optimal domain. Else, we apply the
procedure once more (as in [6]) to {vk,2}k∈N. Either this sequence is in a situation of compactness, in
which case we are done, or it is once again in a situation of dichotomy, giving rise to two new sequences
{v1

k,2 ,v
2
k,2}k∈N, with {v1

k,2}k∈N in a situation of compactness. We then iterate the construction on v2
k,2 if

necessary. Either this process stops, in which case existence follows, or we obtain a decreasing sequence
{αj}j∈N ,j>2 such that

+∞∑
j=1

αj 6 1

and we have a sequence {vjk,2}k∈N ,j6Jk where Jk −−−−→
k→+∞

∞ such that for any j, {vjk,2}k∈N is in a situation

of concentration, and {{vJkk,2 6= 0}}k∈N is a minimising sequence.
Observe that if

∑∞
j=1 αj < 1, then vanishing holds for {vk,2}k∈N, which leads to a contradiction, so that

we can work under the assumption that
∞∑
j=1

αj = 1.

Consequently, we deduce that

λ∗ > lim inf
k→∞

∫
Rd ‖∇vk,1‖2 +

∑Jk
j=1

∫
Rd ‖∇vjk,2‖

2∫
Rd ‖vk,1‖2 +

∑Jk
j=1

∫
Rd ‖v

j
k,2‖2

.

Let

αk,1 :=

∫
Rd
‖vjk,1‖

2 which satisfies αk,1 →
k→∞

α1 > 0
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and

α̃k :=

Jk∑
j=1

∫
Rd
‖vjk,2‖

2 which satisfies α̃k,1 →
k→∞

1− α1.

Thus

λ∗ > lim inf
k→∞

∫
Rd ‖∇vk,1‖2

αk,1 + α̃k
+ lim inf

k→∞

∑Jk
j=1

∫
Rd ‖∇vjk,2‖

2

αk,1 + α̃k
.

Now, since αk,1 + α̃k →
k→∞

1 , αk,1 →
k→∞

α1, the fact that we have by construction

lim inf
k→∞

∫
Rd ‖∇vk,1‖2

α1
> λ∗

implies

lim inf
k→∞

∫
Rd ‖∇vk,1‖2

αk,1 + α̃k
> α1λ

∗.

Likewise,

lim inf
k→∞

∑Jk
j=1

∫
Rd ‖∇vjk,2‖

2

αk,1 + α̃k
> (1− α1)λ∗.

Consequently

λ∗ > lim inf
k→∞

∫
Rd ‖∇vk,1‖2 +

∑Jk
j=1

∫
Rd ‖∇vjk,2‖

2∫
Rd ‖vk,1‖2 +

∑Jk
j=1

∫
Rd ‖v

j
k,2‖2

> λ∗,

a contradiction. The result follows.
We deduce that we have concentration of the sequence, so that

vk →
k→∞

v in L2(Rd).

Define
Ω∗ := {v 6= 0}.

Ω∗ is a quasi-open set, and |Ω∗| 6 V0, as, up to a subsequence, 1Ω∗ 6 lim inf
k→∞

1{vk 6=0}. Furthermore,

λ1(Ω∗) 6

∫
Ω∗ ‖∇v‖2∫
Rd ‖v‖2

6 lim inf
k→∞

∫
Ω∗ ‖∇vk‖2∫
Rd ‖vk‖2

= λ∗,

where we used the weak W 1,2(Rd;Rd) convergence of the sequence {vk}k∈N.
It follows that Ω∗ solves Problem (8).

3 Proof of Theorem 2

Throughout our analysis, we will be using some basic facts about the Stokes eigenfunctions in B2, which we
thus first recall.
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3.1 Preliminaries

The first eigenpair in B2. We let E1(B2) be the first eigenspace associated with λ1(B2). We begin with
the following fact (see Remark 9):

Lemma 1. The eigenvalue λ1(B2) is simple: dim(E1(B2)) = 1. Furthermore,

λ1(B2) = j2
1,1,

where j1,1 is the first positive root of J1, the Bessel function of the first kind of order 1. Finally, E1(B2) is
spanned by the eigenfunction

uB2 :=
J1(j1,1r)√
π|J0(j1,1)|

(
− sin θ
cos θ

)
,

normalised in L2(B2), and the associated pressure is constant.

Remark 8 (A useful computation). We single out the following computations, which will prove useful
when studying the local optimality of the ball. Let us set c = 1/(

√
π|J0(j1,1)|), r =

√
x2 + y2 and f(r) =

J1(j1,1r)/r. For r > 0, one easily computes

∇uB2 = c

(
−xy

r f
′(r) −f(r)− y2

r f
′(r)

f(r) + x2

r f
′(r) xy

r f
′(r)

)
so that

∇uB2 = cf ′(1)

(
− cos θ sin θ − sin2 θ

cos2(θ) cos θ sin θ

)
on ∂Ω.

In particular, observe that

(∇uB2)ν = cf ′(1)

(
− sin(θ)
cos(θ)

)
.

While we single out this result for later reference, the following spectral decomposition of the Dirichlet-
Stokes operator in the ball is well-known:

Lemma 2. A Hilbert basis of eigenfunctions of the Dirichlet-Stokes operator is given, in polar coordinates,
by

φ0,k(r, θ) =
−J ′0(

√
λ0,kr)√

π|J0(
√
λ0,k)|

(
− sin θ
cos θ

)
, (10)

and

φj,k,m(r, θ) =
Jj(
√
λj,kr)− Jj(

√
λj,k)r

j√
λj,k|Jj(

√
λj,k)|r

j(−1)m+1Yj,m(θ)

(
cos θ
sin θ

)
+
−
√
λj,kJ

′
j(
√
λj,kr) + jJj(

√
λj,k)r

j−1√
λj,k|Jj(

√
λj,k)|

Yj,m+1(θ)

(
− sin θ
cos θ

) (11)

for j ∈ Z∗, k ∈ N∗ and m = 1, 2.
Here, (r, θ) are the usual polar coordinates (see [36, 41]). The functions Yj,m(θ) are defined by Yj,1(θ) =

1√
π

cos(jθ) and Yj,2(θ) = 1√
π

sin(jθ), with the agreement that Yj,3 = Yj,1, and Jj is the Bessel function of the

first kind of order j. Denoting by jj,k > 0 the kth positive zero of Jj, the eigenvalues of the Dirichlet-Stokes
operator are the doubly indexed sequence (λj,k)j∈Z,k∈N∗, where λj,k = j2

|j|+1,k is of multiplicity 1 if j = 0,
and 2 if j 6= 0.
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Remark 9. [Regarding Lemmata 1-2] Lemmata 1-2 are essentially contained in [36, 41], which provide
explicit computations of the eigen-elements of the Dirichlet-Stokes operator in special geometries. While
we refer to these articles for detailed computations, let us briefly indicate how they might be derived in a
straightforward manner: consider (uk, λk(B2)) an eigenpair of the Dirichlet-Stokes operator. As ∇ ·uk = 0,
there exists a scalar function ψk such that

uk = curl(ψk) :=

(
−∂yψk
∂xψk

)
and, taking the (2 dimensional) curl of (2), it appears that ψk solves{

−∆2ψk = λk(B2)∆ψk in B2 ,

ψk = ∂νψk = 0 on ∂B2.
(12)

In other words, ψk is an eigenvalue of the aforementioned buckling problem (see section 1.3). In other words,
knowing the eigenspaces of the buckling problem leads to determining the eigenspaces of the Dirichlet-Stokes
operator. However, the eigenspaces of the buckling operator can be easily computed in the usual radial
coordinates. It should be observed that the three-dimensional case, although it follows a similar pattern
(boiling it down to a scalar operator) is much more involved. We refer to Appendix A.

Basic results about the shape differentiability of eigenfunctions and eigenvalues. Since λ1(B2)
is simple, the following differentiability result follows from the implicit function theorem of Mignot, Murat
& Puel [46]:

Lemma 3. Let
X := {Φ ∈W 3,∞(R2;R2) ,Φ compactly supported}.

For any C 2 domain Ω such that λ1(Ω) is simple, the eigenvalue mapping Ω 7→ λ1(Ω) is twice differentiable
at Ω in the following sense: for any Φ ∈ X , the map fΦ : t 7→ λ1 ((Id + tΦ)Ω) is twice differentiable at
t = 0. We will use the notations

〈dλ1(Ω),Φ〉 := f ′Φ(0) , 〈d2λ1(Ω)Φ,Φ〉 := f ′′Φ(0).

Similarly, the mapping Ω 7→ uΩ is twice differentiable at Ω, where uΩ is the first Dirichlet-Stokes normalized
eigenfunction of Ω, in the sense that the mapping gΦ : t 7→ u(Id+tΦ)Ω is twice differentiable at t = 0. We let
u′Φ be its derivative at t = 0.

For a detailed introduction to the Hadamard shape calculus, we refer to [34, Chapter 5] and to [30]. To
proceed with the proof of Theorem 2, we need tractable expressions for the first and second-order shape
derivatives of the eigenvalue at a domain Ω.

Proposition 1. For any C 2 domain Ω such that λ1(Ω) is simple, let uΩ be its associated first eigenfunction.
For any Φ ∈X , the shape derivative u′Φ solves

−∆u′Φ +∇p′ = λ1(Ω)u′Φ + 〈dλ1(Ω),Φ〉uΩ in Ω

∇ · u′Φ = 0 in Ω

u′Φ = −∇uΩν〈Φ, ν〉 on ∂Ω ,∫
Ω〈uΩ,u

′
Φ〉 = 0.

(13)
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The first order derivative of λ1 is

〈dλ1(Ω),Φ〉 = −
∫
∂Ω
‖(∇uΩ)ν‖2〈Φ, ν〉. (14)

If, in addition, the vector field Φ is normal to ∂Ω, the second-order shape derivative of λ1 at Ω is given by

〈d2λ1(Ω)Φ,Φ〉 = 2

∫
∂Ω
〈u′Φ, (∇u′Φ)ν〉+

∫
∂Ω
H‖(∇uΩ)ν‖2〈Φ, ν〉2 − 2

∫
∂Ω
〈(∇uΩ)ν,∇pΩ〉 (15)

where H is the mean curvature of ∂Ω and pΩ is the pressure field associated with uΩ.

Proof of Proposition 1. That u′Φ solves (13) is a standard consequence of general formulae for the shape
differentiation of Dirichlet boundary value problem, and we refer to [34, Chapter 5] for the detailed compu-
tations. To derive the expression of 〈dλ1(Ω),Φ〉, multiply (13) by uΩ to obtain:

〈dλ1(Ω),Φ〉 = 〈dλ1(Ω),Φ〉
∫

Ω
‖uΩ‖2

(
since

∫
Ω
‖uΩ‖2 = 1

)
=

∫
Ω
∇u′Φ : ∇uΩ −

∫
∂Ω
〈(∇u′Φ)ν,∇uΩ〉︸ ︷︷ ︸

=0 since uΩ=0 on ∂Ω

+

∫
Ω
〈∇p′,uΩ〉︸ ︷︷ ︸

=0 since ∇·uΩ=0

−λ1(Ω)

∫
Ω
〈u′Φ,uΩ〉︸ ︷︷ ︸

=0 since
∫
Ω〈uΩ ,u

′
Φ〉=0

= −
∫

Ω
〈∆uΩ ,u

′
Φ〉+

∫
∂Ω
〈(∇uΩ)ν,u′Φ〉

= −
∫

Ω
〈∇pΩ,u

′
Φ〉︸ ︷︷ ︸

=0 since ∇·u′Φ=0

+λ1(Ω)

∫
Ω
〈u′Φ,uΩ〉︸ ︷︷ ︸

=0 since
∫
Ω〈uΩ ,u

′
Φ〉=0

+

∫
∂Ω
〈(∇uΩ)ν,u′Φ〉

= −
∫
∂Ω
‖(∇uΩ)ν‖2〈Φ, ν〉.

To obtain the expression for 〈d2λ1(Ω)Φ,Φ〉 for normal vector fields, it suffices to apply the Hadamard
formula for integrals on variable boundaries [34, Proposition 5.4.18]. This yields

〈d2λ1(Ω)Φ,Φ〉 = −2

∫
∂Ω
〈(∇u′Φ)ν, (∇uΩ)ν〉〈Φ, ν〉

−
∫
∂Ω

(
H‖(∇uΩ)ν‖2 +

∂||(∇uΩ)ν||2

∂ν

)
〈Φ, ν〉2.

However, recall that, introducing ∆τ the tangential laplacian on ∂Ω, we have

∆u = ∆τu +H(∇u)ν +
∂((∇u)ν)

∂ν
.

In particular, this implies, taking into account that ∆τuΩ = 0 ,uΩ = 0 on ∂Ω,

∂((∇uΩ)ν)

∂ν
= ∆uΩ −∆τuΩ −H(∇uΩ)ν = −λ1(Ω)uΩ −∇pΩ −H(∇uΩ)ν = −∇pΩ −H(∇uΩ)ν.

Consequently,

∂‖(∇uΩ)ν‖2

∂ν
= 2

〈
(∇uΩ)ν,

∂((∇uΩ)ν)

∂ν

〉
= −2〈∇pΩ , (∇uΩ)ν〉 − 2H‖(∇uΩ)ν‖2, (16)
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so that

H‖(∇uΩ)ν‖2 +
∂||(∇uΩ)ν||2

∂ν
= −H‖(∇uΩ)ν‖2 − 2〈∇pΩ , (∇uΩ)ν〉

and, finally, since (∇uΩ)ν〈Φ, ν〉 = −u′Φ on ∂Ω,

〈d2λ1(Ω)Φ,Φ〉 = −2

∫
∂Ω
〈(∇u′Φ)ν, (∇uΩ)ν〉〈Φ, ν〉 −

∫
∂Ω

(
H‖(∇uΩ)ν‖2 +

∂||(∇uΩ)ν||2

∂ν

)
〈Φ, ν〉2

= 2

∫
∂Ω
〈u′Φ, (∇u′Φ)ν〉+

∫
∂Ω
H‖(∇uΩ)ν‖2〈Φ, ν〉2 − 2

∫
∂Ω
〈(∇uΩ)ν,∇pΩ〉〈Φ, ν〉2

as claimed.

3.2 The ball is a critical point for Problem (5) (in dimension two)

We first prove that B2 is a critical point for F (recall that F(Ω) = |Ω|λ1(Ω)).

Proposition 2. The ball B2 is a critical point for the problem (5): for any Φ ∈X , there holds

〈dF(B2),Φ〉 = 0.

Proof of Proposition 2. Fix Φ ∈X . Recall that X has been introduced in Lemma 3. The derivative of the
volume Vol : Ω 7→ |Ω| at B2 in the direction Φ is given by

〈dVol(B2),Φ〉 =

∫
∂B2

〈Φ, ν〉. (17)

For the sake of notational convenience, introduce

ϕ := 〈Φ, ν〉.

Then, (17) and Proposition 1 yield

〈dF(B2),Φ〉 = λ1(B2)

∫
∂B2

ϕ− |B2|
∫
∂B2

‖(∇uB2)ν‖2ϕ.

Consequently, B2 is a critical point for F if, and only if,

|B2| · ‖(∇uB2)ν‖2 = λ1(B2). (18)

Let us now prove that (18) indeed holds. Recall from Remark 8 that if we introduce f(r) := J1(j1,1r)
then we have, on ∂Ω,

(∇uB2)ν = cf ′(1)

(
− sin(θ)
cos(θ)

)
, with c =

1√
π|J0(j1,1)|

whence ‖(∇uB2)ν‖2 =
f ′(1)2

πJ0(j1,1)2
.

Since J ′1(x) = J0(x)− J1(x)/x for any x > 0, we further derive

f ′(1) = j1,1J
′
1(j1,1) = j1,1J0(j1,1).

Consequently,

‖(∇uB2)ν‖2 =
f ′(1)2

πJ0(j1,1)2
=
j2
1,1

π
=
j2
1,1

|B2|
.

The conclusion follows.
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3.3 The ball satisfies strong second-order conditions for Problem (5)

In this section, we turn to second-order optimality conditions for F at B2.

Expression of the second order derivative of F at B2. By the Hadamard structure theorem, since
B2 is a critical point of F , the second order derivative 〈d2F(B2)Φ,Φ〉 only depends on the normal trace
ϕ = 〈Φ, ν〉 of Φ. Let us show the following:

Lemma 4. For any Φ ∈X , there holds

〈d2F(B2)Φ,Φ〉 = 2λ1(B2)

(∫
∂B2

ϕ2

)
− 2λ1(B2)

π

(∫
∂B2

ϕ

)2

+ 2πI[u′Φ]

where I is a quadratic form defined as

I[u′Φ] =

∫
B2

‖∇u′Φ‖2 − λ1(B2)

∫
B2

‖u′Φ‖2.

Proof of Lemma 4. Observe that we have

〈d2F(B2)Φ,Φ〉 = 〈d2Vol(B2)Φ,Φ〉λ1(B2) + 2〈dVol(B2),Φ〉〈dλ1(B1),Φ〉+ |B2| · 〈d2λ1(B2)Φ,Φ〉.

However, we have

〈d2Vol(B2)Φ,Φ〉 =

∫
∂B2

Hϕ2.

Using Proposition 1, the fact that pB2 , the pressure, is constant (see Lemma 1) and that H = 1 we obtain

〈d2F(B2)Φ,Φ〉 = λ1(B2)

∫
∂B2

ϕ2 − 2

∫
∂B2

ϕ

∫
∂B2

‖(∇uB2)ν‖2ϕ

+ 2|B2| ·
∫
∂B2

〈(∇u′Φ)ν,u′Φ〉+ |B2| ·
∫
∂B2

‖(∇uB2)ν‖2ϕ2.

From (18) this equation simplifies as

〈d2F(B2)Φ,Φ〉 = 2λ1(B2)

(∫
∂B2

ϕ2

)
− 2λ1(B2)

|B2|

(∫
∂B2

ϕ

)2

+ 2|B2| ·
∫
∂B2

〈(∇u′Φ)ν,u′Φ〉

= 2λ1(B2)

(∫
∂B2

ϕ2

)
− 2λ1(B2)

π

(∫
∂B2

ϕ

)2

+ 2π ·
∫
∂B2

〈(∇u′Φ)ν,u′Φ〉.

Now, multiply (13) by u′Φ and integrate by parts. We obtain∫
B2

〈u′Φ,∆u′Φ〉 =

∫
B2

〈u′Φ,∇p′〉 − λ1(B2)

∫
B2

‖u′Φ‖2 − 〈dλ1(B1),Φ〉
∫
B2

〈u,u′Φ〉

= −λ1(B2)

∫
B2

‖u′Φ‖2.
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To go from the first to the second line, we used the orthogonality of uB2 and of u′Φ, as well as the following
fact: ∫

B2

〈u′Φ,∇p′〉 = −
∫
B2

p′divu′Φ +

∫
∂B2

p′〈u′Φ, ν〉

=

∫
∂B2

p′〈u′Φ, ν〉

= −
∫
∂B2

p′〈(∇uB2)ν, ν〉ϕ

= 0.

We used again, in this last part, the fact that 〈(∇uB2)ν, ν = 0〉 (see Remark 7). Consequently, we obtain∫
∂B2

〈(∇u′Φ)ν,u′Φ〉 =

∫
B2

‖∇u′Φ‖2 +

∫
B2

〈u′Φ,∆u′Φ〉 =

∫
B2

‖∇u′Φ‖2 − λ1(B2)

∫
B2

‖uΦ‖2.

Our main lemma is the following:

Lemma 5. There exists c0 > 0 such that, for any Φ ∈ X such that ϕ = 〈Φ, ν〉 ∈ {1, cos, sin}⊥ (for the L2

scalar product on L2(∂B2)) there holds

〈d2F(B2)Φ,Φ〉 > c0‖ϕ‖2
W

1
2 ,2(∂B2)

.

The proof of this lemma relies on a diagonalisation of the quadratic form I.

Remark 10. The vector fields Φ such that ϕ ∈ Span{cos, sin, 1} correspond to translation and dilations; of
course, F is constant along such deformations, whence the need to assume ϕ ∈ Span{1, sin, cos}⊥ to obtain
coercivity.

Diagonalisation of the quadratic form I. Write uB2 = (u1, u2)>, and u′Φ = (u′Φ,1, u
′
Φ,2)>. With a

slight abuse of notation, we write, in polar coordinates, uB2(x) = u(r, θ) = φ0,1(r, θ)~eθ, where φ0,1 is given

by (10) and ~eθ =

(
− sin θ
cos θ

)
. Similarly, as we know that we can assume the perturbation Φ to be normal,

we identify Φ with ϕ, and we decompose ϕ : ∂B2 → R as a Fourier series by considering the two sequences
(αn)n∈N and (βn)n∈N in `2(N) such that

ϕ(θ) =

+∞∑
n=0

(αn cos(nθ) + βn sin(nθ)). (19)

Note that, since J1 = −J ′0, one has in particular

u1(r, θ) = c1J1(j1,1r) sin θ and u2(r, θ) = c1J1(j1,1r) cos θ (20)

where

c1 =
1√

π|J0(j1,1)|
. (21)
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As div(u′Φ) = 0, we can write

u′Φ =

(
−∂yψ′Φ
∂xψ

′
Φ

)
where ψΦ′ ∈W 2,3(B2). Taking the curl of (13) it appears that ψ′Φ satisfies

∆2ψ′Φ + λ1(B2)∆ψ′Φ = 0 in B2.

As ∆ψ′Φ + λ1(B2)ψ′Φ is harmonic, there exist (cn)n∈N , (dn)n∈N ∈ `2(N) such that

∆ψ′Φ + λ1(B2)ψ′Φ = λ1(B2)

+∞∑
n=0

(cn cos(nθ) + dn sin(nθ))rn.

Observe that the function G given in polar coordinates by G : (r, θ) 7→
∑+∞

n=0(cn cos(nθ) + dn sin(nθ))rn

is a particular solution of this equation in B2. As the function z given in polar coordinates by z : (r, θ) 7→
ψ′Φ(r, θ) − G(r, θ) solves ∆z + λ1(B2)z = 0, a separation of variables yields the existence of two sequences
(an)n∈N , (bn)n∈N ∈ `2(N) such that

ψ′Φ(r, θ) =
+∞∑
n=0

((an cos(nθ) + bn sin(nθ))Jn(j1,1r) + (cn cos(nθ) + dn sin(nθ))rn) . (22)

Let us now identify all coefficients.

Lemma 6. For every n > 2, one has

an =
j1,1√

π (nJn(j1,1)− j1,1J ′n(j1,1))
αn, (23)

bn =
j1,1√

π (nJn(j1,1)− j1,1J ′n(j1,1))
βn, (24)

cn = − j1,1Jn(j1,1)√
π (nJn(j1,1)− j1,1J ′n(j1,1))

αn, (25)

dn = − j1,1Jn(j1,1)√
π (nJn(j1,1)− j1,1J ′n(j1,1))

βn. (26)

Proof of Lemma 6. In what follows, to determine the coefficients an, bn, cn, dn, we will exploit (22) and the
boundary conditions

u′1 = −
∂ψ′Φ
∂y

= −∂u1

∂ν
ϕ on ∂B2 and u′2 =

∂ψ′Φ
∂x

= −∂u2

∂ν
ϕ on ∂B2.

As J ′1(x) = J0(x)−J1(x)/x for any x > 0, we deduce that J ′1(j1,1) = J0(j1,1) < 0. From Remark 8, one gets(
u′1
u′2

)
=

J0(j1,1)

|J0(j1,1)|
· j1,1√

π

(
− sin θ
cos θ

)
ϕ(θ) = −j1,1√

π

(
− sin θ
cos θ

)
ϕ(θ) on ∂B2.
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Using that u′1 = −∂ψ′Φ/∂y and u′2 = ∂ψ′Φ/∂x, it follows that

u′1 = − sin θ
∂ψ′Φ
∂r
− cos θ

∂ψ′Φ
∂θ

∣∣∣∣
r=1

= sin θ
j1,1√
π
ϕ(θ)

u′2 = cos θ
∂ψ′Φ
∂r
− sin θ

∂ψ′Φ
∂θ

∣∣∣∣
r=1

= − cos θ
j1,1√
π
ϕ(θ)

From these two equations, we immediately obtain

∂ψ′Φ
∂r

= −j1,1√
π
ϕ(θ) and

∂ψ′Φ
∂θ

= 0.

Now since
∂ψ′Φ
∂r

=
+∞∑
n=0

j1,1J
′
n(j1,1)(an cos(nθ) + bn sin(nθ)) + n(cn cos(nθ) + dn sin(nθ))

and
∂ψ′Φ
∂θ

=
+∞∑
n=0

nJn(j1,1)(bn cos(nθ)− an sin(nθ)) + n(dn cos(nθ)− cn sin(nθ))

we obtain, by identification the four relations

j1,1J
′
n(j1,1)an + ncn = −j1,1√

π
αn (27)

j1,1J
′
n(j1,1)bn + ndn = −j1,1√

π
βn (28)

Jn(j1,1)bn + dn = 0 (29)

Jn(j1,1)an + cn = 0 (30)

We obtain the desired expression by solving the two systems in an, cn and bn, dn respectively.

Proof of Lemma 5. Let us compute I: we have

I[u′Φ] =

∫
∂B2

(
u′1
∂u′1
∂ν

+ u′2
∂u′2
∂ν

)
dσ

= −j1,1√
π

∫
∂B2

ϕ sin θ

[
sin θ

∂2ψ′Φ
∂r2

− cos θ
∂ψ′Φ
∂θ

+ cos θ
∂2ψ′Φ
∂r∂θ

]
dσ

+
j1,1√
π

∫
∂B2

ϕ cos θ

[
− cos θ

∂2ψ′Φ
∂r2

− sin θ
∂ψ′Φ
∂θ

+ sin θ
∂2ψ′Φ
∂r∂θ

]
dσ

=
j1,1√
π

∫
∂B2

ϕ
∂2ψ′Φ
∂r2

.

Using the expansion (22) of ψ, we get

∂2ψ′Φ
∂r2

∣∣∣∣
∂B2

=
+∞∑
n=0

j2
1,1(an cos θ + bn sin θ)J ′′n(j1,1) +

+∞∑
n=1

n(n− 1)(cn cos(nθ) + dn sin(nθ)),

21



and we thus obtain

I[u′Φ] = −j1,1√
π

[
πj2

1,1

+∞∑
n=1

(anαn + bnβn)J ′′n(j1,1) + π
+∞∑
n=1

n(n− 1)(cnαn + dnβn)

]

= −j2
1,1

+∞∑
n=1

j2
1,1J

′′
n(j1,1)− n(n− 1)Jn(j1,1)

nJn(j1,1)− j1,1J ′n(j1,1)
(α2

n + β2
n).

Now, by definition of Bessel functions of the first order, one has

J ′′n(x) +
1

x
J ′n(x) +

(
1− n2

x2

)
Jn(x) = 0

for every x > 0. We infer that j2
1,1J

′′
n(j1,1) − n(n − 1)Jn(j1,1) = (n − j2

1,1)Jn(j1,1) − j1,1J ′n(j1,1), yielding
finally

I = −j2
1,1

+∞∑
n=1

(n− j2
1,1)Jn(j1,1)− j1,1J ′n(j1,1)

nJn(j1,1)− j1,1J ′n(j1,1)
(α2

n + β2
n). (31)

Recall that we assume ϕ ∈ 〈1〉⊥ where 1 is the constant function and 〈1〉⊥ is its L2 orthogonal subspace.
According to (31), one has

〈d2F(B2)Φ,Φ〉 = 2πI[u′Φ] + 2λ1(B2)

∫
∂B2

ϕ2 − 2λ1(B2)

π

(∫
∂B2

ϕ

)2

= 2πj2
1,1

+∞∑
n=1

nJn(j1,1)− j1,1J ′n(j1,1)− (n− j2
1,1)Jn(j1,1)− j1,1J ′n(j1,1)

nJn(j1,1) + j1,1J ′n(j1,1)
(α2

n + β2
n).

Furthermore, recall that xJ ′n(x) = nJn(x) − xJn+1(x) for every x > 0, so that j1,1J
′
n(j1,1) − nJn(j1,1) =

−j1,1Jn+1(j1,1).
This leads to

〈d2F(B2)Φ,Φ〉 = 2πj4
1,1

+∞∑
n=2

γn(α2
n + β2

n) with γn =
Jn(j1,1)

j1,1Jn+1(j1,1)
. (32)

(we recall that we have supposed ϕ orthogonal to 1, cos θ, sin θ, so a0 = a1 = b1 = 0. Since the first positive
zero of Jn is greater than j1,1 for all n > 2, one has γn > 0 for every n > 2. Furthermore, using that
Jn(x) ∼ 1

n!

(
x
2

)n
as n→ +∞, we infer that

γn ∼ 2(n+ 1)/j2
1,1 as n→ +∞.

Since the H1/2 norm is given by

‖ϕ‖H1/2 =
∞∑
n=2

n(a2
n + b2n)

the conclusion follows.
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4 Necessary optimality conditions: proof of Theorem 4

As alluded to in the introduction, Theorem 3 follows from Theorem 4, so that it is clearer to begin with
the proof of the latter (nevertheless, we give a proof of Theorem 3 in section 5 that only relies on the
computations of the semi-differential analysed in the present section). This theorem relies on several results
on the semi-differentiability of eigenvalues. To write things down in a precise way, we consider a domain
Ω whose boundary is of class C 2,α with α ∈ (0, 1). The solution u thus belongs to C2,α(Ω) by standard
elliptic regularity. Although λ1(Ω) may not be simple, it has finite multiplicity, say N , and the map F is
semi-shape differentiable at Ω [20, Theorem 2.1, Chapter 1] (see also [13, Theorem 2.1 and Remark 2.2] and
[15]), in the sense that, for any vector field Φ ∈X , the limit

〈∂F(Ω),Φ〉 := lim
t↘0

F((Id + tΦ)Ω)−F(Ω)

t

exists. This fact relies on the semi-differentiability of λ1. By [20, Theorem 2.1, Chapter 1], if we let E1

denote the first eigenspace associated with λ1(Ω), there holds

〈∂λ1(Ω),Φ〉 = − min
u∈E1 ,

∫
Ω ‖u‖2=1

∫
∂Ω
‖(∇u)ν‖2〈Φ, ν〉.

Let {u1, . . . ,uN} be an orthonormal basis of E1. Using the differentiability of the volume, we deduce that

〈∂F(Ω),Φ〉 =
2

3
λ1(Ω)|Ω|−

1
3

∫
∂Ω
〈Φ, ν〉 − |Ω|

2
3 min
u∈E1 ,

∫
Ω ‖u‖2=1

∫
∂Ω
‖(∇u)ν‖2〈Φ, ν〉

= min
u∈E1 ,

∫
Ω ‖u‖2=1

∫
∂Ω

(
2

3
λ1(Ω)|Ω|−

1
3 − |Ω|

2
3 · ‖(∇u)ν‖2

)
〈Φ, ν〉

= min
(αi)i=1,...,N ,

∑N
i=1 α

2
i=1

N∑
i,j=1

∫
∂Ω

(
2

3
λ1(Ω)|Ω|−

1
3α2

i − |Ω|
2
3αiαj〈(∇ui)ν, (∇uj)ν〉

)
〈Φ, ν〉.

Let

MΦ :=
2

3
λ1(Ω)|Ω|−

1
3

∫
∂Ω
〈Φ, ν〉I3 − |Ω|

2
3

(∫
∂Ω
〈(∇ui)ν, (∇uj)ν〉〈Φ, ν〉

)
16i,j6N

.

I3 is the 3 × 3 identity matrix. MΦ is a real, symmetric matrix, and is thus diagonalisable. Let ΣΦ be its
spectrum. If Ω∗ is optimal, then the optimality conditions read:

∀Φ ∈X ,ΣΦ ⊂ [0; +∞).

However, as Σ−Φ = −ΣΦ, we deduce that, if Ω is optimal then

∀Φ ∈X ,ΣΦ = {0}.

As MΦ is symmetric, we deduce that, for any Φ, there holds

MΦ = 0.

We thus obtain the following fact: if Ω∗ is optimal then for any (i, j) ∈ {1, . . . , N}2, for any x ∈ ∂Ω∗,

〈(∇ui)ν, (∇uj)ν〉 =
2

3
· λ1(Ω∗)

|Ω∗|
δi,j =

1

σ2
Ω∗
δi,j .
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In this expression, δi,j is the usual Kronecker symbol and σ2
Ω∗ = 3

2 ·
|Ω∗|
λ1(Ω∗) .

However, since each ui is divergence free we have 〈(∇ui)ν, ν〉 = 0 (see Remark 7). In particular, the
multiplicity of the first eigenspace E1 is at most 2 (we recall that we work in dimension 3).

Now, let us argue by contradiction and assume that λ1(Ω∗) has multiplicity 2. Let (u1,u2) be an or-
thonormal basis of E1. From the previous computation, we deduce that, for any x ∈ ∂Ω∗, {σΩ∗(∇u1)ν, σΩ∗(∇u2)ν}
is an orthonormal basis of the tangent plane Tx(∂Ω). Let us now argue using a scheme of proof inspired by
[28, Proof of Theorem 2] to reach a contradiction.

For i = 1, 2, let vi be the solution of
−∆vi +∇pi = λ1(Ω∗)vi + ωui in Ω∗ ,

∇ · vi = 0 in Ω∗ ,

vi ∈ E⊥1 ,

vi = −(∇ui)ν on ∂Ω∗,

(33)

where E⊥1 is the L2-orthogonal subspace to E1 and the constant ω is defined by

ω = −
∫
∂Ω∗
‖(∇ui)ν‖2 = −2

3
Per(∂Ω∗) · λ1(Ω∗)

|Ω∗|
. (34)

We have the following result:

Lemma 7. For i = 1, 2, vi is uniquely defined.

Proof of Lemma 7. The uniqueness of vi follows from the Fredholm alternative. Regarding the existence of
vi, it is clear that the energy functional

E : W 1,2
0 (Ω;R3) 3 v 7→ 1

2

∫
Ω∗
‖∇v‖2 − λ1(Ω∗)

2

∫
Ω∗
‖v‖2

is coercive on
Xi := {v ∈W 1,2

0 (Ω;R3) ,∇ · v = 0 ,v = −(∇ui)ν on ∂Ω∗} ∩ E⊥1 .

We let vi be a minimiser of E on Xi. In particular, from the Euler-Lagrange equation we deduce that

−∆vi − λ1(Ω∗)vi ∈
(
{v ∈W 1,2

0 (Ω;R3) ,∇ · v = 0} ∩ E⊥1
)
.

Thus, there exist a function pi and two coefficients (αi,j)j=1,2 such that

−∆vi − λ1(Ω∗)vi = −∇pi +
∑
j=1,2

αi,juj .

Multiplying by uj , using the fact that (∇ui)ν and (∇uj)ν are orthogonal on ∂Ω∗, we deduce that

αi,j = ωδi,j

where ω is defined by (34).
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Turning back to the proof of Theorem 4, let us write vi = (vi,k)16k63 for i = 1, 2 and consider the scalar
function 〈v1,v2〉 defined by 〈v1,v2〉(·) =

∑3
k=1 v1,k(·)v2,k(·).

Then, denoting by∇(〈v1,v2〉) the gradient of 〈v1,v2〉 and still retaining, with a slight abuse of notations,
the notation ∇vi for the Jacobian matrix of vi, observe that

∇(〈v1,v2〉) = (∇v1)v2 + (∇v2)v1.

Since v1 and v2 are orthogonal on ∂Ω∗, we deduce that, letting Xτ denote the tangential part of a vector
field X on ∂Ω∗, there holds

((∇v1)v2)τ = − ((∇v2)v1)τ .

Furthermore, since ∇〈v1,v2〉 is colinear to ν, and since v1 is orthogonal to ν there holds

0 = 〈v1,∇〈v1,v2〉〉.

Developing the gradient yields

0 = 〈v1,∇〈v1,v2〉〉. = 〈v1, (∇v1)v2〉+ 〈v1, (∇v2)v1〉

= 〈v1, (∇v2)v1〉+
∑
i,j

v1,iv2,j
∂v1,i

∂xj
= 〈v1, (∇v2)v1〉+

1

2

∑
i,j

v2,j

∂v2
1,i

∂xj

= 〈v1, (∇v2)v1〉

a.e. on ∂Ω, where we used once again the optimality condition to write that ‖v1‖2 is constant on ∂Ω∗, and
the fact that v2 is tangential.

Similarly,
0 = 〈v2, (∇v1)v2〉 = −〈v2, (∇v2)v1〉.

Here again the fact that v2 is tangential is instrumental. Thus (∇v2)v1 is orthogonal to both v1 and v2, so
that there exists a function f : ∂Ω→ R satisfying

(∇v2(x))v1(x) = f(x)ν(x), x ∈ ∂Ω.

For the same reason,
(∇v1(x))v2(x) = g(x)ν(x), a.e. x ∈ ∂Ω

for some function g. Finally, letting [X,Y ] be the Lie bracket of two vector fields,

[v1,v2] = (∇v1)v2 − (∇v2)v1 = (f − g)ν on ∂Ω.

However, as v1 and v2 are both tangential, so is their Lie bracket, whence [v1,v2] = 0. In particular,
this implies that ∂Ω∗ admits a set of two pointwise orthogonal, commuting vector fields. This implies that
the Riemann tensor associated with ∂Ω∗ endowed with the induced metric is zero (we refer for instance to
[39, Theorem 3.1.7] or [42, Theorem 7.3 and its proof]). In particular, the Gauß curvature of ∂Ω∗ is zero
everywhere, which is impossible.
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5 The ball does not minimise F in dimension 3: proof of Theorem 3

As in the two-dimensional case, we need to describe precisely the eigenspace associated with λ1(B3). The
description of this first eigenvalue is less standard and mostly due to Saks [51]. However, [51] is quite an
involved article and, for the sake of convenience, we recall the main steps of [51] that we use to derive the
results of this preliminary section in Appendix A.

Let ω > 0 be the first positive root of the equation tan(x) = x. The main result is the following:

Proposition 3. λ1(B3) is equal to ω2 and has multiplicity 3. An orthogonal basis of the associated eigenspace
E1 is given by U1 = ψ(r)

 0
z
−y

 ,U2 = ψ(r)

−z0
x

 ,U3 = ψ(r)

−yx
0


where

ψ(r) =
sin(ωr)

ω2r3
− cos(ωr)

ωr2
.

Finally, for any i ∈ {1, 2, 3}, there holds∫
B3

‖Ui‖2 =
4π

3ω4

(
ω2 − sin2 ω

)
=

4π

3
cos2 ω =: A2.

As mentioned, we prove this multiplicity result in Appendix A. In particular, applying Theorem 4, the
conclusion follows.

Let us now give another proof of Theorem 3 that only relies on the analysis of the semi-differential as
given in section 4. Recall that the semi-differential of λ1 at B3 in direction Φ ∈ X (see Lemma 3 for the
definition of X ) reads

〈∂λ1(B3),Φ〉 = min
U∈Span{Ui/A}16i63

‖U‖L2(B3)=1

−
∫
∂B3

‖∇Uν‖2〈Φ, ν〉.

It follows that

〈∂λ1(B3),Φ〉 = min
(αi)16i63∈R3

α2
1+α2

2+α2
3=1

− 1

A2

∫
∂B3

∥∥∥∥∥
3∑
i=1

αi∇Uiν

∥∥∥∥∥
2

〈Φ, ν〉

=
1

A2
µ1 (M∂B3(〈Φ, ν〉)) ,

where µ1 (M∂B3(〈Φ, ν〉)) denotes the lowest eigenvalue of the matrix

M∂B3(〈Φ, ν〉) =

(
−
∫
∂B3

(∇Uiν · ∇Ujν) 〈Φ, ν〉
)

16i,j63

.

From the explicit expressions for the vector fields Ui provided in Proposition 3, one computes successively

∇U1ν =

 0
zψ′(1)
−yψ′(1)

 , ∇U2ν =

−zψ′(1)
0

xψ′(1)

 , ∇U3ν =

−yψ′(1)
xψ′(1)

0
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and

M∂B3(〈Φ, ν〉) = ψ′(1)2

−
∫
∂B3

(y2 + z2)〈Φ, ν〉
∫
∂B3

xy〈Φ, ν〉 −
∫
∂B3

xz〈Φ, ν〉∫
∂B3

xy〈Φ, ν〉 −
∫
∂B3

(x2 + z2)〈Φ, ν〉 −
∫
∂B3

yz〈Φ, ν〉
−
∫
∂B3

xz〈Φ, ν〉 −
∫
∂B3

yz〈Φ, ν〉 −
∫
∂B3

(x2 + y2)〈Φ, ν〉

 .

Furthermore, one easily computes ψ′(1) = sinω 6= 0. Observe that M∂B3(〈Φ, ν〉) is real symmetric. We
infer from the previous computations that the semi-differential of F , defined by (5), at B3 in direction Φ is
given by

〈∂F(B3),Φ〉 =
2

3
λ1(B3)|B3|−1/3

∫
∂B3

〈Φ, ν〉+
|B3|2/3

A2
µ1 (M∂B3(〈Φ, ν〉))

Moreover, since
|B3|
A2

=
4π

3
· 3ω2

4π sin2 ω
=

ω2

sin2 ω
,

it follows that

〈∂F(B3),Φ〉 = ω2|B3|−1/3

(
2

3

∫
∂B3

〈Φ, ν〉+
1

sin2 ω
µ1 (M∂B3(〈Φ, ν〉))

)
= ω2|B3|−1/3µ1

(
M̂Φ

)
where M̂Φ denotes the 3× 3 matrix

M̂Φ :=
2

3

∫
∂B3

〈Φ, ν〉 I3 +
1

sin2 ω
M∂B3(〈Φ, ν〉),

I3 is the identity matrix of size 3 and µ1

(
M̂Φ

)
denotes the lowest eigenvalue of the matrix M̂Φ.

Observe that the trace of the matrix M̂Φ is

Tr M̂Φ =

(
2− 2

sin2 ω

sin2 ω

)∫
∂B3

〈Φ, ν〉 = 0,

meaning, as expected, that the functional F is dilation invariant. Using this observation, we claim that
the non optimality of B3 will be proven whenever one shows that M̂Φ is not the null matrix. Indeed, in that
case, since M̂Φ is real symmetric, we will get that M̂Φ has two eigenvalues with opposite sign, yielding the
existence of a perturbation which strictly decreases the functional F . It suffices for instance to find Φ such
that ∫

∂B3

yz〈Φ, ν〉 6= 0.

Note that ν = x~ex + y~ey + z~ez on ∂B3, in cartesian coordinates. We choose Φ given by Φ(x, y, z) = z~ey and
we are done.

6 Conclusion and open problems

There are several questions that we believe are interesting, but would require further work and, most likely,
the use of different tools. Let us give some that we believe are the most ambitious.
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Characterising the optimal domain Ω∗. Although we have proved that, in R2, the ball B2 is likely
to be an optimiser, it is not clear to us how one would approach such a result. As detailed in Remark 3,
if we can prove that there exists a simply connected and regular minimiser, then it is necessarily a disc.
The results in our paper complete the intuition that the disc minimises the Stokes eigenvalue under volume
constraints in dimension 2. However, the proof of this result is an open problem as far as we know.

Indeed, in the vectorial case, standard rearrangement and symmetrisation tools are bound to fail. One
might then try to use an alternative approach to the Faber-Krahn inequality, typically using an overdeter-
mined problem framework, but, to the best of our knowledge, no generalisation of the Serrin theorem can
accommodate incompressibility constraints. In three dimensions, it seems useful to perform some numerical
simulations to have at least an idea of the possible optimal sets. Following our Corollary 1, one can wonder
whether it is a particular torus;

A priori regularity of the optimal domain. Following Theorem 1, we know that an optimal domain
Ω∗ exists in the class of quasi-open sets. Nevertheless, it seems extremely ambitious, at this stage, to develop
an a priori regularity theory for this optimal set. Following the usual approach to such problems, see e.g.
[32, chapter3], the first step in that direction would be to establish that Ω∗ is, in fact, open. To derive
further properties, the optimality conditions given in Theorem 4 would probably play a crucial role in the
development of an appropriate blow-up theory.
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Appendix

A The first Stokes eigenvalue in B3

In this appendix, we collect several facts about λ1(B3) and its associated eigenfunctions. The main goal is
to prove the following proposition:

Proposition 4. Let ω > 0 be the first positive root of tan(x) = x. Then λ1(B3) is equal to ω2 and has
multiplicity 3. An orthogonal basis of the associated eigenspace E1 is given byU1 = ψ(r)

 0
z
−y

 ,U2 = ψ(r)

−z0
x

 ,U3 = ψ(r)

−yx
0
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where

ψ(r) =
sin(ωr)

ω2r3
− cos(ωr)

ωr2
.

Finally, for any i ∈ {1, 2, 3}, there holds∫
B3

‖Ui‖2 =
4π

3ω4

(
ω2 − sin2 ω

)
=

4π

3
· sin2 ω

ω2
=: A2.

The proof of this proposition is essentially contained in [51], which actually gives more general results.
For the reader’s convenience however, we gather here the main facts necessary to obtain this result.

Eigenvalues of the curl operator. A typical approach to Stokes eigenvalue problems is to factorise the
vector Laplacian ∆ as ∆ = curl(curl) in the case of incompressible flows.

The spectral problem for the curl operator is the following: find (ξ,uξ) , ξ ∈ C ,uξ 6= 0 such that{
curl(uξ) = ξuξ in B3 ,

〈uξ, ν〉 = 0 on ∂B3.
(35)

In simply connected domains, it is possible to show the following spectral decomposition theorem [49]:

Theorem 5 (Spectral decomposition for the curl). There exist two sequences {µk,±}k∈N of eigenfunctions
ordered as follows

−∞←− µk+1,− 6 µk,− 6 . . . 6 µ1,− < 0 < µ1,+ 6 . . . 6 µk,+ 6 µk+1,+ −→∞,

and the associated eigenfunctions {uk,±}k∈N form a Hilbert basis of the space

X :=
{
u ∈ L2(Ω)3 ,∇ · u = 0 in Ω , 〈u, ν〉 = 0 on ∂Ω

}
.

In this theorem, we use (implicitly) the fact that there is a natural notion of trace for zero-divergence
vector fields.

Some explicit computations in the case of the ball. We now give a procedure to construct eigenfunc-
tions. All the results stated are contained, in one way or another, in [51, 12]. We use the standard spherical
coordinates (r, θ, φ), and the associated orthonormal basis (~er, ~eθ, ~eφ). Recall that in this coordinate frame
we have 

x = r sin θ cos(φ) ,

y = r sin θ sin(φ) ,

z = r cos(φ)

and


~er =

x~ex+y~ey+z~ez√
x2+y2+z2

~eθ =
(x~ex+y~ey)z−(x2+y2)~ez√

x2+y2+z2
√
x2+y2

~eϕ =
−y~ex+x~ey√

x2+y2

Lemma 8. Let (ξ,uξ) be a solution of (35) in B3 and write, in spherical coordinates,

uξ = uξ,r~er + uξ,θ~eθ + uξ,φ~eφ.

Then:
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1. There holds uξ,r 6= 0.

2. ruξ,r is an eigenfunction of the (scalar) Dirichlet-Laplace operator, associated with the eigenvalue ξ2.

Proof of Lemma 8. 1. Recall that, in polar coordinates, we have (for a vector field u = ur~er+uθ~eθ+uφεφ),

curl(u) =
1

r sin θ

(
∂(uφ sin θ)

∂θ
− ∂uθ

∂φ

)
~er

+
1

r

(
1

sin θ

∂ur
∂φ
−
∂(ruφ)

∂r

)
~eθ

+
1

r

(
∂(ruθ)

∂r
− ∂ur

∂θ

)
~eφ.

Thus, if uξ,r = 0 we deduce that (uξ,θ, uξ,φ) solves (in particular) the system{
−∂(ruφ)

∂r = ξruθ ,
∂(ruθ)
∂r = ξruφ.

Letting wθ/φ := ruξ,θ/φ we obtain

−
∂2wθ/φ

∂r2
= ξ2wθ/φ , wθ/φ(0) = w′θ/φ(0) = 0.

The Cauchy-Lipschitz theorem implies wθ/φ ≡ 0, a contradiction.

2. Let (ξ,uξ) be a solution of (35). Define v := 〈x,u〉 = ruξ,r. We have

−∆v = 〈x,∆u〉 − 2div(u) = ξ2〈x,u〉.

Here, we used that div(u) = 0, whence −∆u = curl(curl(u)). Furthermore, v = 〈x,u〉 = 0 on ∂B3.
As uξ,r 6= 0, the conclusion follows.

Explicit expression for the lowest eigenvalue of the curl operator in B3. Let ω > 0 be defined as
the first positive root of x = tan(x). We have the following proposition:

Proposition 5. ω is the lowest positive eigenvalue of the curl operator and −ω is the largest negative
eigenvalue of the curl operator. Both have multiplicity 3.

In order to prove this result, recall the following description of the second eigenspace of the Laplacian:

Lemma 9. Let ψ be defined as

ψ(r) =
sin(ωr)

ω2r3
− cos(ωr)

ωr2
.

The second eigenvalue µ2 of the Dirichlet-Laplacian in B3 is ω2. Furthermore, µ2(B3) has multiplicity 3.
An orthogonal basis of the eigenspace E−∆

ω2 is (v1 , v2 , v3), where
v1 : (r, θ, φ) 7→ rψ(r) sin θ cosφ ,

v2 : (r, θ, φ) 7→ rψ(r) sin θ sinφ ,

v3 : (r, θ, φ) 7→ rψ(r) cos θ.
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To derive Proposition 5, let ξ1 be the lowest positive eigenvalue of curl, and u1 be an associated
eigenfunction. Then, by Lemma 8, we know that

ξ1 >
√
µ1(B3),

where µ1(B3) is the first eigenvalue of the Dirichlet Laplacian. In the case of the ball, in fact, we have

ξ1 >
√
µ1(B3). (36)

Proof of (36). If we had ξ1 =
√
µ1(B3), then φ := ruξ1,r is an eigenfunction of the Dirichlet-Laplacian with

eigenvalue µ1(B3). However, φ(0) = 0, while, as µ1(B3) is simple, any eigenfunction associated with µ1 has
a (strict) constant sign in B3, a contradiction.

Proposition 5 is thus implied by the following lemma:

Lemma 10. For any i ∈ {1, 2, 3}, there exists a unique ui,± such that:

1. (ui,±,±ω) is a solution of (35),

2. 〈x,ui,±〉 = vi.

The ui,± have the following explicit expressions (in spherical coordinates):
u1,± = sin θ cos(φ)rψ(r)~er + (Fr cos(θ) cos(φ)± G

r sin(φ))~eθ + (±G
r cos(θ) cos(φ)− F

r sin(φ))~eφ ,

u2,± = sin θ sin(φ)rψ(r)~er + (Fr cos(θ) sin(φ)∓ G
r cos(φ))~eθ + (±G

r cos(θ) sin(φ) + F
r cos(φ))~eφ,

u3,± = cos(θ)rψ(r)~er − F
r sin θ~eθ ∓ G

r sin θ~eφ,

(37)

where F = F (r) , G = G(r) satisfy {
F ′′ + ωF = d

dr

(
1
r2ψ(r)

)
,

G′′ + ωG = −ω ψ
r2 ,

(38)

The expressions for F ,G are explicitF (r) =
(

cos(ωr)
ωr − sin(ωr)

ω2r2 + sin(ωr)
)

G(r) = −
(

sin(ωr)
ωr − cos(ωr)

)
,

and F (1) 6= 0 , G(1) = 0.

Proof of Lemma 10. To study the existence of such functions, we can follow the approach of [51, Lemma 2].
Dropping the indices i in ui,± and vi, the function u± = ±v

r~er + w~eθ + z~eφ must satisfy
1

r sin θ

(
∂(z sin θ)

∂θ − ∂w
∂φ

)
=
√
µvr

1
r

(
1

sin θ

∂ v
r

∂φ −
∂(rz)
∂r

)
= ±√µw

1
r

(
∂(rw)
∂r −

∂ v
r
∂θ

)
= ±√µz.

(39)

We thus obtain
∂2(rw)

∂r2
+ µ(rw) =

∂

∂r

(
1

r

∂v

∂θ

)
±
√
µ

r sin θ

∂v

∂φ
.

31



We derive a similar equation for z, namely:

∂2(rz)

∂r2
+ µ(rz) = ∓

√
µ

r

∂v

∂θ
+

1

sin θ

∂

∂r

(
1

r

∂v

∂φ

)
.

Writing these two equations as a system in Φw,± := rw ,Φz,± := rz, which satisfy Φw/z,±(0, θ, φ) =
∂rΦw/z,±(0, θ), φ) = 0, we are thus tasked with solving

∂2Φw,±
∂r2

+ ωΦw,± =
∂

∂r

(
1

r

∂v

∂θ

)
±
√
µ

r sin θ

∂v

∂φ

and
∂2Φz,±
∂r2

+ ωΦz,± = ∓
√
µ

r

∂v

∂θ
+

1

sin θ

∂

∂r

(
1

r

∂v

∂φ

)
.

However, using the solutions (F,G) given in the statement of the theorem, we can immediately check that
the expressions given are the correct ones; indeed, the uniqueness of the pair (ui,±) follows from the first
point of Lemma 8.

An important corollary of the explicit expression of the first eigenfuntions of the curl is the following:

Corollary 2. Let (αi,±)1=1,...,3 ∈ R6 and consider the field

u =
∑
i,±

αi,±ui,±

where the ui,± are given by Lemma 10. Then

u = 0 on ∂B3

if, and only if,
∀i ∈ {1, 2, 3}, αi,+ = −αi,−.

Proof of Proposition 4. We are now in a position to prove Proposition 4. Consider U a first eigenfunction
of the Dirichlet-Stokes operator, associated with the eigenvalue λ1(B3). We already observed that λ1(B3) >
µ1(B3). As U satisfies homogeneous Dirichlet boundary conditions, it follows in particular that

〈U, ν〉 = 0 on ∂B3

and thus U ∈ X, where X is defined in Theorem 5. We can thus decompose U as

U =
∑
k∈N

αk,±uk,±

in X. Consequently, we deduce that

λ1(B3) ∈ {ξ2
k,± , ξk,± eigenvalue of the curl operator}.

In particular, from Lemma 10, we have
λ1(B3) > ω2.
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However, observe that according to Lemma 10, u1,+ − u1,− is an eigenfunction of the Stokes operator with
eigenvalue ω2. Thus, we deduce that

λ1(B3) = ω2

and, furthermore, that for any associated eigenfunction U, we can decompose U as

U =
3∑
i=1

∑
±
αi,±ui,±.

Since U satisfies homogeneous Dirichlet boundary conditions, Corollary 2 implies that U writes

U =
3∑
i=1

αi (ui,+ − ui,−) .

Thus, the eigenspace has dimension at most 3.
We now compute, for each i ∈ {1, 2, 3}, the function Vi := ui,+−ui,−. In spherical coordinates, we have

V1 = 2Gr sin(φ)~eθ + 2Gr cos(θ) cos(φ)~eφ ,

V2 = −2Gr cos(φ)~eθ + 2Gr cos(θ) sin(φ)~eφ,

V3 = −2Gr sin θ~eφ.

(40)

Now, to get a nicer expression in cartesian coordinates (~ex, ~ey, ~ez), recall that

~er =
1

r
(x~ex + y~ey + z~ez) , ~eθ =

xz~ex + yz~ey − (x2 + y2)~ez

r
√
x2 + y2

, ~eφ =
−y~ex + x~ey√

x2 + y2
.

Furthermore, observe that
G(r)

r2
= ψ(r).

We thus obtain, in cartesian coordinates:

V1 = 2ψ(r)

 0
z
−y

 ,V2 = 2ψ(r)

−z0
x

 ,V3 = 2ψ(r)

−yx
0

 .

In particular, defining Ui := Vi
2 , we observe that U1 ,U2 ,U3 are orthogonal, whence the conclusion: the

eigenspace is three dimensional, and we have an orthogonal basis of it.
It remains to compute the normalization constant A, using a spherical change of coordinates and explicit

computations. Let us provide some details hereafter. One has

‖Ui‖2L2(B3) =

∫
B3

(x2 + y2)ψ(r)2 dxdydz =

∫ 2π

0

∫ π

0

∫ 1

0
r4 sin3 θψ(r)2 drdθdϕ

= 2π

∫ π

0
sin3 θ dθ

∫ 1

0

(
sin(ωr)

ω2r
− cos(ωr)

ω

)2

dr

=
8π

3

(
2 cos2 ω + ω2 + ω cosω sinω − 2

2ω4

)
.

The desired expression follows easily by using that ω cosω = sinω.
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B Existence of an optimal shape under a box constraint

In this appendix, we prove the following result:

Proposition 6. Let D ⊂ Rd be a fixed compact domain of Rd and define the admissible class

ÔV0 = {Ω quasi-open included in D , |Ω| 6 V0} .

The shape optimisation problem
inf

Ω∈ÔV0

λ(Ω) (41)

has a solution.

Proof of Proposition 6. We introduce, for Ω ∈ ÔV0 , the quantity λ̂1(V0) given by

λ̂1(V0) = inf
u∈W 1,2

0 (D;R3)∫
D u·∇v=0 ∀v∈H1(D)

|Ωu|6V0∫
Ωu
‖u‖2=1

∫
D
‖∇u‖2 (42)

where Ωu denotes the quasi open set {u 6= 0}.
Let {uk}k∈N be minimising for Problem (42). For any k ∈ N, let Ωk := {uk 6= 0}. In view of the

Poincaré inequality [34, Lemma 4.5.3], {uk}k∈N is bounded in W 1,2
0 (D;R3). It follows that there exists

u? ∈ W 1,2
0 (D;R3) such that {uk}k∈N converges to u? up to a (not relabelled) subsequence, weakly in W 1,2

0

and strongly in L2. Thus, {uk}k∈N converges almost everywhere to u?, and therefore

|Ωu? | 6 lim inf
k→+∞

|Ωk| 6 V0

where Ωu? denotes the quasi-open set {u? 6= 0}. We infer that Ωu? belongs to ÔV0 . Furthermore, since
u? = 0 quasi-everywhere on D\Ωu? , by weak H1-convergence, one has∫

Ωu?

‖∇u?‖2 6 lim inf
k→+∞

∫
Ωk

‖∇uk‖2 = λ̂1(V0) 6
∫

Ωu?

‖∇u?‖2

by minimality, whence the equality of these quantities. By strong convergence in L2(D;R3) and weak
convergence in W 1,2

0 (D;R3), there holds ∫
D
‖u∗‖2 = 1

and, for any v ∈W 1,2(D),

0 = lim
k→+∞

∫
D
〈uk,∇v〉 =

∫
D
〈u?,∇v〉.

Thus, Ωu∗ is a solution of (42). The proof is now concluded.
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Tracts Math. Zürich: European Mathematical Society (EMS), 2018.

36



[35] B. Kawohl, A. Cellina, and A. Ornelas. Optimal shape design: Lectures given at the joint cim. CIME
Summer School Held in Troia (Portugal), 1740, 1998.

[36] J. P. Kelliher. On the vanishing viscosity limit in a disk. Math. Ann., 343(3):701–726, 2009.

[37] S. Kesavan. Symmetrization and applications, volume 3 of Ser. Anal. Hackensack, NJ: World Scientific,
2006.
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