MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume

Résumé

Musculoskeletal diseases such as sarcopenia and osteoporosis are major obstacles to health during aging. Although dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) can be used to evaluate musculoskeletal conditions, frequent monitoring is difficult due to the cost and accessibility (as well as high radiation exposure in the case of CT). We propose a method (named MSKdeX) to estimate fine-grained muscle properties from a plain X-ray image, a low-cost, low-radiation, and highly accessible imaging modality, through musculoskeletal decomposition leveraging fine-grained segmentation in CT. We train a multi-channel quantitative image translation model to decompose an X-ray image into projections of CT of individual muscles to infer the lean muscle mass and muscle volume. We propose the object-wise intensity-sum loss, a simple yet surprisingly effective metric invariant to muscle deformation and projection direction, utilizing information in CT and X-ray images collected from the same patient. While our method is basically an unpaired image-to-image translation, we also exploit the nature of the bone’s rigidity, which provides the paired data through 2D-3D rigid registration, adding strong pixel-wise supervision in unpaired training. Through the evaluation using a 539-patient dataset, we showed that the proposed method significantly outperformed conventional methods. The average Pearson correlation coefficient between the predicted and CT-derived ground truth metrics was increased from 0.460 to 0.863. We believe our method opened up a new musculoskeletal diagnosis method and has the potential to be extended to broader applications in multi-channel quantitative image translation tasks.
Fichier principal
Vignette du fichier
2305.19920.pdf (8.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04396407 , version 1 (15-01-2024)

Licence

Identifiants

Citer

Yi Gu, Yoshito Otake, Keisuke Uemura, Masaki Takao, Mazen Soufi, et al.. MSKdeX: Musculoskeletal (MSK) Decomposition from an X-Ray Image for Fine-Grained Estimation of Lean Muscle Mass and Muscle Volume. MICCAI 2023 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, Oct 2023, Vancoucer, Canada. pp.497-507, ⟨10.1007/978-3-031-43990-2_47⟩. ⟨hal-04396407⟩
33 Consultations
21 Téléchargements

Altmetric

Partager

More