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Abstract. Musculoskeletal diseases such as sarcopenia and osteoporosis
are major obstacles to health during aging. Although dual-energy X-ray
absorptiometry (DXA) and computed tomography (CT) can be used to
evaluate musculoskeletal conditions, frequent monitoring is difficult due
to the cost and accessibility (as well as high radiation exposure in the case
of CT). We propose a method (named MSKdeX) to estimate fine-grained
muscle properties from a plain X-ray image, a low-cost, low-radiation,
and highly accessible imaging modality, through musculoskeletal decom-
position leveraging fine-grained segmentation in CT. We train a multi-
channel quantitative image translation model to decompose an X-ray
image into projections of CT of individual muscles to infer the lean mus-
cle mass and muscle volume. We propose the object-wise intensity-sum
loss, a simple yet surprisingly effective metric invariant to muscle defor-
mation and projection direction, utilizing information in CT and X-ray
images collected from the same patient. While our method is basically
an unpaired image-to-image translation, we also exploit the nature of
the bone’s rigidity, which provides the paired data through 2D-3D rigid
registration, adding strong pixel-wise supervision in unpaired training.
Through the evaluation using a 539-patient dataset, we showed that the
proposed method significantly outperformed conventional methods. The
average Pearson correlation coefficient between the predicted and CT-
derived ground truth metrics was increased from 0.460 to 0.863. We be-
lieve our method opened up a new musculoskeletal diagnosis method and
has the potential to be extended to broader applications in multi-channel
quantitative image translation tasks.

Keywords: Muscles · Radiography · Generative adversarial networks
(GAN). · Sarcopenia · Image-to-image translation
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Fig. 1. Variations in the muscle volume and lean muscle density among the 552 patients
in our dataset. (a) Relationships of muscle volume and lean muscle density with respect
to body mass index (BMI). Moderate and weak correlations of BMI were observed with
muscle volume and lean muscle density, respectively, in the gluteus maximus (Glu.
max.), while little correlations were observed in the iliacus. (b) Visualization of two
representative cases. Patient #1 (young, male) and Patient #2 (old, female) had similar
BMI and almost the same gluteus maximus volume, while the lean muscle mass was
significantly different, likely due to the fatty degeneration in Patient #2, which was
clearly observable in the projections of the lean muscle mass volume.

1 Introduction

Sarcopenia is a prevalent musculoskeletal disease characterized by the inevitable
loss of skeletal muscle, causing increased risks of all-cause mortality and disability
that result in heavy healthcare costs [1,2,3,4,6,5]. Measuring body composition,
such as lean muscle mass (excluding fat contents), is essential for diagnosing
musculoskeletal diseases, where dual-energy X-ray absorptiometry (DXA) [7,8]
and computed tomography (CT) [9,10,11] are often used. However, DXA and CT
require special equipment that is much less accessible in a small clinic. Further-
more, CT requires high radiation exposure, and DXA allows the measurement
of only overall body composition, which lacks details in individual muscles such
as the iliacus muscle, which overlays with the gluteus maximus muscle in DXA
images. Although several recent works used X-ray images for bone mineral den-
sity (BMD) estimation and osteoporosis diagnosis [12,13,14,15], only a few works
estimated muscle metrics and sarcopenia diagnosis [16,17], and the deep learning
technology used is old. Recently, BMD-GAN [15] was proposed for estimating
BMD through X-ray image decomposition using X-ray and CT images aligned by
2D-3D registration. However, they did not target muscles. Nakanishi et al. [17]
proposed an X-ray image decomposition for individual muscles. However, they
calculated only the affected and unaffected muscle volumes ratio without consid-
ering the absolute volume and lean mass, which is more relevant to sarcopenia
diagnosis.
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In this study, we propose MSKdeX: Musculoskeletal (MSK) decomposition
from a plain X-ray image for the fine-grained estimation of lean muscle mass
and volume of each individual muscle, which are useful metrics for evaluating
muscle diseases including sarcopenia. Fig. 1 illustrates the meaning of our fine-
grained muscle analysis and its challenges. The contribution of this paper is
three-fold: 1) proposal of the object-wise intensity-sum (OWIS) loss, a simple
yet effective metric invariant to muscle deformation and projection direction, for
quantitative learning of the absolute volume and lean mass of the muscles, 2)
proposal of partially aligned training utilizing the aligned (paired) dataset for
the rigid object for the pixel-wise supervision in an unpaired image translation
task, 3) extensive evaluation of the performance using a 539-patient dataset.
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Fig. 2. Overview of the proposed MSKdeX. Three types of object-wise DRRs (of seg-
mented individual muscle/bone regions) were obtained from CT through segmentation
[18], intensity conversion [19,20], 2D-3D registration for bones [21], and projection,
embedding information of volume and mass. A decomposition model was trained using
GAN loss and proposed GC loss chain, OWIS loss, and bone loss to decompose an
X-ray image into DRRs whose intensity sum derives the metric of volume and mass.

2 Method

2.1 Dataset preparation

Fig. 2 illustrates the overview of the proposed MSKdeX. We collected a dataset
of 552 patients subject to the total hip arthroplasty surgery (455 females and 97
males, height 156.9 ± 8.3 cm, weight 57.5 ± 11.9 kg, BMI 23.294 ± 3.951 [mean
± std]). Ethical approval was obtained from the Institutional Review Boards of
the institutions participating in this study (IRB approval numbers: 15056-3 for
Osaka University and 2019-M-6 for Nara Institute of Science and Technology).
We acquired a pair of pre-operative X-ray and CT images from each patient,
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assuming consistency in bone shape, lean muscle mass, and muscle volume. Au-
tomated segmentation of individual bones and muscles was obtained from CT
[18]. Three different intensity conversions were applied to the segmented CT; 1)
the original intensity, 2) intensity of 1.0 for voxels inside the structure and 0.0
for voxels outside to estimate muscle volume, 3) intensity corresponding to the
lean muscle mass density based on a conversion function from the Hounsfield
unit (HU) to the mass density [19,20] to estimate lean muscle mass. Following
[19], we assumed the voxels with less than -30 HU consisted of the fat, more
than +30 HU consisted of the lean muscle, and the voxels in between -30 to
+30 HU contained the fat and lean muscle with the ratio depending on linear
interpolation of the HU value. The mass of the lean muscle was calculated by
the conversion function proposed in [20]. Then, object-wise DRRs for the three
conversions were generated for each segmented individual object (bone/muscle)
region. (Note: When we refer to a DRR in this paper, it is object-wise.) We call
the three types of the DRRs weighted volume DRR (WVDRR), volume DRR
(VDRR), and mass DRR (MDRR). The intensity sum of VDRR and MDRR
amounts to each object’s muscle volume (cm3) and lean muscle mass (g), re-
spectively. (Note: “Muscle volume” includes the fat in addition to lean muscle.)
The summation of all the objects of WVDRRs becomes an image with a contrast
similar to the real X-ray image used to calculate the reconstruction gradient cor-
relation (GC) loss [17,22]. A 2D-3D registration [21] of each bone between CT
and X-ray image of the same patient was performed to obtain its DRR aligned
with the X-ray image, which is used in the proposed partially aligned training.

Since muscles deform depending on the joint angle, they are not aligned.
Instead, we exploited the invariant property of muscles using the newly proposed
intensity-sum loss.

2.2 Model training

We train a decomposition model G to decompose an X-ray image into the
DRRs = {V DRR,MDRR,WVDRR} to infer the lean muscle mass and muscle
volume, adopting CycleGAN [23]. The model backbone is replaced with HRNet
[24]. The GAN loss Lup

GAN we use is formulated in supplemental materials.

Structural consistency. We call the summation of a DRR over all the channels
(objects) the virtual X-ray image defined as IV X = V (IDRR) =

∑
i I

DRR
i , where

IDRR
i is the i-th object image of a DRR. We applies reconstruction GC loss [17]
Lα
GC defined as

Lα
GC(G) = EIX −GC(IX , V (G(IX)WVDRR)) (1)

to maintain the structure consistency between an X-ray image and decomposed
DRR, where G(IX)WVDRR is the decomposed WVDRR. However, we do not
apply reconstruction GC loss for VDRR and MDRR because of lacking atten-
uation coefficient information. Instead, we propose inter-DRR/intra-object GC
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loss Lβ
GC defined as

Lβ
GC(G) = EIX − 1

N

∑

i

[
GC(st(G(IX)WVDRR

i ), G(IX)V DRR
i )

+GC(st(G(IX)WVDRR
i ), G(IX)MDRR

i )
] (2)

to chain the structural constraints from WVDRR to VDRR and MDRR, where
the G(IX)WVDRR

i , G(IX)V DRR
i , and G(IX)MDRR

i are i-th object image of the
decomposed WVDRR, VDRR, and MDRR, respectively. The st(·) operator stops
the gradient from being back-propagated in which the decomposed VDRR and
MDRR are expected to be structurally closer to WVDRR (not vice-versa) to
stabilize training. Thus, our structural consistency constant Lup

GC is defined as
Lup
GC = λgcaLα

GC(G) + Lβ
GC(G) where the λgca balances the two GC losses.

Intensity sum consistency. Unlike general images, our DRRs embedded spe-
cific information so that the intensity sum represents physical metrics (mass and
volume). Furthermore, the conventional method did not utilize the paired in-
formation of an X-ray image and DRR (obtained from the same patient). We
took advantage of the paired information, proposing the object-wise intensity-
sum loss, a simple yet effective metric invariant to patient pose and projection
direction, for quantitative learning. The OWIS loss LIS is defined as:

LIS(DRR) = E(IX ,IDRR)
1

NHW

∑

i

∣∣∣S(G(IX)DRR
i )− S(IDRR

i )
∣∣∣, (3)

where IDRR
i and S(·) are the i-th object image of DRR and the intensity sum-

mation operator (sum over the intensity of an image), respectively. The H and
W are the image height and weight, respectively, served as temperatures for
numeric stabilizability. The intensity consistency objective Lall

IS is defined as
Lall
IS = LIS(WVDRR) + LIS(V DRR) + LIS(MDRR).

Partially aligned training. A previous study [15] suggested that supervision
by the aligned (paired) data can improve the quantitative translation. Therefore,
we incorporated 2D-3D registration [21] to align the pelvis and femur DRRs
with the paired X-ray images for partially aligned training to improve overall
performance, including muscle metrics estimation. We applied L1 and GC loss
to maintain quantitative and structural consistencies, respectively. However, we
preclude using GAN loss and feature matching loss to avoid the training burden
by additional discriminators. The paired bone loss for a DRR is defined as

LB(DRR) = E(IX ,IDRR)
1

Nb

∑

i∈K

[
λl1

∥∥G(IX)DRR
i − IDRR

i

∥∥
1

−GC(G(IX)DRR
i , IDRR

i )
]
,

(4)
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where the K is a set of indexes containing aligned bone indexes. The Nb is the
size of the set K. The λl1 tries to balance structural faithfulness and quantita-
tive accuracy. The objective of partially aligned pixel-wise learning is defined as
Lall
B = LB(WVDRR) + LB(V DRR) + LB(MDRR).

Full objective The full objective, aiming for realistic decomposition while
maintaining structural faithfulness and quantitative accuracy, is defined as

L = min
G,F

max
DX ,DDRRs

(
Lup
GAN + LGC + λisLall

IS + Lall
B

)
, (5)

where the λis re-weights the penalty on the proposed OWIS loss.
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Fig. 3. Lean muscle mass (left) and muscle volume (right) estimation results by the
conventional and proposed methods for the gluteus medius (top) and iliacus (bottom).

3 Experiments and Results

The automatic segmentation results of 552 CTs were visually verified, and 13
cases with severe segmentation failures were omitted from our analysis, resulting
in 539 CTs. Four-fold cross-validation was performed, i.e., 404 or 405 training
data and 134 or 135 test data per fold. The baseline of our experiment was the
vanilla CycleGAN with the reconstruction GC loss proposed in [17]. We evalu-
ated the predicted lean muscle mass and volume using the ground truth derived
from 3D CT images with three metrics, Pearson correlation coefficient (PCC),
intra-class correlation coefficient (ICC), and mean absolute error (MAE). Ad-
ditionally, we evaluated the image quality of predicted DRRs of the bones by
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Fig. 4. Visualization of decomposition results of the MDRR and VDRR for gluteus
maximus, gluteus medius, pelvis, and sacrum on a representative case.

comparing them with the aligned DRRs using peak-signal-noise-ratio (PSNR)
and structural similarity index measure (SSIM). Implementation details are de-
scribed in supplemental materials.

Fig. 3 shows the prediction results on the gluteus medius and iliacus mus-
cles. The conventional method (without using the intensity constraints) resulted
in low PCCs of 0.441 and 0.522 for the lean muscle mass and muscle volume
estimations, respectively, for the gluteus medius, and 0.318 and 0.304, respec-
tively, for the iliacus. Significant improvements by the proposed method were
observed, achieving high PCCs of 0.877 and 0.901 of the lean muscle mass and
muscle volume estimations, respectively, for the gluteus medius, and 0.865 and
0.873, respectively, for the iliacus. Fig. 4 visualized the decomposed VDRR and
MDRR of four objects of a representative case. Our method (MSKdeX) reduced
the hallucinating features in the decomposed DRRs by the proposed losses. The
overall intensity of the conventional method was clearly different from the ref-
erence, while the proposed method decomposed the X-ray image considering
the structural faithfulness and quantitative accuracy, outperforming the conven-
tional method significantly. Table 1 shows evaluation for other objects. Statis-
tical test (one-way ANOVA) was performed on the conventional and proposed
methods using prediction absolute error, where the differences are significant
(p < 0.001) for all the objects. More detailed results and a visualization video
can be found in supplemental materials.

Ablation study. We performed ablation studies to investigate the impact of
proposed OWIS loss and the use of aligned bones using 404 training and 135 test
data. The re-weighting parameter λis of 0, 10, and 1000 with and without the
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partially aligned training LB was tested. The λis of 0 without partially aligned
training [λis = 0 (False)] is considered our baseline. The results of the ablation
study were summarized in Table 2, where the bold font indicated the best setting
in a column. We observed significant improvements from the baseline by both
proposed features, OWIS loss and partially aligned training LB .

The average PCC for the muscles was improved from 0.457 to 0.826 by adding
the OWIS loss (λis = 100) and to 0.796 by adding the bone loss, while their
combination achieved the best average PCC of 0.855, demonstrating the supe-
rior ability of quantitative learning of the proposed MSKdeX. The results also
suggested that the weight balance for loss terms needs to be made to achieve the
best performance. More detailed results are shown in supplemental materials.

Table 1. Performance comparison between the conventional and proposed methods in
a cross-validation study using 539 data.

Lean muscle mass and Bone mass estimation accuracy (PCC)
Method Glu. max. Glu. med. Glu. min. Ilia. Obt. ext. Pec. Pelv. Sac.
Conv. .417 .441 .415 .318 .416 .457 .612 .478
Prop. .831 .877 .864 .865 .825 .832 .950 .878

Muscle volume and bone volume estimation accuracy (PCC)
Method Glu. max. Glu. med. Glu. min. Ilia. Obt. ext. Pec. Pelv. Sac.
Conv. .490 .522 .463 .304 .402 .460 .586 .538
Prop. .882 .901 .890 .873 .864 .849 .956 .873

Bone decomposition accuracy [mean PSNR(mean SSIM)]
Method MDRR Pelv., Fem. VDRR Pelv., Fem. MVDRR Pelv., Fem.
Conv. 31.5(.940), 31.7(.962) 31.7(.940), 32.4(.963) 34.5(.956), 31.6(.971)
Prop. 37.1(.978), 37.8(.987) 37.7(.982), 39.5(.991) 39.0(.980), 37.1(.987)

4 Summary

We proposed MSKdeX, a method for fine-grained estimation of the lean muscle
mass and volume from a plain X-ray image (2D) through the musculoskeletal
decomposition, which, in fact, recovers CT (3D) information. Our method de-
composes an X-ray image into DRRs of objects to infer the lean muscle mass
and volume considering the structural faithfulness (by the gradient correlation
loss chain) and quantitative accuracy (by the object-wise intensity-sum loss and
aligned bones training), outperforming the conventional method by a large mar-
gin as shown in Sec. 3. The results suggested a high potential of MSKdeX for
opportunistic screening of musculoskeletal diseases in routine clinical practice,
providing a new approach to accurately monitoring musculoskeletal health. The
aligned bone DRRs positively affected the quantification of the density and vol-
ume of the muscles as shown in the ablation study in Sec. 3, implying the deep
connection between muscles and bones. The prediction of muscles overlapped
with the pelvis in the X-ray image can leverage the strong pixel-wise supervision
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by the aligned pelvis’s DRR, which can be considered as a type of calibration.
Our future works are the validation with a large-scale dataset and extension to
the decomposition into a larger number of objects.

Table 2. Summary of the ablation study for 135 test data.

λis With LB
Lean muscle mass and bone mass estimation accuracy (PCC)
Glu. max. Glu. med. Glu. min. Ilia. Obt. ext. Pec. Pelv. Sac.

0 (False) .415 .419 .469 .368 .473 .600 .542 .265
0 (True) .734 .799 .788 .855 .784 .813 .954 .798
100 (False) .799 .815 .829 .854 .815 .842 .925 .774
100 (True) .854 .857 .837 .883 .854 .846 .947 .898
1000 (False) .798 .765 .770 .839 .704 .840 .870 .767
1000 (True) .795 .776 .767 .828 .748 .820 .929 .745
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Note: the reference number corresponds to the one in the main paper.

Table 1. Results summary of ICC by the conventional and proposed methods for the
muscles of gluteus maximus (glu. max.), gluteus medius (glu. med.), gluteus minimus
(glu. min.), iliacus (ilia.), obturator externus (obt. ext.), and pectineus (pec.) and the
bones of pelvis (pelv.) and sacrum (sac.). Similar to PCC shown in Table 1 in the main
paper, the proposed method, which uses the object-wise intensity-sum (OWIS) loss and
bone loss through partially aligned training, showed superior performance by a large
margin compared to the conventional method, which uses only structural consistency
supervision.

Lean muscle mass and bone mass estimation accuracy
Method Glu. max. Glu. med. Glu. min. Ilia. Obt. ext. Pec. Pelv. Sac.
Conv. 0.310 0.316 0.372 0.198 0.359 0.334 0.517 0.309
Prop. 0.758 0.863 0.853 0.855 0.820 0.825 0.936 0.848

Muscle volume and bone volume estimation accuracy
Conv. 0.375 0.406 0.424 0.213 0.333 0.344 0.494 0.423
rop. 0.820 0.890 0.882 0.866 0.858 0.840 0.950 0.858
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Fig. 1. Results of the tuning of the proposed OWIS loss (λis) and ablation of the bone
loss (LB) for evaluating their impact using four-fold cross-validation (539 data). The
bone loss was effective for any λis and λis = 100 resulting in the highest correlation
for both lean muscle mass and muscle volume estimations.
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(a) (b)

Fig. 2. CT intensity conversion method and the visualization of detailed results. (a)
Conversion function from HU to lean muscle mass density (bottom), which is defined
as the multiplication of two conversion functions about muscle/fat ratio (top) [19]
and mass density (middle) [20]. (b) A screenshot of the supplemental video showing
decomposed DRRs for all cases.

Objective λup
GAN . Following CycleGAN [23], the GAN loss is defined as

LGAN (G,D,X, Y ) = EX [logD(Y )] +EY [log(1−D(G(X)))], (1)

where G, D, X, and Y are the generator, discriminator, source data, and target
data, respectively. The cycle consistency loss Lcyc [23] is defined as

Lcyc(G,F ) = EIX [
∥∥F (G(IX))− IX

∥∥
1
] +EIDRRs [

∥∥G(F (IDRRs))− IDRRs
∥∥
1
],
(2)

where F is a twine generator to G, trying to construct an X-ray image from given
DRRs. The objective of the unpaired GAN is defined as Lup

GAN = λcycLcyc(G,F )+
LGAN (G,DDRRs, IX , IDRRs)+LGAN (F,DX , IX , IDRRs), where the DDRRs and
DX are discriminators for DRRs and X-ray images, respectively. The λcyc de-
termines the importance of the cycle consistency loss.

Table 2. Implementation details

Part I

Study Total
epochs Optimizer Learning rate

(LR) policy
Inital LR,
min LR

Balance
parameters

Cross-val. 600 AdamW (weight
decay=1e−4)

SGDR [*]
(T0=200, Ti=1)

1e−4,
1e−6

λcyc=10, λgca=0.5
λl1=100, λis=100Ablation 400

Part II
Method Time cost Image size Batch size GPU
Conv. 3 min/epoch 512x512 2 RTX A6000Prop. 4 min/epoch

[*] Loshchilov I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts.
ICLR (2017)


