Seasonal average temperature forecast with the AutoGluonTS modern autoML tool - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Seasonal average temperature forecast with the AutoGluonTS modern autoML tool

Résumé

Forecasting the temperature at a given place in a given future epoch is of evident huge interest. This is extremely hard unless future means "next days". In this paper, we focus on the problem of forecasting if a given future period (say, next summer) will be hotter than usually. More precisely, the objective is to say if the average daily temperature will be above normal, normal or below normal, where normal is defined on past observed values. For this task, most of the production tools are of the dynamic type (that is, physical, usually huge systems of partial differential equations) or statistical, or a combination of both. In the paper, we explore the use of modern Machine Learning tools and show that they can compete with those dedicated and always heavy and complex procedures, in spite of the fact that our results come from standard tools and hardware. We illustrate the results with data coming from a project where these questions are studied, concerning a large area in the Southern part of South America.
Fichier principal
Vignette du fichier
Rubino-MACLEAN23-CR.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04384070 , version 1 (10-01-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04384070 , version 1

Citer

Diego Kiedanski, Pablo Rodriguez-Bocca, Gerardo Rubino. Seasonal average temperature forecast with the AutoGluonTS modern autoML tool. MAChine Learning for EArth ObservatioN, European Conference on Machine Learning, Sep 2023, Torino, Italy. pp.1-10. ⟨hal-04384070⟩
78 Consultations
72 Téléchargements

Partager

More