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Abstract. Forecasting the temperature at a given place in a given future
epoch is of evident huge interest. This is extremely hard unless future
means “next days”. In this paper, we focus on the problem of forecasting
if a given future period (say, next summer) will be hotter than usually.
More precisely, the objective is to say if the average daily temperature
will be above normal, normal or below normal, where normal is defined
on past observed values. For this task, most of the production tools are
of the dynamic type (that is, physical, usually huge systems of partial
differential equations) or statistical, or a combination of both. In the
paper, we explore the use of modern Machine Learning tools and show
that they can compete with those dedicated and always heavy and com-
plex procedures, in spite of the fact that our results come from standard
tools and hardware. We illustrate the results with data coming from a
project where these questions are studied, concerning a large area in the
Southern part of South America.

Keywords: Seasonal Average Temperature · Forecasting · AutoGluon-
Time Series.

1 Introduction

In this paper, we focus on a particularly difficult time-series analysis problem:
the forecasting of seasonal average temperatures in the following 90 days. The
problem is very hard to solve. For this reason, the climatologists usually avoid
forecasting the average temperature directly. Instead, they forecast a three-level
classification of this average temperature: above normal , normal , and below nor-
mal , where normality is defined as typical conditions for the current season (see
below).

To solve this problem, several dedicated models have been developed. Fol-
lowing [1], we summarize below the most important ones for our study. In the
paper, we apply instead a set of modern Machine Learning (ML) techniques to
the problem, in order to evaluate their performances. Machine Learning (ML)
⋆ This work was supported by the “ClimateDL” project belonging to the Climat Am-

Sud program, with program code 22-CLIMAT-02.
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has made significant progress over the past decade. However, as they get more
sophisticated, it is increasingly difficult, even for experts, to incorporate all the
recent best practices into their modeling activities. In that context, automated
Machine Learning (autoML) frameworks offer a powerful alternative, since they
take care alone of the whole configuration process. Numerous autoML frame-
works have recently emerged to solve time-series problems [2]. In this paper,
we will use the autoML framework called AutoGluon-Time Series (AutoGlu-
onTS) [3]. It contains several tools, ranging from off-the shelf boosted trees to
customized neural networks. These models are assembled into a final one, that
a priori should outperform any of them taken individually.

The rest of this paper is organized as follows. This section finalizes with
the description of main related work. Section 2 presents the dataset and the
methodology developed to create our model. Our experimental setup and results
are presented in Section 3. Finally, Section 4 provides some concluding remarks.

Related work. We briefly describe here the tools that we selected as relevant for
this analysis, and then the metrics used for comparing the different techniques.

A main reference for seasonal weather forecasting is the NMME (North Amer-
ican Multi-Model Ensemble) tool 3, a large platform combining several also large
models, among the main ones in North America. They are all based on numer-
ical simulation methods, also called dynamical models, or Numerical Weather
Prediction (NWP) models. On the statistical side, we have the CPT (Climat
Predictability Tool) model using many variables (wind, temperature, precipita-
tions, etc.). It comes from Columbia University [4]. The SMN-CPT.NMME vari-
ant combines previous tool with NWP models used inside NMME. We also have
CLIMAX [5], based on the outputs of most of the modules composing NMME,
combined using regressions to return a single forecast. Let us also mention the
IRI (International Research Institute for Climate and Society), an important re-
search center at Columbia University [6]. It produces climate well-known prog-
nostics of different kinds, one of them by combining the outputs of the com-
ponents of NMME. There is also a different way of combining the outputs of
several models, using a “consensus” in a set of human experts. It is used by some
consumers of forecasts in the area [1]. The experts analyze those outputs, use
their experience and skills, and produce a new forecast, often better than the
individual original ones.

For the seasonal average temperature three-level classification forecasting
problem, our main reference [1] uses two metrics to evaluate the performance
of the models [7]: (1) HIT SCORE (for deterministic forecasts), the number of
hits divided by the number of forecasts issued (a hit being a correct class clas-
sification), and (2) the well-known AUC, the area under the Relative Operating
Characteristics (ROC) curve. While the Hit score is the suggested metric to use
when you have a single forecast map for a quarter or season, the AUC is sug-
gested for a series of forecast maps, as in our case. We will present our results
using the AUC metric (see [7] for a deep explanation of these and other met-

3 https://www.cpc.ncep.noaa.gov/products/NMME/
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rics). Table 1 shows the AUC metric results for our problem using the models
described above [1] for the period January 2018 .. June 2021.

Table 1: AUC for the three classes for the mean seasonal temperature forecasted by
the models presented above. From January 2018 until June 2021. Source: [1].

Model above normal normal below normal
Consensus 0.59 0.56 0.53
SMN-CPT 0.53 0.61 0.51

SMN-CPT.NMME 0.55 0.62 0.53
CLIMAX 0.56 0.55 0.50

IRI 0.52 0.50 0.49
NMME 0.57 0.54 0.50

2 Materials and Methods

Let us formalize our forecasting problem and define the metrics used. Later, we
will present our dataset and the feature engineering developed. Finally, we will
describe the AutoGluonTS tool and our experimental methodology.

In our seasonal average temperature classification problem, we deal with the
mean temperature in the following 90 days, and we forecast the fact that it is
above normal , normal , or below normal . To decide what is “normal” at a specific
date, we basically look at the same calendar day (month–day, that is, Jan 1,
Jan 2, . . . , Dec 31) in the 30 years-length fixed interval 1981..2010, and compute
the terciles of that set of values. Then, normal temperature means being between
them. Normality is thus defined as the “typical” temperature for current season
observed during the considered reference period 1981..2010.

More precisely, we have a set P of N geographical points where we want
to forecast the average temperature class in the next 90 days. These points are
weather stations, where we have historical data in discrete time steps, t ∈ N. In
our case, as we will show later in Subsection 2.1, we have the daily measure of
the maximum temperature ymax,t and minimal temperature ymin,t, in Celsius
(plus the accumulated precipitations in mm), for which we will use respectively,
the notation ymax,t, ymin,t, for the day t ∈ N. Fix then any of the stations in P,
and consider the problem of forecasting the class of the mean temperature in the
next 90 days. We estimate the daily average temperature just as the arithmetic
mean yt =

(
ymin,t + ymax,t

)
/2, for all t ∈ N. The seasonal average temperature

in the last 90 days (past 90 days until now) is defined as follows: for all epoch t,
y90,t = 90−1

∑t
i=t−89 yi.

Next, we need to compute the quantiles of the data associated with every
used epoch t. Instead of looking at the calendar day (month–day) of the reference
1981..2010 period only, we add to these 30 numbers the mean temperatures of 1
and 2 days before and after that (month–day), in order of better capturing the
typical conditions on those years. We then compute the terciles of the resulting
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set of 30 · 5 = 150 numbers, that we call here Dt. Let us denote them as τ1,t
and τ2,t. So, epoch t is in class below normal if y90,t < τ1,t, in class normal if
τ1,t ≤ y90,t < τ2,t and in class above normal if τ2,t ≤ y90,t. This must be done
for all geographical points and calendar days. Then, we define the class of any
segment {t − 89, t − 88, . . . , t}, for all epoch t, as above normal , normal , below
normal by means of the terciles τ1,t and τ2,t. The vector of the classes of the
segment {t−89, t−88, . . . , t} in all the N geographical positions (the N stations)
is denoted by yt ∈ {above normal , normal , below normal}N .

Now, assume that you are in the training phase. We know the data until time t
included. It consists of the vectors of the seasonal average temperature class yt ∈
{above normal , normal , below normal}N , and other features, denoted by Xt ∈
RN×F , N geographical points with F features each (accumulated precipitations,
atmospheric pressure, etc.). Therefore, we can define our predictive problem as
the search for a function f() that predicts the target variable S days ahead in
the future, as a function of the historical data plus features values on the T last
days, as follows:

y(t−T ):t,X(t−T ):t
f−→ yt+S ,

where y(t−T ):t ∈ RN×T , X(t−T ):t ∈ RN×F×T and yt+S ∈ RN . In our case, S = 90
in order to predict the seasonal average temperature class in the immediately
following 90 days. The size of the training data depends on the model.

We will use standard quality metrics to assess the quality of forecasts. In ML,
the F1-score (F1) is commonly used to measure the performance of a binary
classifier. A procedure to generalize it to multi-class problems is called One
versus Rest multi-class strategy, and can be applied to F1 and other metrics.
We can proceed in two ways: we can either take the mean of the performances
(the F1s) of each class (this is called macro-averaging) or taking all the classes
simultaneously (micro-averaging). In the same way, as in our main reference
work [1], we can compute the Receiver Operating Characteristic (ROC) curve
per class, and compute the Area Under the Curve (AUC). Here, we will use
F1-macro, F1-micro, and AUC per class.

2.1 Southern South-America Dataset

The main dataset used in our project comes from 137 weather stations in South-
ern South America. It includes max and min daily temperatures and accumulated
precipitations from 1977 to 2018. Data is provided by national meteorological
services from Argentina, Uruguay, Chile, Brazil and Paraguay. The data came
already pre-processed by Solange Suli and Verónica Dankiewicz at the Departa-
mento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas
y Naturales, UBA4. Errors and outliers were fixed. Weather stations with high
level of missing data were discarded (69 out of 206).

The dataset was split into two subsets: training and testing. The training
includes the first 40 years, from 1977 to 2016; the year 2017 is used for testing
4 https://exactas.uba.ar/institucional/concursos/auxiliares/departamento-de-

ciencias-de-la-atmosfera-y-los-oceanos/
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and model evaluation. The year 2018 has a lot of missing data (19.4%), therefore
it is discarded. Globally, the final dataset has 4.8% of missing temperatures with
respect to the original data. This missing data appears differently depending on
the geographical point and date.

As part of our dataset, we consider the following 34 features:
Main measured daily features (5): max, min and mean temperature,

average of the means in the last 90 days, and accumulated precipitations.
Static weather station features (3): lon, lat, and altitude (in m).
Temporal features (2): day of the year transformed into two orthogonal

sinusoidal real values (sin and cos).
Standardized Precipitation Indices (SPI, 5 features): the SPI [8]

are used to characterize meteorological drought on a range of timescales. On
short timescales, the SPI are closely related to soil moisture, while at longer
timescales, they can be related to groundwater and reservoir storage. In our case,
we compute several SPI indices: for 30, 90, 180, 270, and 360 days timescales,
using daily precipitation input data.

Sea Surface Temperature (SST, 16 features). The Physical Sciences
Laboratory (PSL) of the National Oceanic and Atmospheric Administration
(NOAA) monthly publishes the sea surface temperature with a grid granularity
of grades: 90× 180 points (lat, lon). This dataset is known as “NOAA Extended
Reconstructed SST V5”5. We use this dataset to compute a measure of anoma-
lous month’ temperature, at each grid point, as the difference between the current
temperature and the historical average one (from 1981 to 2010) at this grid point.
Then, we separate the data by ocean basins: Pacific (long from 125 to 290°E, lat
from -70 to 60°N), Atlantic (long from 290 to 340°E, lat from -70 to 70°N), and
Indian (long from 20 to 125°E, lat from -60 to 20°N). With these three time-series
of anomalies over a map grid, we compute the main spatial variability patterns
using the Empirical Orthogonal Function (EOF) analysis [9]. EOF analysis is
also known as weighted Principal Components Analysis (wPCA), and it is a de-
composition of a dataset in terms of orthogonal basis functions to study spatial
patterns very common in climate study fields. We compute the first 20 EOFs per
time-series, and we keep as features the minimal number of EOFs to explain the
50% of variance in the signal. We need 7, 6 and 3 EOFs for the Pacific, Atlantic
and Indian ocean regions respectively. In Figure 1 we show the first three EOFs
for the Pacific Ocean and its associated time series. The time series are used as
time dependent features. Therefore, in the Pacific Ocean case, we have 7 new
features. These features are relevant because they summarize important climate
predictors as ENSO (El Niño-Southern Oscillation) in the first EOF, and the
PDO (Pacific Decadal Oscillation) in the second EOF. The same is performed
with the Atlantic and Indian Oceans.

Sea level pressure at Geo-potential Height Gradient of 500 hPa
(HGT500, 3 features). ERA5 reanalysis6, from the European Center for

5 https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
6 Copernicus Climate Change Service (C3S), 2017. ERA5: Fifth Generation of

ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate
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Fig. 1: First three EOFs for the Pacific Ocean and its associated time series.

Medium-Range Weather Forecasts (ECMWF), provides a highly accurate, hourly
data, with a spatial resolution of 0.25° × 0.25° and a vertical resolution of 37
pressure levels (1000 hPa to 1 hPa) from 1979 to present. From ERA5 we ob-
tain the daily temperature at 500 hPa geo-potential height between the Atlantic
Anticyclone and the Chaco Low (lon from 240 to 360°E, and lat from -70 to
-10°S). With this dataset, we repeat the procedure explained for the Sea Surface
Temperature (SST). We first compute the daily anomaly at each grid point, as
the difference between the current and the historical average temperatures (from
1981 to 2010) at this grid point. With this time-series of anomalies over a map
grid, we compute the main variability patterns using the Empirical Orthogonal
Function (EOF). We compute the first 20 EOFs, and we keep as features the
first three, which explains the 50% of variance in the signal.

2.2 Forecasting models in AutoGluonTS

AutoGluonTS uses several models on the same training data that share the
same time segment. It automatically cleans data and select appropriate hyper-
parameters, relevant models, etc. The models are of three types: local (they fit
a single time-series, global (they can handle many time series simultaneously)
and ensemble (to combine several forecasts into a single output).

Change Service Climate Data Store (CDS). (https://cds.climate.copernicus.eu/)
(Accessed: 05 June 2023).
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Local models use statistics only. They basically capture patterns (trends or
seasonality). In this work, we used the following ones: the Naïve tool (it predicts
the next value by copying the present one) and the SeasonalNaïve version, that
uses the value observed last year, the same calendar day; the classical statistical
ARIMA and variants (SARIMA, SARIMAX); the ETS and AutoETS
models which compute weighted averages of previously observed values (as in
ARIMA, etc.), but where the weights are exponentially decreasing with the time
lags; another tool, Theta, uses a different decomposition of the series (the idea
is to separate short and long term parts).

On the global models, we only used two tools (because of computation con-
straints). AutoGluonTabular [3] converts the problem into a tabular one with
specific types of features: lags (based on the frequency of the training data),
time features (for instance the calendar day), etc. Quantiles are computed as-
suming that the residuals are distributed according to Normal distributions with
zero mean and estimated variance. The transformed problem is solved using an
ensemble of XGBoost, CatBoost and LightGBM. The DeepAR tool [10] is a
probabilistic forecasting model that uses a recurrent neural network to get proba-
bilistic forecasts. It can handle numerous related time series. Finally, an ensemble
model, WeightedEnsemble, works by combining the predictions of all other
models.

2.3 Experimental Design

As mentioned, our dataset contains 34 features (defined in Section 2.1) for each
day and for each geographical point, from 1977 to 2018. In order to avoid overfit-
ting, AutoGluonTS automatically splits the training data into several folds, and
apply traditional model-training vs. validation procedures. We use 2017 for test-
ing, in order to stay close to our reference work [1]. Poggi et.al. evaluate expert
predictor models from January 2018 to June 2021, three years and a half. This is
not the only difference, we evaluate our work in 137 geographical points through-
out the region, and the reference work only does so in 86 stations in Argentina.
This is another reason that prevents a direct comparison with [1]. Moreover, the
same authors periodically extend their work by increasing the testing period,
and they observe relevant differences in the methods’ performance; therefore, a
direct comparison with [1] is out of scope.

In addition to an advanced configuration, AutoGluonTS offers a simple con-
figuration based in presets, where most hyper-parameters are chosen by the
framework. In particular, we configure: 1) preset=high_quality: that includes
local models (Naive, SeasonalNaive, ETS, AutoETS, Theta and ARIMA), global
models (AutoGluonTabular and DeepAR), and optionally two deep learning
models (TemporalFusionTransformer and SimpleFeedForward, not used in our
case). This preset will enable hyper-parameter optimization for local statisti-
cal models; 2) prediction_length=90: all the fitted models forecast time series
multiple steps into the future. As mentioned in Section 2, the number of these
steps is the forecast horizon, 90 in our case; and 3) eval_metric=sMAPE: trained
models are ranked based on their performance on an internal validation set,
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which is constructed by holding out the last prediction_length timesteps of
each time series in the training dataset. So, the rank is based in our prediction
target, yt+90.

By default, AutoGluonTS makes its forecasts using the model with the best
rank, usually the WeightedEnsemble model. To generate our prediction, we must
compute the class (above normal , normal , or below normal) of the last predicted
target (prediction_length= 90), using the terciles of the reference period, as
we explained in Section 2.

3 Results

We run the AutoGluonTS high_quality preset in a high performance server,
with the following specifications: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz,
with 40 CPU cores and 96GB RAM.

A simple evaluation procedure could consist of fitting a single AutoGluonTS
for all days in the training dataset, and evaluating its performance at each day
in the testing dataset. Considering that our testing dataset is quite large (12
months), and that this simple procedure does not use the last historical data to
train where we are advanced in the testing data, we prefer a more sophisticated
approach: At the beginning of each testing month, we train a new model with the
historical information until the date, and evaluate the performance in the next
three months. Therefore, for our testing dataset, we train 10 different models (we
cannot use the last two months to train because we want to evaluate 3 months
into the future), and evaluate them in the following 3 months.

Each model needs approximately 50 min to train in our hardware, so, after
approximately 9 hours, we had our 10 models trained. Figure 2 shows the perfor-
mance on the first 9 months, evaluated in the Weather Station Encruzilhada-do-
Sul, Brazil (lon: -52.51, lat: -30.53, id: 83964). The red/yellow/green areas shows
the terciles for the classes above normal/normal/below normal . The black line
is the actual value, yt+90 (seasonal mean temperature in the following 90 days)
and the blue line is the model prediction ŷt+90 for each t in the following three
months. As expected, the model slowly loose quality when is evaluated farther
from the training data. A model is better when actual and predicted lines share
the same class area in many days and in many geographical points.

To globally measure the quality, we used the F1-macro, F1-micro, and AUC
metrics. Figure 3a shows the One-vs-Rest multi-class ROC curve, where micro-
averaged and macro-averaged One-vs-Rest ROC AUC scores are 0.65 and 0.57
respectively. The AUC discriminated by classes, as shown in the related work,
is as follows: 0.64 for above normal , 0.55 for normal and 0.53 for below normal .
The quality obtained is similar to the obtained in the reference work (Table 1) by
sophisticated state-of-the-art models, despite the fact that the evaluation period
and geographical points differ. The error is not distributed uniformly across the
dates (as showed in the example of the Figure 2). Globally, the same happens on
the average to most geographical points. Table 3b shows the error of the models
at each time period, that is, the decrease in performance at the end of each one.
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Fig. 2: Each figure shows the results for the first 9 months of 2017, in the weather
station 83964: Encruzilhada-do-Sul, Brazil (lon: -52.51, lat: -30.53).

4 Conclusions

Forecasting seasonal temperatures is a great challenge, due to the irregular na-
ture behind this physical parameter, and to the associated uncertainty. This
work describes an approach using a powerful state-of-the-art automated ML (au-
toML) tool. Our main conclusion of the paper is that these modern techniques
can compete with the sophisticate and heavy models used in production.

Concerning future work, we intend to study the impact of the forecasting
period on the performances of these methods. We must analyze the sensitivity
of their performance with respect to the position and size of the forecasting
segment. We must also try to integrate to the learning process the fact that
there are periods where forecasting temperatures is harder. We must also explore
other forecasting procedures having in mind these seasonal aspects. Finally, the
extreme difficulty of the problem seems to say that our variable set is not enough
for a good performance. This must also be explored in deep.
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