Interpretable Clustering of Multivariate Time Series with Time2Feat - Archive ouverte HAL
Article Dans Une Revue Proceedings of the VLDB Endowment (PVLDB) Année : 2023

Interpretable Clustering of Multivariate Time Series with Time2Feat

Résumé

This paper showcases Time2Feat, an end-to-end machine learning system for Multivariate Time Series (MTS) clustering. The system relies on interpretable inter-signal and intra-signal features extracted from the time series. Then, a dimensionality reduction technique is applied to select a subset of features that retain most of the information, thus enhancing the interpretability of the results. In addition, the system enables domain specialists to semi-supervise the process by submitting a small collection of MTS with a target cluster. This process further improves both accuracy and interpretability, by reducing the number of features used by the clustering process. The demonstration shows the application of Time2Feat to various MTS datasets, by creating clusters from MTS datasets of interest, experimenting with different settings and using the approach capabilities to interpret the clusters generated.
Fichier principal
Vignette du fichier
DemoTime2FeatTiano.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04374022 , version 1 (05-01-2024)

Identifiants

Citer

Angela Bonifati, Francesco Del Buono, Francesco Guerra, Miki Lombardi, Donato Tiano. Interpretable Clustering of Multivariate Time Series with Time2Feat. Proceedings of the VLDB Endowment (PVLDB), 2023, 16 (12), pp.3994-3997. ⟨10.14778/3611540.3611604⟩. ⟨hal-04374022⟩
98 Consultations
364 Téléchargements

Altmetric

Partager

More