Existence and Uniqueness for the SQG Vortex-Wave System when the Vorticity is Constant near the Point-Vortex
Résumé
This article studies the vortex-wave system for the Surface Quasi-Geostrophic equation with parameter 0 < s < 1. We obtained local existence of classical solutions in H^4 under the standard "plateau hypothesis", H^2-stability of the solutions, and a blow-up criterion. In the sub-critical case s > 1/2 we established global existence of weak solutions. For the critical case s = 1/2, we introduced a weaker notion of solution (V-weak solutions) to give a meaning to the equation and prove global existence.
Origine | Fichiers produits par l'(les) auteur(s) |
---|