Une méthode de Gradient Boosting d'Arbre de Décision explicative basée sur l'algorithme de Frank-Wolfe - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Une méthode de Gradient Boosting d'Arbre de Décision explicative basée sur l'algorithme de Frank-Wolfe

Emilien Boizard
  • Fonction : Auteur
  • PersonId : 1330378
Gilles Chardon

Résumé

Gradient Boosted Decision Trees (GBDT) are a highly effective learning method but suffers from a lack of explainability.To enhance the explainability of such algorithms, we propose in this article a method inspired by these models which allow toexhibit training data on which it relies the most to make a specific prediction. This method will be tested on three different datasets.
Les modèles de Gradient Boosting d'Arbre de Décision (GBDT) sont des algorithmes d'estimation très efficaces mais peu explicables. Pour améliorer cet aspect, nous proposons dans cet article une nouvelle méthode inspirée des GBDT permettant d'extraire les données du jeu d'entraînement sur lesquelles elle s'appuie pour faire une prédiction donnée. Pour s'assurer des performances de cette méthode et de son explicativité, elle sera testée sur trois différents jeux de données.
Fichier principal
Vignette du fichier
2023_boizard1164.pdf (194.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04366782 , version 1 (29-12-2023)

Identifiants

  • HAL Id : hal-04366782 , version 1

Citer

Emilien Boizard, Gilles Chardon, Frédéric Pascal. Une méthode de Gradient Boosting d'Arbre de Décision explicative basée sur l'algorithme de Frank-Wolfe. GRETSI 2023 - XXIXème Colloque Francophone de Traitement du Signal et des Images, Aug 2023, Grenoble, France. ⟨hal-04366782⟩
35 Consultations
45 Téléchargements

Partager

More