The stochastic Bessel operator at high temperatures
Résumé
We know from Ramírez and Rider that the hard edge of the spectrum of the Beta-Laguerre ensemble converges, in the high-dimensional limit, to the bottom of the spectrum of the stochastic Bessel operator. Using stochastic analysis techniques, we show that, in the high temperatures limit, the rescaled eigenvalues point process of the stochastic Bessel operator converges to a limiting point process characterized with coupled stochastic dierential equations.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |