Linguistic disparities in cross-language Automatic Speech Recognition transfer from Arabic to Tashlhiyt
Résumé
Tashlhiyt is a low-resource language with respect to acoustic databases, language corpora, and speech technology tools, such as Automatic Speech Recognition (ASR) systems. This study investigates whether a method of cross-language re-use of ASR is viable for Tashlhiyt from an existing commercially-available system built for Arabic. The source and target language in this case have similar phonological inventories, but Tashlhiyt permits typologically rare phonological patterns, including vowelless words, while Arabic does not. We find systematic disparities in ASR transfer performance (measuring as word error rate (WER) and Levenshtein distance) for Tashlhiyt across word forms and speaking style variation. Overall, performance was worse for casual speaking modes across the board. In clear speech, performance was lower for vowelless than for voweled words. These results highlight systematic speaking mode- and phonotactic-disparities in cross-language ASR transfer. They also indicate that linguistically-informed approaches to ASR re-use can provide more effective ways to adapt existing speech technology tools for low resource languages, especially when they contain typologically rare structures. The study can also speak to issues of linguistic disparities in ASR and speech technology more broadly. It can also contribute to understanding the extent to which machines are similar or, different from, humans in mapping the acoustic signal to discrete linguistic representations.
Domaines
Linguistique
Fichier principal
Zellou&Lahrouchi2024_ASR_Tashlhiyt_preprint.pdf (586.22 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|